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Abstract

Dialogue interaction with remote inter-
locutors is a difficult application area for
speech recognition technology because of
the limited duration of acoustic context
available for adaptation, the narrow-band
and compressed signal encoding used in
telecommunications, high variability of
spontaneous speech and the processing
time constraints. It is even more difficult
in the case of interacting with non-native
speakers because of the broader allophonic
variation, less canonical prosodic patterns,
a higher rate of false starts and incomplete
words, unusual word choice and smaller
probability to have a grammatically well
formed sentence. We present a compara-
tive study of various approaches to speech
recognition in non-native context. Com-
paring systems in terms of their accu-
racy and real-time factor we find that a
Kaldi-based Deep Neural Network Acous-
tic Model (DNN-AM) system with on-
line speaker adaptation by far outperforms
other available methods.

1 Introduction

Designing automatic speech recognition (ASR)
and spoken language understanding (SLU) mod-
ules for spoken dialog systems (SDSs) poses more
intricate challenges than standalone ASR systems,
for many reasons. First, speech recognition la-
tency is extremely important in a spoken dialog
system for smooth operation and a good caller
experience; one needs to ensure that recognition
hypotheses are obtained in near real-time. Sec-
ond, one needs to deal with the lack of (or min-
imal) context, since responses in dialogic situa-
tions can often be short and succinct. This also
means that one might have to deal with minimal

data for model adaptation. Third, these responses
being typically spontaneous in nature, often ex-
hibit pauses, hesitations and other disfluencies.
Fourth, dialogic applications might have to deal
with audio bandwidth limitations that will also
have important implications for the recognizer de-
sign. For instance, in telephonic speech, the band-
width (300-3200 Hz) is lesser than that of the hi-
fidelity audio recorded at 44.1 kHz. All these is-
sues can drive up the word error rate (WER) of
the ASR component. In a recent study compar-
ing several popular ASRs such as Kaldi (Povey
et al., 2011), Pocketsphinx (Huggins-Daines et
al., 2006) and cloud-based APIs from Apple1,
Google2 and AT&T3 in terms of their suitability
for use in SDSs, In (Morbini et al., 2013) there was
found no particular consensus on the best ASR,
but observed that the open-source Kaldi ASR per-
formed competently in comparison with the other
closed-source industry-based APIs. Moreover, in
a recent study, (Gaida et al., 2014) it was found
that Kaldi significantly outperformed other open-
source recognizers on recognition tasks on Ger-
man Verbmobil and English Wall Street Journal
corpora. The Kaldi online ASR was also shown to
outperform the Google ASR API when integrated
into the Czech-based ALEX spoken dialog frame-
work (Plátek and Jurčı́ček, 2014).

The aforementioned issues with automatic
speech recognition in SDSs are only exacerbated
in the case of non-native speakers. Not only
do non-native speakers pause, hesitate and make
false starts more often than native speakers of a
language, but their speech is also characterized
by a broader allophonic variation, a less canoni-
cal prosodic pattern, a higher rate of incomplete
words, unusual word choices and a lower probabil-

1Apple’s Dictation is an OS level feature in both MacOSX
and iOS.

2https://www.google.com/speech-api/v1/recognize
3https://service.research.att.com/smm
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Figure 1: Architecture of the HALEF spoken dia-
log system.

ity of producing grammatically well-formed sen-
tences. An important application scenario for non-
native dialogic speech recognition is the case of
conversation-based Computer-Assisted Language
Learning (CALL) systems. For instance, Sub-
arashii is an interactive dialog system for learn-
ing Japanese (Bernstein et al., 1999; Ehsani et
al., 2000), where the ASR component of the
system was built using the HTK speech rec-
ognizer (Young et al., 1993) with both native
and non-native acoustic models. In general,
the performance of the system after SLU was
good for in-domain utterances, but not for out-
of-domain utterances. As another example, in
Robot Assisted Language Learning (Dong-Hoon
and Chung, 2004) and CALL applications for
Korean-speaking learners of English (Lee et al.,
2010), whose authors showed that acoustic mod-
els trained on the Wall Street Journal corpus
with an additional 17 hours of Korean children’s
transcribed English speech for adaptation pro-
duced as low as 22.8% WER across multiple do-
mains tested. In the present work, we investi-
gate the online and offline performance of a Kaldi
Large Vocabulary Continuous Speech Recognition
(LVCSR) system in conjunction with the open-
source and distributed HALEF spoken dialog sys-
tem (Mehrez et al., 2013; Suendermann-Oeft et
al., 2015).

2 System description

Figure 1 schematically depicts the main compo-
nents of the HALEF spoken dialog framework,
of which the speech recognizer is a component.
The various modules of HALEF include the Aster-
isk telephony server (van Meggelen et al., 2009),
a voice browser based on JVoiceXML (Schnelle-

Walka et al., 2013), a web server running Apache
Tomcat, and a speech server, which consists of an
MRCP server (Prylipko et al., 2011) in addition
to text-to-speech (TTS) engines—Festival (Taylor
et al., 1998) and Mary (Schröder and Trouvain,
2003)—as well as support for Sphinx-4 (Lamere
et al., 2003) and Kaldi (Povey et al., 2011) ASRs.
In contrast to Sphinx-4 which is tightly integrated
into the speech server code base, Kaldi-based ASR
is installed on an own server, which is commu-
nicating with the speech server via TCP socket.
The advantages of this design decision are (a)
the ease of management of the computational re-
sources, required by Kaldi when operating in real-
time mode (including the potential use of Graph-
ical Processing Units (GPUs)), which could oth-
erwise interfere with the other processes running
on the speech server (audio streaming, TTS, Ses-
sion Initiation Protocol (SIP) and Media Resource
Control Protocol (MRCP) communication) and (b)
the ease to test the very speech recognizer used in
the live SDS also in the offline mode, for example
for batch experiments. Often ASR configurations
in live SDSs differ from batch systems that may
result in different behaviour w.r.t. WER, latency,
etc.

In this paper, we will be focusing specifically
on evaluating the performance of the Kaldi ASR
system within HALEF (we have already covered
the Sphinx version in the papers cited above). We
generally follow Kaldi’s WSJ standard model gen-
eration recipe with a few modifications to accom-
modate our training data. The most sophisticated
acoustic models are obtained with speaker adap-
tive training (SAT) on the feature Maximum Like-
lihood Linear Regression (fMLLR)-adapted data.

We use about 780 hours of non-native English
speech to train the acoustic model. The speaker
population covers a diversity of native languages,
geographical locations and age groups. In order
to match the audio quality standard of the Public
Switched Telephone Network (PSTN), we reduce
the sampling rate of our recordings down to 8 kHz.
The language model was estimated on the manual
transcriptions of the same training corpus consist-
ing of ≈ 5.8 million tokens and finally was rep-
resented as a trigram language model with ≈ 525
thousand trigrams and ≈ 605 thousand bigrams
over a lexicon of ≈ 23 thousand words which in-
cluded entries for the most frequent partially pro-
duced words (e.g. ATTR-; ATTRA-; ATTRAC-
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; ATTRACT; ATTRACT-; ATTRACTABLE). Ul-
timately, the final decoding graph was compiled
having approximately 5.5 million states and 14
million arcs.

The default Kaldi speech recognizer use case
is oriented towards optimal performance in tran-
scription of large amounts of pre-recorded speech.
In these circumstances there exists a possibility to
perform several recognition passes and estimate
the adaptation transformation from a substantial
body of spoken material. The highest perform-
ing Deep Neural Network (DNN) acoustic model
(“nnet2” in Kaldi notation) requires a prior pro-
cessing pass with the highest performing Gaussian
Mixture Model (GMM, “tri4b” in Kaldi notation),
which in turn requires a prior processing pass with
the same GMM in the speaker-independent mode.

However, in the dialogue environment, it is es-
sential to be able to produce recognition results
with the smallest possible latency and little adap-
tation material. That is the main reason for us to
look for alternatives to the mentioned approach.
One such possibility is to use the DNN acous-
tic model with un-adapted data and constrain its
output via a speaker-dependent i-Vector (Dehak et
al., 2011). This i-Vector contains information on
centroids of the speaker-dependent GMM. The i-
Vector can be continuously re-estimated based on
the available up-to-the-moment acoustic evidence
(“online” mode) or after presentation of the entire
spoken content (the so called “offline” mode).

3 Experiments

The evaluation was performed using vocal produc-
tions obtained from language learners in the scope
of large-scale internet-based language assessment.
The production length is a major distinction of this
data from the data one may expect to find in the
spoken dialogue domain. The individual utterance
is a quasi-spontaneous monologue elicited by a
certain evaluation setup. The utterances were col-
lected from six different test questions comprising
two different speaking tasks: 1) providing an opin-
ion based on personal experience and 2) summa-
rizing or discussing material provided in a reading
and/or listening passage. The longest utterances
are expected to last up to a minute. The average
speaking rate is about 2 words per second. Every
speaker produces up to six such utterances. Speak-
ers had a brief time to familiarize themselves with
the task and prepare an approximate production

plan. Although in strict terms, these productions
are different from the true dialogue behavior, they
are suitable for the purposes of the dialogic speech
recognition system development.

The evaluation of the speech recognition sys-
tem was performed using the data obtained in the
same fashion as the training material. Two sets
are used: the development set (dev), containing
593 utterances (68329 tokens, 3575 singletons,
0% OOV rate) coming from 100 speakers with the
total amount of audio exceeding 9 hours; and the
test set (test), that contains 599 utterances (68112
tokens, 3709 singletons, 0.18% OOV rate) com-
ing from 100 speakers (also more than 9 hours
of speech in total). We attempted to have a non-
biased random speaker sampling, covering a broad
range of native languages, English speaking pro-
ficiency levels, demographics, etc. However, no
extensive effort has been spent to ensure that fre-
quencies of the stratified sub-populations follow
their natural distribution. Comparative results are
presented in Table 1.

As it can be learned from Table 1, the “DNN i-
Vector” method of speech recognition outperforms
Kaldi’s default “DNN fMLLR” setup. This can be
explained by the higher variability of non-native
speech. In this case the reduced complexity of the
i-Vector speaker adaptation matches better the task
that we attempt to solve. There is only a very mi-
nor degradation of the accuracy with the reduction
of the i-Vector support data from the whole inter-
action to a single utterance. As expected, the “on-
line” scenario loses some accuracy to the “offline”
in the utterance beginning, as we could verify by
analyzing multiple recognition results.

It is also important to notice that the accuracy
of the “DNN i-Vector” system compares favor-
ably with human performance in the same task. In
fact, experts have the average WER of about 15%
(Zechner, 2009), while Turkers in a crowdsourcing
environment perform significantly worse, around
30% WER (Evanini et al., 2010). Our proposed
system is therefore already approaching the level
of broadly defined average human accuracy in the
task of non-native speech transcription.

The “DNN i-Vector” ASR method vastly out-
performs the baseline in terms of processing
speed. Even with the large vocabulary model
in a typical 10-second spoken turn we expect to
have only 3 seconds of ASR-specific processing
latency. Indeed, in order to obtain an expected de-
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System Adaptation WER (dev) WER (test) xRT
GMM SI Offline, whole interaction 37.58% 37.98% 0.46
GMM fMLLR Offline, whole interaction 29.96% 31.73% 2.10
DNN fMLLR Offline, whole interaction 22.58% 24.44% 3.44
DNN i-Vector Online, whole interaction 21.87% 23.33% 1.11
DNN i-Vector Offline, whole interaction 21.81% 23.29% 1.05
DNN i-Vector Online, every utterance 22.01% 23.48% 1.30
DNN i-Vector Offline, every utterance 21.90% 23.22% 1.13

Table 1: Accuracy and speed of the explored ASR configurations; WER – Word Error Rate; (dev) - as
measured on the development set; (test) – as measured on the test set; xRT - Real Time factor, i.e. the
ratio between processing time and audio duration; SI - Speaker Independent mode.

lay one shall subtract the duration of an utterance
from the total processing time as the “online” rec-
ognizer commences speech processing at the mo-
ment that speech is started. That 3 seconds de-
lay is very close to the natural inter-turn pause of
0.5 – 1.5 seconds. Better language modeling is
expected to bring the xRT factor below one. The
difference of the xRT factor between the “online”
and “offline” modes can be explained with some-
what lower quality of acoustic normalization in the
“online” case. Larger numbers of hypotheses fit
within the decoder’s search beam and, thus, in-
crease the processing time.

4 Conclusions

The DNN i-Vector speech recognition method has
proven to be sufficient in the task of support-
ing a dialogue interaction with non-native speak-
ers. In respect to our baseline systems we ob-
serve improvements both in accuracy and process-
ing speed. The “online” mode of operation ap-
pears particularly attractive because it allows to
minimize the processing latency at the cost of a
minor performance degradation. Indeed, the “on-
line” recognizer is capable to start the processing
simultaneously with the start of speech produc-
tion. Thus, unlike the “offline” case, the total per-
ceived latency in the case of “online” recognizer is
xRT-1.

There are ways to improve our system by per-
forming a more targeted language modeling and,
possibly, language model adaptation to a specific
dialogue turn. Our further efforts will be directed
to reducing processing latency and increasing the
system’s robustness by incorporating interpreta-
tion feedback into the decoding process.

We plan to perform a comparative error analysis
to have a better picture of how our automated sys-

tem compares to the average human performance.
It is important to separately evaluate WERs for the
content vs functional word subgroups; determine
the balance between insertions, deletions and sub-
stitutions in the optimal operating point; compare
humans and machines in ability to recover back
from the context of the mis-recognized word (e.g.
a filler or false start).

We plan to collect actual spoken dialogue in-
teractions to further refine our system through a
crowdsourcing experiment in a language assess-
ment task. Specifically, the ASR sub-sytem can
benefit from sampling the elicited responses, mea-
suring their apparent semantic uncertainty and tai-
loring system’s lexicon and language model to
better handle acoustic uncertainty of non-native
speech.
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