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Abstract

Complex noun phrases are pervasive in
biomedical texts, but are largely under-
explored in entity discovery and informa-
tion extraction. Such expressions often
contain a mix of highly specific names
(diseases, drugs, etc.) and common words
such as “condition”, “degree”, “process”,
etc. These words can have different se-
mantic types depending on their context
in noun phrases. In this paper, we ad-
dress the task of classifying these common
words onto fine-grained semantic types:
for instance, “condition” can be typed as
“symptom and finding” or “configuration
and setting”. For information extraction
tasks, it is crucial to consider common
nouns only when they really carry biomed-
ical meaning; hence the classifier must
also detect the negative case when nouns
are merely used in a generic, uninforma-
tive sense. Our solution harnesses a small
number of labeled seeds and employs la-
bel propagation, a semisupervised learn-
ing method on graphs. Experiments on
50 frequent nouns show that our method
computes semantic labels with a micro-
averaged accuracy of 91.34%.

1 Introduction

1.1 Motivation
In biomedical texts, entities are written as natu-
ral language expressions – often complex noun
phrases. Previous works on information extrac-
tion in this domain have focused on short phrases
that work well, for instance, with dictionary-based
approaches. The most notable method is the
MetaMap tool by Aronson and Lang (2010). Of-
ten, however, expressions are long and complex,
mixing domain-specific names (of diseases, symp-

toms, drugs, etc.) with common nouns such as
“condition”, “degree” or “process”. Examples for
such complex phrases are:
1) monitoring of the carcinogenic process
2) development of processes for the prognosis of
malaria.

In the first example, “process” is a vital part
of the phrase and carries biomedical meaning,
namely, denoting a body function. In the second
example, “process” is used in the generic sense
of the common noun and is relatively uninforma-
tive for the purpose of detecting biomedical enti-
ties in text. For information extraction tasks like
entity discovery, relation mining and knowledge
base population, it is crucial to distinguish these
two situations. Moreover, in the first case, we
would like to further annotate the common noun
with a semantic type that captures the role of the
word within the surrounding noun phrase.

This kind of semantic typing could be based
on WordNet senses (Fellbaum, 1998), using tech-
niques for word sense disambiguation (Navigli,
2009), or on UMLS entries. However, Word-
Net has limited coverage of the biomedical do-
main, and UMLS has rather coarse-grained and
sometimes fuzzy types. Therefore, we devised
a small collection of fine-grained semantic types
ourselves. The novelty of our proposed seman-
tic types lies in the explicit provision for non-
biomedical types, as well as the uninformative
type where applicable; Table 1 shows both of these
elements in play for the target words culture and
degree.

Our goal then is to automatically label common
words in complex noun phrases with the most ap-
propriate semantic type or inferring that the word
is merely used in a generic sense without specific
biomedical meaning. We focus on a judiciously
chosen list of common nouns, referred to as tar-
get words, that frequently appear within long noun
phrases in biomedical texts. The resulting annota-
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Target word Semantic types

culture medical sample
social construct

degree metric for temperature
metric for bending
stage in progression (e.g. second degree burn)
academic degree
degree of freedom in statistics
edges out of a node in a graph
generic, uninformative

Table 1: Semantic types for the target words cul-
ture and degree.

tions – for example, labeling “process” in “moni-
toring of the carcinogenic process” as body func-
tion – can in turn enhance the coverage and quality
of information extraction tasks.

1.2 Approach and contribution
We develop a semisupervised method for labeling
a target word, within a given noun phrase, with
its most suitable semantic type or tagging it as
biomedically unspecific and uninformative. Our
method is based on label propagation over a graph
that connects noun phrases and has a small num-
ber of manually labeled seed nodes. Each distinct
noun phrase becomes a node, and an edge con-
nects two nodes that share a target word with a
weight reflecting the similarity between the con-
texts of the respective phrase occurrences. We
then apply the MAD label propagation algorithm
(Talukdar and Crammer, 2009) to infer the best
type labels for the target words in the graph’s
nodes.

Experiments show that our method achieves
91.34% micro-averaged and 83.57% macro-
averaged accuracy over 50 frequently appearing
target words. Moreover, our method is capable of
classifying both target words with and without an
uninformative semantic type.

2 Related work

In general, the semantic interpretation of complex
phrases is a long-studied problem in computa-
tional linguistics, and widely viewed as a very de-
manding task (see, e.g., Sag et al. (2002); Nakov
and Hearst (2013)). For biomedical texts, how-
ever, complex phrases are an infrequently studied
problem. Golik et al. (2013) propose to handcraft
rules based on linguistic cues to identify longer
noun phrases beyond dictionary entries. Similar to
this paper, they are also motivated by the needs of

a knowledge acquisition application. Their work
makes a point in analyzing “semantically poor”
terms, some of which essentially entail the unin-
formative semantic type we propose.

The problem setting closest to word usage de-
tection is undoubtedly word sense disambiguation
(WSD) of free text. For the general domain, the
vast body of work has been surveyed by Navigli
(2009), and mature software tools such as It Makes
Sense (Zhong and Ng, 2010) covers most words.
For the biomedical domain, the majority of previ-
ous works center around two WSD datasets (Wee-
ber et al., 2001; Jimeno-Yepes et al., 2011) that to-
gether contain 253 ambiguous words, multi-word
terms, and abbreviations. In addition, Stevenson
et al. (2008), Fan et al. (2009), and Cheng et
al. (2012) propose methods to generate labeled
data. As for methodologies, vector space mod-
els (McInnes, 2008; Savova et al., 2008) are a
common choice. Another common approach is to
exploit the rich knowledge embedded in UMLS.
Agirre et al. (2010) and Humphrey et al. (2006)
leverage entity-entity relations and semantic type
information in UMLS, respectively.

Entity disambiguation is another highly relevant
research area. For the general domain, most ef-
forts focus on named entities, and software sys-
tems such as AIDA (Hoffart et al., 2011) and Wik-
ifier (Ratinov et al., 2011) are both robust and scal-
able. In contrast, for the biomedical domain, exist-
ing works target restricted scopes such as species
(Wang et al., 2010) and acronyms (Harmston et al.,
2012). Although MetaMap (Aronson and Lang,
2010) covers all the diverse entities in UMLS, its
entity disambiguation functionality remains lim-
ited.

3 Methodology

3.1 Outline of methodology

Our method operates on one target word at a time.
We collect noun phrases in our text corpus that
contain the selected target word. On the one hand
comes the manual preparation of the target seman-
tic types and their seed phrases. On the other hand
comes the automatic computation of similarities
of noun phrase pairs. This similarity is based on
context – a window of k words before and after
the target word in a noun phrase (for clarity pur-
poses, we denote by context words those words in
the window surrounding the target). This context,
in turn, is captured by three features, namely word
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occurrences, part-of-speech tags, and entity types
(again for clarity purposes, we distinguish context
entity types that are precomputed, from target se-
mantic types that we want to classify). Using the
seed phrases and context similarities, we cast the
the noun phrases into a graph and apply the MAD
label propagation algorithm.

In the following subsections, we describe how
we construct each component.

3.2 Target semantic types
In our corpus, we observe that 90% of all noun oc-
currences come from 5000+ distinct nouns. Since
it is infeasible to study so many of them, we pick
50 highly common but semantically ambiguous
ones to be our target words. For each target word,
we manually specify its applicable target semantic
types based on two criteria. First, a target seman-
tic type should have a discernible presence in the
corpus. Second, the contexts of target semantic
types should be amenable to a learning algorithm,
i.e. they should be sufficiently distinct from each
other. Recall that we would also like to identify the
case when the target word is used in a generic, un-
informative way. We facilitate this by adding a un-
informative semantic type. We observe, however,
that not all target words require this uninformative
type. For instance, culture has two overwhelm-
ingly dominant types (medical sample and social
construct) such that the rest are negligible and do
not need an explicit representation. This specifi-
cation of target semantic types is based on man-
ual observation, over both the corpus noun phrases
and UMLS entries relevant to the target word.

Once the semantic types are set, we nomi-
nate a few representative phrases as seed phrases.
This process is again manual, where we aim
for phrases which are sufficiently prevalent, and
which convey the target semantic type with
high certainty. Table 2 shows all semantic
types and all the seed phrases for the target
word activity, and the complete list is available
at http://mpi-inf.mpg.de/~siu/bionlp2015/.
In our compilation, one target word has on aver-
age 3.78 target semantic types, which in turn has
on average 2.68 seed phrases.

3.3 Context entity type estimation
We would like to assign an entity type to each con-
text word. However, since a comprehensive en-
tity disambiguation tool is not available, we es-
timate the entity types by a popularity-based ap-

proach that exploits the repetitiveness of thesauri
entries and semantic assets in UMLS. First, take
note of UMLS entity names that contain a single
word. Next, for each distinct entity name, take
note of the entities (distinct CUIs), as well as the
number of occurrences (MRCONSO entries) rep-
resented. A few heuristics determine which entity
is the most popular, and the corresponding CUI’s
UMLS semantic type1 becomes the word’s entity
type. Taking cat as an example, it appears 16 times
as a mammal, 3 times as the abbreviation for CAT
scan, and 1 time as an enzyme. Therefore cat’s
entity type is Mammal, the UMLS semantic type
for CUI 0007450. In essence, this approach ap-
proximates the entity type with the largest prior
distribution probability. Since biomedical word
senses are often highly skewed (Jimeno-Yepes et
al., 2011), we believe this approach is a reason-
able interim substitute to a full-fledged entity dis-
ambiguation tool.

In addition to the 133 UMLS semantic types, we
introduce an extra type to represent measurement
units such as mg/kg and µmol.

We investigate two variants of entity type simi-
larity. Under the hard variant, only the same entity
type occurrences contribute towards context simi-
larity (e.g. Cell and Cell Component would there-
fore be considered completely dissimilar). Under
the soft variant, similar entity types also contribute
(Cell and Cell Component now have a similarity of
0.9375). The similarity between two entity types
A and B is:

0.5× group(A,B) + 0.5× lch(A,B)
where group() returns 1 if A and B belong to
the same UMLS semantic group, and 0 otherwise.
lch(A,B) is the similarity score between A, B in
the UMLS semantic type hierarchy according to
Leacock and Chodorow’s method (1998), normal-
ized to range between 0 and 1. The use of group()
is necessary because some semantic type pairs are
highly similar but far apart in the hierarchy (e.g.
Body System and Tissue).

3.4 Context similarity

We model the similarity between two phrases by
calculating a similarity score between their con-
texts. Specifically, the similarity score is a lin-
ear combination of the contributions from the con-
texts’ words, part-of-speech (POS) tags, and entity

1Not to be confused with the custom target semantic types
in Section 3.2. They are used independently in this work.
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Semantic type Seed phrases Sample classified noun phrases

physical activity fetal activity instruction in self-directed exercises and activity diaries
physical activity day-to-day household activities that create the backbone of healthy environments

body & protein catalytic activity histochemically demonstrable esterase activity in the hypothalamus of the developing rat
process disease activity lower insulin-stimulated GS activity in PCOS patients compared with controls

inflammatory activity plasma anti-pneumococcal polysaccharide antibody activity (serotypes 3, 6a and 23)
kinase activity polymerase activity relative to the wild-type protein

generic, of activity of dual activity of exploring karanjin isolation for medicinal purposes
uninformative of activity in the orchestration of a set of activities that should be executed in order to deliver an output

Table 2: Semantic types, seed phrases, and sample classified noun phrases for the target word activity.

types (either the hard or the soft variant):
sim(context1, context2) =
α1 × Jw(words1, words2)

+ α2 × Jw(POS tags1, POS tags2)
+ α3 × Jw(entity types1, entity types2)

where α1 +α2 +α3 = 1, and Jw() is the weighted
Jaccard similarity function. Intuitively, Jw() cap-
tures not only the overlap between two sets of
items, but also the significance or weight of the
items. In our setting, an item is a word, a POS tag,
or a context entity type, and the weight depends
on the item’s distance to the target word – the
smaller the distance, the higher the weight. Based
on preliminary experiments, 1/d is found to be the
best weighting scheme, where d is the distance be-
tween target and context words. For word, POS,
and the hard variant of context entity type, only ex-
act matches count towards Jw() item overlap (sin-
gular/plural and American/British spellings of the
same word qualify as exact matches). For the soft
variant of context entity type, the 1/d weight is
further scaled by the entity type-entity type simi-
larity score.

3.5 MAD label propagation

Now we have all the ingredients to build a graph
out of a collection of noun phrases. Take a phrase
as a node. Compute the similarity score between
two phrases’ contexts, and make it the weight of
the edge between the two corresponding nodes. A
small number of nodes containing seed phrases be-
come the seed nodes, and the seed phrase’s seman-
tic type is the label. Apply the MAD label prop-
agation algorithm (Talukdar and Crammer, 2009)
to label all the nodes, effectively classifying each
node with the best target semantic type. Recall
that each target word requires its own graph and
hence separate application of MAD.

Label propagation, also known as belief prop-
agation, is a semisupervised, iterative learning

method on graphs. Some nodes, i.e. the seed
nodes, in the graph are initially labeled. Infor-
mally, over the iterations, the seed nodes exert in-
fluence on their neighbors, whom in turn influence
their neighbors, such that eventually all nodes be-
come labeled. MAD is a state-of-the-art variant of
the standard label propagation algorithm (Baluja
et al., 2009), and it guarantees convergence. Based
on preliminary experiments, µ1 = 10 × µ2 =
100× µ3 were found to be the best hyperparame-
ters for MAD. Since a graph with n nodes contains
O(n2) edges, we prune low-weight edges to avoid
excessively time consuming computations.

4 Results and discussion

4.1 The dataset
Our corpus consists of documents from a diverse
set of biomedical free texts: PubMed abstracts
and full-length articles, encyclopedic webpages
from health portals, and online discussion forums.
As a pre-processing step, each document is seg-
mented into sentences by the LingPipe tool, and
further tagged with POS and parsed into depen-
dency graphs by the Stanford CoreNLP tool. We
then extract the longest compound noun phrases
from the sentences. Finally, for each target word,
we make one collection by randomly selecting
noun phrases containing that word. The aver-
age noun phrase length across collections are rela-
tively uniform from 13 to 17 words.

4.2 Results
We tuned the method’s parameters using a devel-
opment dataset of 1,000 randomly selected nodes
for each target word. Keeping the proportion of
seed nodes at 5%, we obtained the best parameter
setting (the α’s in context similarity and window
size k) for each individual word.

In the test dataset, each target word has a graph
of 10,000 random nodes with also 5% seeds. On
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Target
word

#Types Micro Macro Best
context

Target
word

#Types Micro Macro Best
context

Target
word

#Types Micro Macro Best
context

activity 3 0.91 0.91 WPH function 3 0.94 0.94 WPS reaction 5 0.97 0.94 WP
administration 2 0.93 0.84 WPS group 3 0.92 0.74 WPS reduction 3 0.72 0.75 WPS
area 6 0.92 0.89 WP information 4 0.95 0.95 WPH region 4 0.90 0.50 WPS
body 4 0.96 0.94 WPH line 5 0.89 0.85 WPS report 2 0.99 0.97 WPH
case 5 0.83 0.88 WPS measure 2 0.90 0.80 WPS resistance 3 0.98 0.66 WPS
concentration 4 0.95 0.98 WPH mechanism 2 0.85 0.76 WPS response 5 0.89 0.73 WPS
condition 2 0.95 0.96 WPH model 3 0.96 0.63 WPS result 4 0.91 0.89 WPH
control 4 0.98 0.97 WPS pattern 6 0.77 0.81 WP role 3 0.98 0.99 WPH
culture 2 0.99 0.79 WP period 3 0.91 0.92 WPS sequence 2 0.97 0.95 WPS
degree 7 0.76 0.72 WP point 8 0.92 0.76 WP set 2 0.98 0.97 WPS
development 5 0.88 0.86 WP pressure 6 0.79 0.89 WP site 4 0.96 0.85 WPH
distribution 2 0.96 0.96 WPS problem 4 0.89 0.67 WP solution 2 0.99 0.94 WPS
effect 2 0.93 0.75 WPS process 4 0.85 0.91 WPH state 4 0.98 0.82 WP
expression 4 0.96 0.81 WPH product 6 0.95 0.91 WP strain 3 0.66 0.59 WPS
factor 6 0.96 0.72 WP profile 3 0.98 0.84 WP system 4 0.92 0.85 WPS
flow 5 0.83 0.90 WPH program 5 0.92 0.85 WPH technique 2 0.91 0.92 WPS
form 4 0.92 0.63 WPS rate 3 0.95 0.78 WP

Table 3: Number of semantic types, micro- and macro-averaged accuracy, and the best context setting of
50 target words. W, P, H, S denote word, POS, hard and soft context entity types, respectively.

average, 1428 and 437 nodes were evaluated for
each target word and for each target semantic type,
respectively. Two annotators evaluated the labels
suggested by the MAD algorithm, and the value
of Fleiss’ Kappa was 0.76, which indicates sub-
stantial inter-annotator agreement. Table 3 lists
the micro- and macro-averaged accuracy, as well
as the best context setting.

4.3 Discussion

Overall, micro-averaged accuracy is very encour-
aging at 80% or above for 45 target words. A
few target words (degree, pattern, and pressure)
have higher numbers (6 or 7) of target semantic
types. As the number of target semantic types in-
creases for one target word, it becomes harder for
the types’ contexts to be sufficiently distinct from
each other. This phenomenon leads to noisy edge
weights in the graph, which in turn leads to poorer
classification results. Other target words (reduc-
tion and strain) also have week micro-averaged
accuracy despite having fewer (3) target seman-
tic types. In both cases here, the dominant target
semantic type is used in such a broad way that a
few seed phrases are not sufficient to describe the
context. Specifically, a reduction of quantity can
be about just anything; and an organism strain can
be described at the population, experiment, organ-
ism, gene, or molecular level, or can be described
via the characteristic effect the strain causes.

Macro-averaged accuracy performs less consis-
tently and varies across target words. The over-
riding contributing factor here is the skew of the
target semantic types’ distribution. In our an-
notations, the most frequent label of one target

word constitutes from 23% to 91% of occurrences.
When a sparse type is represented by few labeled
examples in the graph, naturally there is less gen-
eralization power to classify correctly.

In terms of how much context words, POS, and
context entity types contribute towards the solu-
tion, we are surprised that the use of words and
POS alone are sufficient for 28% of the target
words to achieve the best experimental setting.
While the rest of the target words benefit to vary-
ing degrees the hard and soft variants of context
entity types, it is worth noting that even a rudimen-
tary estimation of context entity types empowers
better context comparisons for the other 72% of
target words.

Errors in the classification stem from two main
sources. In some cases, the critical cue, be it a
word or a context entity type, lies outside of the
context window. In other cases, significant expert
knowledge is needed to put the puzzle together.

5 Conclusion

In this work, we present a semisupervised method
that classifies a word’s semantic type in com-
plex noun phrases. With 50 common words, we
demonstrate that a small number of labeled seeds
can enable a label propagation algorithm to assign
both conventional semantic type labels as well as
the negative case of uninformative label. We envi-
sion that the semantic types of words in a noun
phrase make one building block towards more
fully utilizing that phrase. In the future, we plan to
apply our method to other information extraction
modules, and enrich their capability in handling
longer phrases that go beyond dictionary entries.
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