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Abstract

Technical systems evolve from simple
dedicated task solvers to cooperative and
competent assistants, helping the user
with increasingly complex and demand-
ing tasks. For this, they may proactively
take over some of the users responsibilities
and help to find or reach a solution for the
user’s task at hand, using e.g., Artificial In-
telligence (AI) Planning techniques. How-
ever, this intertwining of user-centered di-
alog and AI planning systems, often called
mixed-initiative planning (MIP), does not
only facilitate more intelligent and com-
petent systems, but does also raise new
questions related to the alignment of AI
and human problem solving. In this pa-
per, we describe our approach on integrat-
ing AI Planning techniques into a dialog
system, explain reasons and effects of aris-
ing problems, and provide at the same time
our solutions resulting in a coherent, user-
friendly and efficient mixed-initiative sys-
tem. Finally, we evaluate our MIP system
and provide remarks on the use of expla-
nations in MIP-related phenomena.

1 Introduction

Future intelligent assistance systems need to inte-
grate cognitive capabilities to adequately support
a user in a task at hand. Adding cognitive capa-
bilities to a dialog system (DS) enables the user to
solve increasingly complex and demanding tasks,
as solving complex combinatorial problems can be
delegated to the machine. Further, the user may be
assisted in finding a solution in a more structured
way. In this work we focus on the cognitive capa-
bility of problem solving via help of AI Planning
technology in the form of Hierarchical Task Net-
work (HTN) planning (Erol et al., 1994; Geier and

Bercher, 2011). It resembles the human top-down
way to solve problems. Such planners can help
users to find courses of action, i.e., a sequence of
actions, which achieve a given goal. In HTN plan-
ning the user states the goal in terms of a set of ab-
stract actions, e.g., train(abs), which are repeat-
edly refined into more concrete courses of action
– using so-called methods – during the planning
process. For example, train(abs) could be refined
into a crunches(20) and a sit-up(50) action. A so-
lution is found if the the plan only contains prim-
itive actions, i.e., actions which cannot be refined
further, and the plan itself is executable.

In Section 2, we explain in more detail the ad-
vantages of integrating AI planning capabilities
into a DS. Such an integration poses significant
challenges, however. Most importantly, the way
planners search for solution plans is very differ-
ent from the way humans do, as their concern is
mainly efficiency. In Section 3 we hence show
how a planner can be adapted to better suit hu-
man needs. Further, we describe which kinds of
planning-specific phenomena can not be avoided
and thus the dialog manager must be able to han-
dle. In Section 4 we describe the architecture
of our intertwined system, followed by some re-
marks on the implementation in Section 5. Within
this section we also discuss why a common source
of knowledge for both the planner and the dialog
manager is needed and how it can be created. Sec-
tion 6 contains an evaluation of the implemented
system in a fitness-training scenario.

2 Why Integrating a Planner?

In classical use-case scenarios for HTN plan-
ners (Nau et al., 2005; Biundo et al., 2011) a plan
is generated without any user involvement, besides
the specification of the goal, and afterwards pre-
sented to him. Hence, the planner is a black-box
to the user, which is often not adequate. If execut-
ing the plan involves grave risks, e.g., in military
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settings (Myers et al., 2002) or spaceflight (Ai-
Chang et al., 2004), humans must have the final
decision on which actions are to be contained in
the plan. Planning systems can also be utilized to
create plans for personal tasks like fitness train-
ing, cooking, or preparing a party. Here, it is
expected that created plans are highly individual-
ized, i.e., that they not only achieve given goals but
also respect the user’s wishes about the final plan.
One might argue that such individualization could
be achieved by integrating preferences or action
costs into planning (Sohrabi et al., 2009). How-
ever, this approach requires that the user can spec-
ify his preferences completely and a priori and that
they must be expressible, e.g., in terms of action or
method costs or LTL formulae. Even if the user’s
preferences were expressible, it would be required
to question the user extensively prior to the ac-
tual interaction, which is very likely to result in
the user aborting the interaction.

Instead the dialog manager and especially the
planner should learn about the user’s preferences
during interaction, fostering an understanding of
the user’s preferences. This requires the integra-
tion of the user into the planning process, result-
ing in a so-called mixed-initiative planning (MIP)
system. A few approaches to creating such sys-
tems have already been investigated (Myers et al.,
2003; Ai-Chang et al., 2004; Fernández-Olivares
et al., 2006). Unfortunately, they cannot support a
complete dialog with the user, as they mostly re-
act on inquiries and demands from the user and
only present the user with completed plans, i.e.,
plans that have already been refined into a solu-
tion. We deem such schemes impractical, as they
require the user to comprehend a (potentially com-
plicated) solution at once, making it hard to ex-
press opinions or wishes about it. For us, it would
be more natural to iteratively integrate the user
during the plan generation, making it on the one
hand easier for the user to comprehend the plan
and options to refine it, and on the other hand re-
ducing the cognitive load, as the user does not have
to understand the complete plan at once.

MIP can be interpreted as the system-initiated
integration of the user in the planning process, but
from a user’s perspective it is the attempt to solve
problems by using promised competencies of a
technical system. For the user dedicating planning
and decision-making to a technical system is done
with the intent of finding a solution the user is not

able to find at all or only with great effort. It aims
at relieving the user’s cognitive load and simpli-
fying the problem at hand. Hence, the iterative
integration of the user seems to be not only more
natural, but also more practical for the user.

3 Challenges of MIP

In this section, we describe arising challenges of
MIP. We discuss the differences between state-
of-the-art AI Planning and the way humans solve
problems, as they raise issues for a successful inte-
gration of a planner into a DS. To achieve it never-
theless, we show how a planner can be modified to
accommodate them and which issues must be ad-
dressed by an advanced dialog management (DM).

How to Integrate the Planner. The integration
of AI Planning begins with the statement of a plan-
ner objective in a dialog. This requires on the
one hand a user-friendly and efficient objective-
selection dialog, and on the other hand the creation
of a valid planning problem. Thus, the semantics
of the dialog has to be coherent to the planning
domain, resulting in a valid planning problem.

User-friendly Search Strategies. Almost all AI
Planning systems use efficient search strategies,
like A* or greedy, to find a solution for a given
planning problem. The order with which plans
are visited is based upon a heuristic estimating the
number of modifications needed to refine the given
plan into a solution. Plans with smaller heuris-
tic value are hence regarded more promising and
visited earlier. In A* search, as well as in any
other heuristic-based search approach, it may hap-
pen that after one plan was explored, the next one
explored will be any plan within the search space
– not just one that is a direct successor of the plan
explored last. As such, these strategies may result
in the perception that the user’s decisions only ar-
bitrarily influence the planning process, which in
turn may result in an experience of lack of control
and transparency.

In contrast, humans tend to search for a plan by
repeatedly refining the last one. A search strategy
that resembles that strategy is depth-first search
(DFS). Here, always the plan explored last is re-
fined until a solution is found or the current plan
is proved unsolvable, i.e., it cannot possibly be re-
fined to a solution. In that case, the last refinement
is reverted and another possible refinement option
is chosen. If none exists the process is repeated
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recursively. A major drawback of DFS is that it
does not consider a heuristic to select plans which
are more promising, i.e., closer to a solution. DFS
is blind, leading to a non-efficient search and non-
optimal plans, i.e., the final plan may contain un-
necessary actions. This problem can be addressed
if the planner prefers refinements of plans with
lower heuristic value if the user is indifferent about
them. This scheme enables the interplay of user
decisions and the planner’s ability to solve com-
plex combinatorial problems. The user controls
the search until such a problem arises by selecting
preferred refinements. Then he may signal the DS
that he does not care about the remaining refine-
ment, resulting in the planner using its heuristic to
find a valid solution.

Handling of Failures During Planning. A ma-
jor difference between human problem solving
and DFS is the way failures are handled. In plan-
ning, a failure occurs if the current plan is proved
unsolvable (e.g., by using well-informed heuris-
tics). As mentioned earlier, DFS uses backtrack-
ing to systematically explore all remaining options
for decisions that lead to a failure, until a suc-
cessful option has been found. Practical heuristics
are necessarily imperfect, i.e., they cannot deter-
mine for every plan whether it is unsolvable or it
may be refined into a solution. Hence, even when
using a well-informed heuristic, the planner will
present the user with options for refining a plan
that will inevitably cause backtracking. DFS back-
tracking is a very tedious and frustrating process,
especially if the faulty decision was made early on
but is found much later. Large parts of the search
space, i.e., all plans that can be refined based on
the faulty decision have to be explored manually
until the actually faulty decision is reverted. This
may result in the user deeming the system’s strat-
egy naive and the system itself incompetent. This
is important, since the use of automation correlates
highly to a user’s trust into an automated system,
which in turn depends mainly on the perception of
its competence (Muir and Moray, 1996). To pre-
vent the user, at least partially, from perceiving the
system as incompetent, we can utilize the comput-
ing power of the planner to determine whether an
option for refinement only leads to faulty plans.
We call such refinements dead-ends. If options are
presented to the user, the planner starts exploring
the search space induced by each refinement us-
ing an efficient search procedure. If he determines

that such a search space cannot contain a solution,
the respective refinement is a dead-end. It is the
objective of the dialog manager to appropriately
convey this information to the user, especially if
computing this information took noticeable time,
i.e., the user has already considered the presented
options and one has to be removed.

How to Integrate the User. Another important
factor for a successful human-computer interac-
tion is the question when a user should be involved
into the planning process and if, how to do it.
Clearly, the planner should not be responsible for
this kind of decisions as it lacks necessary capa-
bilities, but may contribute information for it, e.g.,
by determining how critical the current decision is
with respect to the overall plan. From the plan-
ner’s view every choice is delegated to the user
via the DM, achieving maximal flexibility for the
manager. The dialog manager on the other hand
can either perform an interaction with the user, or
determine by itself that the choice should be made
by the planner, which is equivalent with the user
signaling “Don’t care”. It should be considered
whether interaction is critical and required to suc-
cessfully continue the dialog or to achieve short-
term goals, but risks the user’s cooperativeness for
interaction in the long run, e.g., by overstraining
his cognitive capabilities or boring him. If the
user is to be involved, the question arises how this
should be rendered, i.e., what kind of integration is
the most beneficial. Additionally, if he is not, the
dialog manager must decide whether and if how
he may be informed of the decisions the planner
has made for him.

4 Concept and Design

The integration of AI Planning and user-centered
dialog begins with the statement of an objective.
This first dialog between user and machine has the
goal of defining the task in a way understandable
for the planner. Once the problem is passed to the
planner the interactive planning itself may start.
Using the described depth-first search the plan
is refined by selecting appropriate modifications
for open decisions. In order to decide whether
to involve the user or not during this process, an
elaborate decision model, integrating various in-
formation sources, is required. Relevant informa-
tion sources are, e.g., the dialog history (e.g., was
the user’s decision the same for all past similar
episodes?), the kind of plan flaw (e.g., is this flaw
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relevant for the user?), the user profile (e.g., does
the user have the competencies for this decision?),
or the current situation (e.g., is the current cogni-
tive load of the user low enough for interaction?).
Those examples of relevant information sources il-
lustrate that a decision model can not be located
either in the DM or the planner, but in a superor-
dinate component, the so-called Decision Model.

In case of user involvement the information on
the current plan decision has to be communicated
to the user. This means that the open decision
and the corresponding choice between available
modifications have to be represented in a dialog
suitable for the user. Hence, the corresponding
plan information needs to be mapped to human-
understandable dialog information. As this map-
ping is potentially required for every plan informa-
tion and vice versa for every dialog information,
coherent models between planner and DS become
crucial for MIP systems. The thorough matching
of both models would be an intricate and strenu-
ous process, requiring constant maintenance, es-
pecially when models need to be updated. Thus,
a more appropriate approach seems to be the au-
tomatic generation of the respective models using
one mutual model as source, the Mutual Knowl-
edge Model. This way, once the transformation
functions work correctly, coherence is not an is-
sue any more, even for updating the domain. How
these essential constituents of a conceptual MIP
system architecture (depicted in Figure 1) were
implemented in our system, will be explained in
the next Section.

Planning
Framework

Decision Model
Interactive Heuristic, Domain Heuristic, User Presentation

Heuristic, Interaction History, User Profile

Dialogue
Management Interfaces

Sensors

User

Environment

Knowledge Model
Mutual Domain

Figure 1: Essential components of a MIP system.

5 Implementation

We implemented and tested a multimodal MIP
system using a knowledge-based cognitive archi-
tecture (Bercher et al., 2014). The multimodal
interface uses speech and graphical user input as
well as output. The Dialog Management uses
a modality-independent representation, communi-
cating with the user via the Fission (Honold et al.,
2012), User Interface (Honold et al., 2013) , and

Fusion (Schüssel et al., 2013) modules. Here, we
will describe in more detail the two components,
which are of particular interest for MIP systems:
The Mutual Knowledge Model and the Decision
Model.

5.1 Mutual Knowledge Model

This model, from which the planning and dialog
domain models are automatically generated using
automated reasoning, is crucial for a coherent MIP
system. It is implemented in the form of an OWL
ontology (W3C OWL Working Group, 2009). By
generating the HTN planning domains from the
ontology, a common vocabulary is ensured – for
every planning task a corresponding concept exists
in the ontology. Hierarchical structures (i.e., de-
composition methods) inherent of HTN planning
are derived using declarative background knowl-
edge modeled in the ontology. For the delica-
cies of modeling planning domains in an ontology
(e.g., how to model ordering or preconditions), in-
cluding proofs for the transformation and remarks
on the complexity of this problem, see Behnke et
al. (2015) for further details.

The model is also utilized to infer a basic
dialog structure, which is needed for the user
to specify the objective for the planner. Us-
ing a mutual model addresses one of the chal-
lenges of MIP, since translation problems be-
tween dialog and planner semantics can be pre-
vented. For the dialog domain generation a
mapping between ontology concepts and dialogs
is used. The dialog hierarchy can be derived
using ontology knowledge. A dialog Ã can
be decomposed into a sequence of sub dialogs
containing the dialogs B̃1, . . . , B̃n by an axiom
Class:A EquivalentTo: includes onlysome

[B1, . . . , Bn], which is interpreted by the dialog as
a corresponding decomposition method. For ex-
ample, a strength training can be conducted using
a set of workouts Ã1, . . . , Ãn, each of which con-
sists of a set of exercises B̃1, . . . , B̃n. This way
a dialog hierarchy can be created, using the top-
most elements as entry points for the dialog be-
tween user and machine. Nevertheless, this re-
sults only in a valid dialog structure, but not in a
most suitable one for the individual user. For this,
concepts of the ontology can be excluded from
the domain generation or conjugated to other el-
ements in a XML configuration file. This way
unimportant elements can be hidden or rearranged
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for the user. The dialogs are also relevant during
the MIP process. When selecting between several
Plan Modifications, these have to be translated to
a format understandable by the user. Hence, in
addition to the knowledge used to generate plan
steps, resources are required for communicating
these steps to the user. Therefore, texts, pictures,
or videos are needed, which can be easily refer-
enced from an ontology. Using this information,
dialogs suitable for a well-understandable human-
computer interaction can be created and presented
to the user.

One key aspect of state-of-the-art DS is the abil-
ity to individualize the ongoing dialog according
to the user’s needs, requirements, preferences, or
history of interaction. Coupling the generation of
the dialog domain to the ontology enables us to
accomplish these requirements using ontological
reasoning and explanation in various ways. The
dialogs can be pruned using ontological reason-
ing according to the user’s needs (e.g., “show only
exercises which do not require gym access”), to
the user’s requirements (e.g., “show only beginner
exercises”) or adapted to the user’s dialog history
(e.g., “preselect exercises which were used the last
time”) and preferences (e.g., “present only exer-
cises with dumbbells”). Additionally, integrating
pro-active as well as requested explanations into
the interaction is an important part of imparting
used domain knowledge and clarifying system be-
havior. Using a coherent knowledge source to
create dialog and planning domains enables us to
use predefined declarative explanations (Nothdurft
et al., 2014) together with dynamically generated
plan explanation (Seegebarth et al., 2012) and ex-
planations for ontological inferences (Schiller and
Glimm, 2013) without dealing with inconsistency
issues. This way Plan Steps (e.g., exercises) can
be explained in detail, dependencies between plan
steps can be explained to exemplify the necessity
of tasks (i.e., plan explanation), and ontology ex-
planations can justify decompositions from which
the planning model and the dialog domain where
generated. All of which increase the user’s per-
ceived system transparency.

5.2 Decision Model

This model is in charge of deciding when and how
to involve the user in the planning process. It is the
interface to the planner and decides, upon plan-
ner requests, whether a user involvement is useful.
For this it includes a list of essential domain deci-

sions that are interesting and relevant for the user
(e.g., for a training domain: day, workout, and ex-
ercises) - the rest is left for the fallback-heuristic,
and thus decided by the planner. Hence, the user
is only involved in the decision making if a user-
relevant planning decision is pending (e.g., “which
leg exercise do you prefer?”). If it is in favor of
user involvement the open decision and its modi-
fications have to be passed to the user. Hence, the
decision on the form of user integration has to be
made. The dialog may either consist of the com-
plete set of modifications, a pruned or sorted list,
implicit or explicit confirmations of system-made
preselections, or only of a user information. This
decision depends not only on the interaction his-
tory, but also on additional information (e.g., af-
fective user states like overextension, interest, or
engagement) stored in the user state.

The Decision Model also records the dialog-
and planning history. There are several reasons for
that: The dialog history may enable a prediction of
future user behavior (e.g., in selections), and ad-
ditionally this knowledge is mandatory for back-
tracking processes, when the current plan does not
lead to a solution. The history saves which deci-
sions were made by the user. In case of backtrack-
ing the decisions are undone step-by-step, with the
goal of finding a solution by applying alternative
modifications. Whenever a user-made decision is
undone, the user is notified, because this system
behavior would otherwise appear irritating.

Since backtracking as well as dead-ends are pe-
culiar phenomena in a MIP system, the communi-
cation of these might be a critical influence on the
user experience. Together with the DM, the Deci-
sion Model orchestrates the corresponding system
behavior. The main difference between backtrack-
ing and dead-ends is the temporal ordering of the
awareness of the unsolvable plan and made deci-
sion. For backtracking the awareness is achieved
after the decision, and for dead-ends during the
decision. As we assumed that backtracking will
impair the user experience significantly, a parallel
search for dead-ends, as described in Section 3,
was implemented. The process itself is, of course,
inherently different from backtracking, but may
prevent it. Removing dead-ends from the search
space, when the relevant modification is not part
of the current selection, is a rather easy task. Oth-
erwise, the current selection has to be modified to
prevent the user from selecting a dead-end. How-
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ever, removing it without any notification from the
list seems like a confusing behavior. As we had
only hypotheses on the effects of these peculiar
events as well as on the effects of the different
forms of integrating the user into the planning pro-
cess, we conducted a matching user study.

6 Evaluation

MIP may lead to the user experiencing planning-
related phenomena, such as backtracking or dead-
ends. These phenomena revoke decisions made
by the user or alter the present decision-making
and therefore may influence the user’s experience
of the system. As mentioned before, this may im-
pair the perceived competency of the system, lead-
ing to a loss of trust, which correlates highly to
a reduced use of automation (Muir and Moray,
1996). As our MIP system aims at assisting the
user in complex and demanding tasks, maintain-
ing the user’s trust into the system and thereby the
willingness to let the system decide autonomously
is crucial. Furthermore, previous research has
shown that the use of explanations can help to
address trust issues related to intelligent adaptive
systems (Glass et al., 2008) and that it may re-
duce negative effects in incomprehensible situa-
tions (Nothdurft et al., 2014). Therefore, we have
assessed the effects of MIP phenomena like back-
tracking and dead-ends on the user-experience and
tested different strategies, and especially explana-
tions, to communicate these events to the user.

6.1 Methodology

For the subjective measurement through self-
ratings by the user, questionnaires have been used.
The most fundamental user data is personal infor-
mation, assessing age, gender and education. We
asked for the participants experience in the gen-
eral use of technical systems and the user’s fore-
knowledge in the corresponding domain of the ex-
periment. Apart from the persona, we included
a number of standardized and validated question-
naires: Human-Computer Trust (HCT) describes
the trust relationship between human and ma-
chine and was assessed using the questionnaire
by Madsen and Gregor (2000) measuring five di-
mensions (Perceived Understandability, Perceived
Reliability, Perceived Technical Competence, Per-
sonal Attachment, Faith). The AttrakDiff ques-
tionnaire extends the assessment of a DS or soft-
ware in general from the limited view of usabil-

ity, which represents mostly pragmatic quality, to
the integration of scales measuring hedonic qual-
ities. This questionnaire was developed by Has-
senzahl et al. (2003) and measures the perceived
pragmatic quality, the hedonic qualities of stimu-
lation and identity, and the attractiveness in gen-
eral. In total 104 participants took part in the ex-
periment. In average the subjects were 23.9 years
old with the youngest being 18 and the oldest 41.
Gender-wise the participants were almost equally
distributed with 52.9% males and 47.1% females.

In this scenario the user’s task was to create
individual strength training workouts. In each
strength training workout at least three different
muscle groups had to be trained and exercises cho-
sen accordingly. The user was guided through the
process by the system, which provided a selec-
tion of exercises for training each specific muscle
group necessary for the workout. For example,
when planning a strength training for the upper
body, the user had to select exercises to train the
chest (see Figure 2). This selection corresponds
to the integration of the user into the MIP process.
The decision how to refine the task of training the
chest is not made by the system, but left to the user.

Figure 2: Screenshot of the UI. Here, the user has
to select one chest exercise. If he doesn’t want to
decide, “Let the System decide” can be clicked or
said, starting the planner for this decision.

6.2 MIP Phenomena

For the MIP phenomena we implemented 4 vari-
ants: The variants used in the evaluation were
the following: Backtracking with Notification (BT-
N) where the system informs the user that previ-
ously user-made decisions will not lead to a solu-
tion and have to be undone. Dead-End Notifica-
tion before (DE-B), where the user was presented
the notification, beforehand on an extra slide, that
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some refinements had to be deactivated in the up-
coming selections, because they would not lead
to a solution. Dead-End Notification during (DE-
D), where the selection provided, on each selec-
tion slide, the notification that some of the op-
tions below had to be deactivated, because they
would not lead to a solution. The fourth variant
tested the effect of the content of the notification.
This means, that the Backtracking with Explana-
tion (BT-E) variation additionally explained to the
user why the already made decisions had to be
rolled back. The participants were distributed by
a random-function to the variants, resulting in 25
participants for BT-N, 18 for BT-E, 18 for DE-B,
and 21 for DE-D (without unusable subjects).

6.2.1 Temporal Contiguity
Our first hypothesis was that in general the tempo-
ral contiguity of the system-provided notification
does affect the user-experience. We assumed that
providing the notification before the upcoming se-
lection will perform better than on the selection it-
self, and way better than providing the notification
after the decision, because the amount of conse-
quences for the user is directly influenced by the
temporal contiguity of the notification. In terms
of HCT we expected that especially the bases of
perceived reliability and understandability will be
defected stronger by a larger temporal contiguity.

Results. There was a statistically significant dif-
ference between groups with notifications (i.e.,
without BT-E) in HCT-bases (see fig. 3) as deter-
mined by one-way ANOVA for perceived reliabil-
ity (F (2, 70) = 3.548, p = .034), perceived un-
derstandability (F (2, 70) = 4.391, p = .016), and
significant for personal attachment (F (2, 44) =
3.401, p = .042). While analyzing the AttrakDiff
questionnaire data we found a statistically signifi-
cant difference for the dimension of hedonic quali-
ties - stimulation between groups as determined by
one-way ANOVA (F (2, 44) = 3.266, p = .048).
The Fisher LSD post hoc test revealed statistical
difference at the .05 level between BT-N (M =
4.04, SD = 1.03) and DE-D (M = 3.26, SD =
.72). Also DE-D was significantly different at the
.05 level from DE-B (M = 4.12, SD = 1.03).

Discussion. The results support our hypothesis
that the temporal contiguity of the notification
does indeed influence the user-experience. A tech-
nical system will be perceived to be most reli-
able, when the notification is presented before the

decision-making (DE-B), because no unexpected
events occur, and the least when user decisions
have to be undone (BT-N). For perceived under-
standability presenting the notification during the
decision performed best, maybe because the de-
activation of selection options could be allocated
more directly to the notification itself and there-
fore foster the user’s understanding of the situ-
ation. The personal attachment was mostly de-
fected when using notifications during decision
making. The results in general support that a pos-
itive temporal contiguity (i.e., DE-B) seems to be
the best option for a technical system. While the
understandability performs only second best, the
perceived reliability, personal attachment, overall
cognitive load, difficulty, fun, extraneous load and
pragmatic as well as hedonic qualities, and over-
all attractiveness perform either best or as good
as the other conditions using only notifications.
This notification, which only represents some sort
of shallow justification for the experienced system
behavior, also seems to be important for the per-
ceived user-experience. Hence, we evaluated how
a real explanation would perform opposed to shal-
low justifications (i.e., the notification condition).

6.2.2 The Effects of Explaining MIP
For testing the effects of an extensive explanation,
we exchanged the backtracking notification with
an explanation. The notification that the made de-
cision will not lead to a solution was exchanged
with “the system has detected that the gym is
closed today due to a severe water damage. There-
fore, you have to decide again and select exercises
suitable for training at home”. This condition (BT-
E) was then compared to the notification condition
(BT-N). Thus, a pairwise t-test was used.

Results. Examining the HCT-bases we found
significant differences between BT-N (M =
2.8, SD = 1.05) and BT-E (M = 3.56, SD =
.82) for perceived reliability (t(3.0) = 57, p =
.004). For perceived understandability the mean
differed significant (t(3.99) = 57, p = .000) with
BT-N (M = 2.40, SD = 1.05) and BT-E (M =
3.44, SD = .87). Observing the perceived tech-
nical competence BT-N (M = 2.75, SD = 1.03)
and BT-E (M = 3.28, SD = .66) also performed
significantly different (t(2.06) = 41, p = .045).

In the AttrakDiff we observed a significant
difference (t(2.37) = 41, p = .022) for
the dimension of experienced pragmatic qual-
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Figure 3: This shows the average mean of the bases of human-computer trust for each variant on a 5-point
Likert scale. The whiskers represent the standard errors of the mean.

ities comparing BT-E (M = 4.86, SD =
1.16) and BT-N (M = 4.01, SD = 1.15).
Taking a closer look at the word pairs sig-
nificant differences below the .05 level were
found for complicated-simple, unpredictable-
predictable, confusing-clearly structured, unruly-
manageable, as well as for unpleasant-pleasant.

Discussion. Providing detailed explanations of
the system behavior, in this case of backtracking,
does indeed help to perceive the system as more
reliable, more understandable, and more techni-
cally competent. As only the backtracking noti-
fication was modified, we can only infer that for
the other variants (i.e., DE-D and DE-B) the ef-
fect would be similar. However, this seems logical
because the goal of increasing the system’s trans-
parency to the user can be achieved using simi-
lar explanations as well. Taking a look at the At-
trakDiff and its single word pairs it becomes obvi-
ous that explaining system behavior helps to im-
prove the pragmatic qualities of a system com-
pared to providing none to minimal notifications.
Systems with explanation capabilities seem to be
perceived as not so complicated, more predictable,
manageable, more clearly structured and in gen-
eral as more pleasant.

Experiment Conclusion. Combing the results
of both evaluated factors (i.e., temporal contigu-
ity and explanations) we argue that the best option
for MIP system behavior would be explaining the
user why e.g., several options have been pruned
from a selection beforehand. This strengthens the
need for, on the one hand, intelligent and under-
standable explanation capabilities of such systems
and on the other hand that the user is only inte-
grated into the decision making when the system
is sure that the presented options do in fact, or at
least most probably, lead to a solution. Otherwise,
the negative effects of occurring backtracking and

similar planning peculiarities will impair the rela-
tionship between human and machine.

7 Conclusion
In this paper we pointed out the importance for fu-
ture intelligent systems of intertwining dialog sys-
tems and AI Planning into a MIP system. First,
we elucidated the potentials, but also the risks
and arising problems of these mixed-initiative sys-
tems. On the one hand, humans can profit from
planning techniques like parallel exploration, ex-
cluding non-valid planning paths from the search
space. On the other hand, planning-related events
like backtracking or dead-ends may impair the
user experience. Second, we described our ap-
proach of a coherent and user-friendly mixed-
initiative system. This included the use of a mu-
tual knowledge model, in form of an ontology, to
generate coherent domain models for dialog and
planning as well as the development of a subordi-
nate decision model, controlling who is in charge
of the decision-making process. Furthermore, we
evaluated our implementation on the effects of
MIP events and tested different strategies to han-
dle those. Concluding, we remark that the po-
tentials of the integration of AI planning into a
DS have to be weighed against the drawbacks like
backtracking or dead-ends and their effects on the
user experience. However, increasing the user’s
perceived system transparency by including valid
explanations on these behaviors may mitigate the
negative effects, thus increasing the potential ar-
eas of application for this kind of mixed-initiative
systems.
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8 Appendix A: Example Planning and Dialog Snippet
In
it

G
o
alwarmup

BarbellDeadlift
(8, 60)

Legs

BarbellSquat

DumbbellSquat

…
BarbellSquat

DumbbellSquat

…

Leg Training

Chose your exercise:

Don‘t careBack

Barbell

In
it

G
o
alwarmup

BarbellDeadlift
(8, 60)

BarbellSquat
(?,?)

Available modifications

Figure 4: This figure shows an example planning and dialog snippet. The abstract planning task “Legs”
has to be decomposed into a primitive task. In this case the decision that of the modifications is to be
included in the plan is done by the user. A screenshot of an exemplary decision-making by the user
was presented in Figure 2. Afterwards, the abstract task is refined using the selected modification and
integrated with the plan.
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