
Proceedings of the 15th European Workshop on Natural Language Generation (ENLG), pages 109–111,
Brighton, September 2015. c©2015 Association for Computational Linguistics 1

JSrealB: A bilingual text realizer for web programming

Paul Molins, Guy Lapalme

RALI
Informatique et recherche opérationnelle

Université de Montréal
CP 6128, Succ. Centre-Ville

Montréal, Québec, Canada H3C 3J7
udem@paul-molins.fr, lapalme@iro.umontreal.ca

Abstract

JSrealB is an English and French text
realizer written in JavaScript to ease its
integration in web applications. The real-
ization engine is mainly rule-based. Ta-
ble driven rules are defined for inflection
and algorithmic propagation rules, for
agreements. It allows its user to build a
variety of French and English expres-
sions and sentences from a single specifi-
cation to produce dynamic output de-
pending on the content of a web page.

Natural language generation can automate a
significant part of textual production, only re-
quiring a human to supply some important as-
pects and thus saving considerable time for pro-
ducing consistent grammatically correct output.
In recent years, tools such as SimpleNLG (Gatt
and Reiter, 2009) facilitated text realization by a
programmer provided they program their appli-
cation in Java. This system was then extended
with SimpleNLG-EnFr (Vaudry and Lapalme,
2013), a English-French version of SimpleNLG.

Another approach to text realization is JSreal
(Daoust and Lapalme, 2014), a French Web real-
izer written in JavaScript. This paper describes
an attempt at combining the ideas of SimpleNLG-
EnFr and JSreal to produce a bilingual realizer
for French and English from a single specifica-
tion. JSrealB generates well-formed expressions
and sentences. It can be used standalone for lin-
guistic demonstrations or be integrated into com-
plex text generation projects. But like JSreal, it
is aimed at web developers, from taking care of
morphology, declension and conjugation to cre-
ating well-formed texts. A web programmer who
wishes to use JSrealB to produce flexible Eng-
lish and/or French textual or HTML output only
needs to add two lines in the page: one for im-

porting program and one for calling JSrealB
loader to load the resources (i.e. lexicon and
rules).

The principles underlying JSrealB are similar
to those of SimpleNLG: programming language
instructions create data structures corresponding
to the constituents of the sentence to be pro-
duced. Once the data structure (a tree) is built in
memory, it is traversed to produce the list of to-
kens of the sentence. This data structure is built
by function calls whose names are the same as
the symbols usually used for classical syntax
trees: for example, N to create a noun structure,
NP for a Noun Phrase, V for a Verb, D for a de-
terminer, S for a Sentence and so on. Features
added to the structures using the dot notation can
modify the values according to what is intended.

JSrealB syntactic representation is patterned
after classical constituent grammar notations. For
example,
S(NP(D("a"),N("woman")).n("p"),
 VP("eat").t("ps"))
is the JSrealB specification for The women ate.
Plural is indicated with feature n("p") where n
indicates number and p plural. The verb is con-
jugated to past tense indicated by the feature
tense t and value ps. Agreement between NP
and VP is performed automatically.

French and English are languages whose
structures are similar. Both languages use the
same alphabet, they are both fusional languages
sharing a similar conjugation system and their
word order follows the same basic Subject-Verb-
Object paradigm (Shoebottom, 1996). But
structural differences do exist: e.g. the position
of adjectives differs and rules for gender and
number agreement differ for nouns and pronoun
between these languages.

These differences must be taken into account
at many levels. First, syntactic differences and
agreements (i.e. features propagation), must be
handled at the phrase or sentence level by

109

 2

algorithms. For French complex rules, we
followed "Le bon usage, grammaire française"
(Grevisse, 1980). For English, we relied on
various sources from the web.

JSrealB lexicons are based on the ones found
in SimpleNLG-EnFr (Vaudry and Lapalme,
2013). These lexicons can be completed by the
user to add domain-specific vocabularies. In
lexicons, words have grammatical properties
(e.g. category, gender, etc.) and a link to an
inflection table. Tables are defined for nouns,
adjectives, verbs, determiners and pronouns in
both English and French. These inflection rules
are language specific and correspond to the
information found in (Bescherelle, 2012) and
(Delaunay and Laurent, 2013). These
conjugation, declension or transformation tables
are included with the lexicon in JSrealB, they are
defined declaratively for each language and
interpreted by a rule engine common to both
languages. There are also rules for the proper
localization of dates, numbers and punctuation in
each language.

Our goal was to develop an English and
French text realizer with minimal specific
adaptations to each language. We have promoted
the systematic application of rules hoping it is
possible to support other languages at limited
cost. This is contrast with SimpleNLG-EnFr and
JSreal in which many irregular forms were
included in the lexicon.

Text realization uses a syntactic hierarchical
tree representation that creates a sentence by
combining phrases and terminals. The relations
between these lexical units determine the propa-
gation of features between words for determining
proper agreements. For example, in
S(NP(D("le"),
 N("monsieur").n("p")),
 VP(V("avoir").t("i"),
 NP(D("un"),N("souris"))))
grammatical categories of words are already
specified in the syntactic representation. Word
order usually follows the left to right order of the
terminals in the tree except in some coordinated
sentences where position of coordinate must be
determined.

The relations between non-terminals specified
in the input determine the grammatical functions
of each element, which are roughly similar be-
tween French and English. We can then compute
the agreement between elements of the sentence
in order to propagate appropriate features to the
words according to the rules of the language.

Orthographic realization is performed after
morphological realization. Sentence relays fea-
tures, especially HTML tags, capitalization and
full stop, to its children elements with the aim of
formatting each phrase with proper elision.

JSrealB implements French and English
grammatical categories: noun, pronoun, deter-
miner, adjective, preposition, conjunction, and
complement; the implemented phrases are: noun,
verbal, adjectival, adverbial, prepositional, sub-
ordinate, and coordinate. The sentence combines
all these phrases.

Supported inflections are conjugation for sim-
ple tenses, and declension in gender and number
for every grammatical category. Noun phrase
agrees in gender and number, while verbal
phrase agrees with every type of subject (i.e.
common or proper noun, or pronoun).

JSrealB currently realize sentences structured
in the Subject-Verb-Object paradigm (e.g. It will
rain tomorrow.), or noun phrases (e.g. Heavy
snowfalls this night!).

But there is still much work in order to obtain
a more complete coverage. For example negation
is not yet handled: in French, negation is realized
with two adverbs ne and pas (e.g. il ne parle
pas), while in English there is only one: not (e.g.
he does not speak). Moreover, the proper place-
ment of the adverb is quite intricate.

There are also contractions (e.g. can not some-
times contracts in cannot in English) and elision
(e.g. it is become it's) which has only partial
support in French.

We will proceed to add new rules and types of
sentences. Nevertheless, the core of the program
is well developed and tested, and various exten-
sion mechanisms have been designed so that we
can quickly achieve a better coverage.

Availability

Examples of the use of JSrealB, and a web-
based development environment are available at:

http://rali.iro.umontreal.ca/rali/?q=en/
jsrealb-bilingual-text-realiser

The javascript code of the realizer, the lexicon
and tables are made available to the NLG com-
munity at:

https://github.com/rali-udem/JSrealB

110

 3

References

Bescherelle, Bescherelle La conjugaison pour
tous, Hatier, 2012.

N. Daoust and G. Lapalme, "JSreal: A Text
Realizer for Web Programming", Language
Production, Cognition, and the Lexicon,
Springer, 2014, pp. 363-378.

B. Delaunay and N. Laurent, Bescherelle La
grammaire pour tous, Hatier, France, 2013.

B. Garner, Garner's Modern American Usage,
Oxford University Press, 2009.

A. Gatt and E. Reiter, "SimpleNLG: A
realisation engine for practical applications", in
12th European Workshop on Natural Language
Generation, Athens, Greece, 2009, pp. 90-93.

M. Grevisse, Le bon usage, grammaire
française, 11e édition, Duculot, Louvain-la-
Neuve, Belgique, 1980.

P.-L. Vaudry and G. Lapalme, Adapting
SimpleNLG for bilingual English - French
realisation, 14th European Workshop on Natural
Language Generation, Sofia, Bulgaria, 2013, pp.
183-187.

111

