Shallow Training is cheap but is it good enough?
Experiments with Medical Fact Coding

Ramesh Nallapati, Radu Florian
IBM T. J. Watson Research Center
1101 Kitchawan Road,

Yorktown Heights, NY 10598, USA
{nallapati, radu}@us.ibm.com

Abstract

A typical NLP system for medical fact coding
uses multiple layers of supervision involving fact-
attributes, relations and coding. Training such a
system involves expensive and laborious annotation

process involving all layers of the pipeline.

In this work, we investigate the feasibility of a shal-
low medical coding model that trains only on fact
annotations, while disregarding fact-attributes and
relations, potentially saving considerable annota-
tion time and costs. Our results show that the shal-
low system, despite using less supervision, is only
1.4% F1 points behind the multi-layered system on
Disorders, and contrary to expectation, is able to
improve over the latter by about 2.4% F1 points
on Procedure facts. Further, our experiments also
show that training the shallow system using only
sentence-level fact labels with no span information
has no negative effect on performance, indicating

further cost savings through weak supervision.

1 Introduction

Medical fact coding is the joint task of recogniz-
ing the occurrences of medical facts from elec-
tronic patient medical records expressed in natu-
ral language, and linking each occurrence of a fact
to a specific code in a medical taxonomy such as
SNOMED'.

A representative sentence from a medical record
along with its annotated facts is shown in Figure 1.
In the parlance of traditional natural language pro-
cessing, this task is roughly equivalent to the tasks
of named-entity recognition (Nadeau and Sekine,
2007) and entity-linking? rolled into one.

Several open evaluations such as ShARe-CLEF
(Pradhan et al., 2013) and Semeval (Pradhan et al.,

"http://www.nlm.nih.gov/research/umls/
Snomed/snomed_main.html

http://www.nist.gov/tac/2013/KBP/
EntityLinking/index.html

52

2014) have been run recently to address the twin
problems of fact recognition (recognizing occur-
rences of medical facts in text) and fact-coding
(linking each occurrence of a fact to a pre-assigned
code). These evaluations report performance num-
bers on both the tasks separately.

Often times, facts that occur in a medical text
may not correspond to any pre-assigned codes,
and are referred to as CUI-less facts in the Semeval
evaluation. In the aforementioned evaluations, the
systems are expected to output and are evaluated
against CUI-less facts as well. However, in typical
end-user applications such as medical billing, one
does not care about the occurrences of unrecog-
nized, non-billable facts. This work is targeted at
such end applications where discovering only the
occurrences of fact-codes recognized by a medi-
cal taxonomy is desirable. Consequently, CUI-less
facts are ignored in our evaluation framework.>

In this work, we will focus only on the fact types
of Disorders and Procedures, and use SNOMED
as our medical taxonomy. We also use Linkbase*
as our knowledge-base for descriptions of the fact
codes.

2 Multi-layered Models for Fact Coding

Some of the unique characteristics of medical fact
coding compared to the traditional entity recogni-
tion are as follows:

1. Unlike traditional entities, medical facts can
be non-contiguous.

2. Unlike traditional entities, medical facts can
be overlapping.

3In the official data of the Semeval task, it is reported that
at least a quarter of the annotated facts are CUI-less (Pradhan
et al., 2014). Hence ignoring these facts essentially renders
a comparison of our evaluation numbers with the official Se-
meval numbers meaningless.

*http://www.nuance.com/
for—-healthcare/resources/
clinical-language-understanding/
ontology/index.htm

Proceedings of the 2015 Workshop on Biomedical Natural Language Processing (BioNLP 2015), pages 52-60,
Beijing, China, July 30, 2015. (©2015 Association for Computational Linguistics

16114001:FRACTURE_OF_ANKLE_(DISORDER)
269114000::DISLOCATION_OR_SUBLUXATION_OF_ANKLE_(DISORDER)

Figure 1:

contiguous and mutually overlapping facts: Fact 1 is com-

An example sentence containing two non-

posed of the words ‘fracture’, ‘right’, and ‘ankle’ while Fact
2 comprises the words ‘dislocation’, ‘right’ and ‘ankle’. Note
that both facts are non-contiguous, since there is a break be-
tween ‘fracture’ and ‘right ankle’ as well as between ‘disloca-
tion’ and ‘right ankle’. Likewise, both facts are overlapping
with each other since they share the tokens ‘right’ and ‘an-
kle’.

The example sentence in Figure 1 satisfies these
two unique criteria. Since entities may not oc-
cur contiguously, a BIO (Begin-Inside-Outside)
style sequence tagger is no longer directly ap-
plicable (Bodnari et al., 2013). Therefore,
some researchers have used BIOT (Begin-Inside-
Outside-BeTween) style coding to model the non-
contiguous nature of the entities (Cogley et al.,
2013), while others have attempted the approach
of breaking down the entities into attributes that
satisfy the contiguousness requirement of the BIO
style taggers, and then reconstructing the original
non-contiguous entities by tying the mentions of
attributes together using relations (Gung, 2013).
The former approach of BIOT tagging addresses
the problem of non-contiguous entities but does
not address the problem of overlapping entities,
while the latter can address both the problems.
Hence, in this work, we will use the latter ap-
proach as our multi-layered baseline system.

An example output produced by various stages
of the multi-layered system for the example sen-
tence of Figure 1 is shown in Figure 2. In this
example, a Disorder fact is broken down into at-
tributes such as Disorder-Core, Body-site and Lat-
erality, whose occurrences are always contiguous.
The mentions of these attributes are identified by a
BIO-style sequence tagger such as the CRF (Laf-
ferty et al., 2001). Next, a relations classifier is run
on all pairs of attribute mentions in a given sen-
tence. Finally, all attribute-mentions connected by
relations are aggregated to produce fact-mentions,
which are then lexically compared to a database of
fact-descriptions to output the code of each men-
tioned fact, if one exists in the taxonomy.

53

TEXT: ”IMPRESSION:orwithinthe ankle)

MENTIONS: | Core I | Core | [Laterality} Body Site

RELATIONS:

AGGREGATED FACTS:

|15114001:FRACTURE70FJ—\NKLE | |259114000:DISLOCATION70R7$UBLUXAT\ONioFiANKLE |

CODING:

Figure 2: Output of various stages of the multi-layered
pipeline on the example sentence in Figure 1. The mentions
stage produces mentions of contiguous attributes, while the
relations stage ties them together to produce larger, poten-
tially non-contiguous entities. The final coding stage com-
pares the fact-text to a database of fact-codes and their de-

scriptions, and outputs the predicted medical codes.

Although the above mentioned strategy of a
multi-layered system is very effective, annotat-
ing the training data required for all stages of
the pipeline can be quite laborious and expensive.
The motivating question for us in this work is
whether we can eliminate some of the stages such
as attribute-mentions and relations and still deliver
comparable fact-coding performance. We call our
approach shallow coding as it aims to reduce the
number of layers of supervised data needed to
train the model.

3 Shallow Coding Model

The multi-layered model uses a bottom-up ap-
proach starting from attribute-mentions and incre-
mentally building all the way to fact-codes. In
contrast, the shallow coding model uses a top-
down approach wherein the entire text of the sen-
tence is used as a query to retrieve matching facts
directly. Note that this model does not use any se-
quence tagger to identify relevant spans of the text
before matching them with the fact-descriptions.
Since using the entire sentence for matching re-
sults in retrieval of many spurious facts, they are
further analyzed in subsequent stages to output the
final set of predicted facts.

This approach detects occurrences of only the
facts with pre-assigned codes in the taxonomy
since the retrieved candidate facts are those that al-
ready exist in the taxonomy. In contrast, the multi-
layered model can also detect facts that have no
pre-assigned codes since the fact-recognition step
is independent of the taxonomy. Since our final
objective in this work is to generate recognizable
fact codes, the shallow coding model is an appro-

Fact Code | Description Source

(Fact-Type)

49436004 atrial fibrillation Linkbase

(Disorder) af DocID-131
afib DoclID-236

195080001 | atrial fibrillation and flutter | Linkbase

(Disorder) atrial flutter DocID-567

Table 1: A sample of the database of fact codes and their
descriptions collected from a union of Linkbase and training

data annotations.

priate candidate for the task. It is however not an
appropriate model for the ShARe-CLEF and Se-
meval evaluations that also care about unrecogniz-
able (CUI-less) facts. Hence we are unable to eval-
uate this model using the official evaluations. We
however, compare the shallow model with our own
implementation of the multi-layered approach as a
baseline.’

The rest of the section discusses in detail, the
various stages of the shallow coding system in the
order of their execution.

3.1 Information Retrieval (IR) Stage

An inverted-index of codes and their corre-
sponding concept-descriptions, as provided in the
Linkbase knowledge-base is first created. The in-
dex is also augmented with fact annotations from
training data, treating each fact-mention as an ad-
ditional description for the corresponding fact-
code. Such augmentation with training anno-
tations is necessary since the language used in
SNOMED descriptions differs significantly from
that used in medical reports.® To prevent over-
fitting at training time, we use a leave-one-out
strategy where for each sentence in the training
set, the retrieval results exclude fact-annotations
from the document that the sentence belongs to. A
few example descriptions augmented with training
data annotations are shown in Table 1.

During the retrieval process for a given sen-
tence, the sentence is first filtered for all punctu-
ation and stop-words, and an initial search is per-
formed using a sliding-window of length 3 words
and the retrieved descriptions over all the window

>The multi-layered approach should in fact be considered
an upper-bound since it has access to more layers of labeled
data.

SFor example, one of the descriptions for Disorder code
49436004 is ‘Atrial fibrillation’. However, in medical re-
ports, doctors typically use the short form ‘afib’ to represent
the same fact. Such variations can only be captured if we
include training annotations as additional descriptions in the
index.

54

searches are pooled together by their fact-codes.
The reason for using a sliding-window search is
that it minimizes spurious long-distance matches
with the sentence. Any facts that span longer than
the sliding window size may be ranked lower in
the initial search, but are boosted in the re-ranking
stage as described below.

The pooled descriptions are then pruned by their
retrieval scores to a maximum of 10 descriptions
per code. We then re-rank the retrieved facts by the
maximum of the inclusion scores of their retrieved
descriptions computed with respect to the entire
sentence:

incl-score(f, s) = max(

Zwe(dﬂs) TF('LU, f)IDF(w))

def " Y eq TF(w, f)IDF(w)

(1
where f is a fact-code, s is a sentence, d is
a description pooled into f, and w is a word-
token in the description obtained after removing
stop-words and stemming the remaining words.
The inverse-document-frequency (IDF) weights
are computed from the index of descriptions
and not from the training documents, and term-
frequency TF(w, f) is computed as the proportion
of all descriptions in the fact f that contain the
specific word w. The inclusion score is simply
the IDF-weighted fraction of the description to-
kens contained in the sentence.

Further, to ensure that a single instance of
the sliding window query does not dominate the
search results, we also introduce a redundancy
based penalty term into the inclusion score in Eqn.
1 where each word w in the numerator is dis-
counted by log(1+ ¢(w)), where ¢(w) is the count
of the number of times the word w is seen in the
retrieved descriptions in the original ranking thus
far.

The number of top ranking facts we return
per sentence is a variable based on the sentence-
length:

n(s) = max(25, min(3 x len(s),50)), (2)
where n(s) is the number of facts returned for the
sentence s, and len(s) is the number of processed
tokens in s.

Note that we use unstemmed tokens in the ini-
tial search, but stemmed tokens for re-ranking,
as this has been empirically found to improve
performance by a small amount. In all our ex-
periments, the initial search is performed us-

9

Component Recall
Lucene Search only 89.10
+ Inclusion-score-reranking | 95.68
+ Redundancy penalty 96.12

Table 2: Contribution of various components towards the
performance of the IR system. The numbers reported are on

our Integris development set on Disorders facts.

ing default-ranking function as implemented in
Lucene.”

Table 2 lists the contribution of Lucene search,
re-ranking using inclusion score and using re-
dundancy based penalty on our development set.
The results indicates that while re-ranking is very
critical towards achieving high recall, using a
redundancy-based penalty to encourage diversity
of results also is incrementally useful.

3.2 Alignment

All the descriptions retrieved from the previous
step are then independently aligned word-to-word
with the sentence text. For each description, we
compute the alignment that has the minimum span
but maximal possible matching, using a dynamic
programming implementation that has a quadratic
complexity in sentence length. We allow non-
contiguous alignments in keeping with the fact
a medical fact may consist of non-contiguous
words. If multiple alignments satisfy this crite-
rion, we return all such alignments. Note that the
matches are computed using stemmed tokens, and
order of matching is disregarded in computing the
alignment. An example alignment where a single
fact matches twice in a sentence via multiple de-
scriptions is displayed in Figure 3.

For each description d aligned with the sentence
s, an alignment score is computed as follows:

Align-score(a(d, s)) = incl-score(d, s) X

tightness-ratio(a(d, s)) X

(> (log(1.0 + IDF(w)))),

wedNs

3)

where a(d, s) is the alignment of the description
with the sentence, incl-score(d, s) is computed as
shown in Eqn. 1, and tightness-ratio(a(d, s)) is
computed as follows:

2 wedns(1)
span-len(a(d, s))’
“4)

tightness-ratio(a(d, s))

"http://lucene.apache.org/

55

DIAGNOSES : |Encephalopathic||state| ; acutely 'delirious'and agitated state! .
[l [iganags
= 2
| State || Encephalopathy | L

-IEncephanpathy| |Condition |
Figure 3: The Disorder code 2776000 occurs twice in

the same sentence expressed as ‘encephalopathic state’ and

SENTENCE

i | DESCRIPTION
CLUSTERS

—

‘delirious state’. Note that word order is ignored in com-
puting the alignment. The words ‘encephalopathy’ and ‘en-
cephalopathic’ match with each other due to matching of
their stems. Also worth noting is the observation that the
word ‘state’ in the description ‘state of encephalopathy’ could
have been aligned with the last word in the sentence, but it
does not happen since the alignment algorithm prefers maxi-
mal matches that have minimal span. The descriptions ‘state
of encepahlopathy’ and ‘encephalopathy condition’ overlap
over the word ‘encephalopathy’ and therefore form a cluster
of descriptions. Likewise, the descriptions ‘delirious state’
and ‘delirium’ overlap over the word ’delirious’ in the sen-
tence, and form another cluster with the same fact code.
These two clusters represent two distinct occurrences of the
fact-code 2776000 in the sentence.

where span-len(a(d, s)) is the difference between
the sentence-positions of right-most word in the
alignment and the left-most word. Tightness ra-
tio is higher for contiguous alignments than other-
wise. As Eqn. 3 indicates, alignments that have a
high inclusion score, tight alignment and a num-
ber of ‘important’ aligned words (as measured by
their IDF scores) get high alignment-scores.

Since each fact can have multiple descriptions
each of which may align in one or more ways
with the sentence, we cluster the alignments of
each fact based on their alignment positions in
the sentence. In other words, each alignment-
cluster ¢ for a given fact contains all the descrip-
tions that have at least one aligned position in
common with another description in the cluster.
Each such alignment-cluster constitutes an exam-
ple, that goes to classifier-stages for further anal-
ysis. The alignment of a cluster with respect to a
sentence is given by the alignment of the descrip-
tion in the cluster that has the best alignment score
as given by Eqn. 3.

a(c,s) = arg max

Align- d
5 ign-score(a(d, s))

&)

3.3 Match Classifier

As mentioned above, each alignment cluster is
treated as an example that is analyzed by the
Match-classifier. At training time, the clusters are
first mapped to positively annotated facts, such
that each cluster is aligned with a positive fact in
a greedy manner on a one-to-one basis. All the
clusters mapped to positively annotated facts are
considered positive examples, and the rest, nega-
tive.

Further, for training the Match-classifier, we
only use those negative examples whose align-
ments do not overlap with those of any positive
examples. This is done so that the Match-classifier
accurately captures the semantics of similarity be-
tween the sentence and retrieved facts. The neg-
ative examples that overlap with the positive ones
may have been annotated as negative for one of
the following two reasons: (i) the retrieved fact is
not related to the sentence, and (ii) the retrieved
fact is related but is overruled because some other
retrieved fact applies more accurately to the sen-
tence. The Match-classifier is designed to deal
with only case (i) above, hence we ignore the neg-
ative facts that overlap with any of the positive
facts for training purposes. These facts will be
handled separately by the Overlap-classifier in the
next stage.

At test time, all the examples are run through
the Match-classifier and classified as positive or
negative for a given sentence. If the alignment of a
given positively classified example does not over-
lap with that of any other example, it is directly
output as positive for the given sentence. Else, it
is sent to the subsequent stages for further analy-
sis.

The following is the full list of features used in
the Match-classifier.

Similarity features:

Unigrams: number of words and proportion of
words in the description that are matched in the
sentence, as well as the IDF-weighted versions of
these two features.

Bigrams: number and proportion of bigrams in the
description matched, as well as IDF-weighted ver-
sions of these features, where the IDF of a bigram
is computed as the average of the IDFs of the pair
of words in it.

Unordered bigrams: same as above, but ignoring
the ordering of the bigrams.

56

Character-trigram features: each word in the de-
scription is mapped to a word in the sentence
that has the highest number of character-level tri-
grams in common, and its similarity to the mapped
word is measured in terms of the proportion of its
character-trigrams matched. As features, we use
the number and proportion of words in the descrip-
tion mapped, weighted by the character-trigram
similarity scores.
Edit-distance based features: similar to character-
trigram features, we map each word in the de-
scription to a word in the sentence using mini-
mum edit-distance as the criterion. Next, we com-
pute number and proportion of words matched us-
ing (1-edit-distance)/(word-length) as the similar-
ity weight.
Synonym features: each word in the description
is replaced with one of its synonyms from a dic-
tionary®, and computed unigram features with the
replaced words, as above. The maximum value of
the features over all synonyms is used as the final
feature value.

For each of the above features, we compute its
maximum value over all descriptions in the cluster
and it as the final feature value.

Lexical features:

Matched and unmatched words: the matched
words and their bigrams in the best alignment of
the cluster, conjoined with the code, as well as the
unmatched words within the span of the alignment
conjoined with the code.

POS features: the parts-of-speech categories of
matched words and their bigrams in the best align-
ment of the cluster, conjoined with the code,
as well the POS categories of unmatched words
within the span of the alignment, conjoined with
the code.

Context words: Two words to the left and two
words to right of the alignment, conjoined with the
code of the description, used both as unigrams and
bigrams.

Other features:

Alignment-based features: the tightness ratio (see
Eqn. 4 above) of the best alignment for the cluster,
average distance between the words in the align-

8The synonyms are generated in an unsupervised fashion
based on descriptions that co-occur in a fact but differ by a
single word, e.g.: ‘lung cancer’, and ‘pulmonary cancer’ are
used to describe the same fact, hence ‘lung’ and ‘pulmonary’
are considered synonymous.

ment, and the number of unmatched words in the
span of the alignment.

Prior features: the number and fraction of times
the best aligned description in the cluster has been
annotated with the given code in the training set.

Header features: the section-header name of the
current sentence (E.g.: Diagnosis, History of ill-
nesses, Discharge Summary, etc.) conjoined with
the code of the matching description.

3.4 Opverlap Classifier

All the examples classified as positive by the
Match classifier that overlap with at least one other
positively classified example are input to the Over-
lap classifier, that further analyzes these examples.
The Overlap classifier uses all the features used in
the Match-classifier as well as additional features
based on the type of overlap between the two ex-
amples, and hierarchy relationship in SNOMED
taxonomy between the two overlapping facts. We
compute these features for each example with re-
spect to all other examples that overlap with it. For
a given example, even if the same feature fires with
multiple overlapping examples, we do not add up
the counts since we consider it as a binary feature.

Overlap features: For each example, a binary fea-
ture is computed to characterize whether its align-
ment (a) is subsumed by the alignment of the other
example, (b) subsumes the alignment of the other
example, (c) exactly equals the alignment of the
other example or (d) overlaps without any of the
three properties above. Other variants of this fea-
ture also include the feature conjoined with the
overlapping words, and conjoined with the fact
codes of the two examples.

Hierarchy features: For each example, we define
a binary feature to characterize whether an exam-
ple’s fact-code is (a) a descendant, (b) an ancestor,
(c) a sibling or (d) a co-parent of the other overlap-
ping example’s code in the taxonomy. Variants of
this feature also include the feature conjoined with
words in the overlap, and the fact codes of the two
examples.

We only use positive examples that overlap with
at least one other example, and negative examples
that overlap with at least one positive example for
training the classifier. This kind of sub-sampling
of the training data allows the Overlap classifier to
learn the semantics of how certain facts overrule
other facts although both facts may be equally re-

57

Component F1

Match Classifier only | 78.65
+ Overlap Classifier 81.73
+ Rejection Rules 83.07

Table 3: Contribution of the two classifiers and the rejection
rules towards the performance of the Shallow coding system.
All numbers are reported on Disorder facts on the Integris

development set.

lated to the sentence in question.’

At test time, each example is classified in an
L1.D. manner'? , and the positively classified ex-
amples are then input to the final stage as de-
scribed below.

3.5 Rejection Rules

In the final stage of the Shallow coding model, we
apply two rules to potentially reject inconsistently
classified examples from the previous stage. The
two rules are listed below:

Rejection of subsumed examples: If the alignment
of a positively classified example A strictly sub-
sumes that of another positively classified example
B, then example B is rejected and labeled as neg-
ative, since example A, with its longer alignment,
is usually the more reliable and more specific fact.
E.g.: Fact#195080001 with alignment ‘atrial fib-
rillation and flutter’ overrules Fact#49436004 that
aligns with only ‘atrial fibrillation’, as its align-
ment is subsumed by the former’s.

Rejection of ancestors: If the alignment of a pos-
itively classified example A overlaps with that of
another positively classified example B and A is
an ancestor of B, then the example A is rejected,
since B, being the descendant is a more specific
fact than A.

Note that the above rules are applied to pairs of
positively classified and overlapping examples A
and B, where A’s confidence score as given by the
Overlap classifier is higher than that of B.

For example, if the medical text contains the phrase
“atrial fibrillation and flutter’, it would match against both the
facts shown in Table 1. However, Fact#195080001, being the
more specific match is the correct fact and therefore overrules
Fact#49436004.

Tt is easy to see that the interactions of the overlap-
ping examples may be modeled by a joint model such as the
CRF. We have tried using CRFs in our experiments. Since
the structure of the CRF can be arbitrary depending on the
overlapping structure in a sentence, exact inference is hard.
Hence, we used pseudo-likelihood for training the CRF and
Gibbs sampling for testing, but it has not produced better re-
sults than the L.ID. classifier using the features listed above.
Hence we do not report the CRF’s performance.

Multi-layered system

Match
Classifier

Mention | Relation Fact

on L N el = R
w Detection ! Extraction Aggregation

Match
Classifier

Fact
Codes

Overlap
Classifier

Rejection
Rules.

Shallow coding system

Figure 4: Comparison of various stages in the multi-layered
pipeline vs the Shallow coding pipeline: the boxes with bro-
ken borders in either pipeline represent the stages that require
labeled data. In the Shallow coding pipeline, Match-classifier
and Overlap-classifier are the only stages that need training
data, and they both use different slices of the same fact-span
data for training. In contrast, the deep pipeline needs separate

training data for mentions, relations and coding.

Dataset Subset nDoc nSent nFact
(FactType)

Integris train 409 14,218 10,906
(Disorders) test 384 28,408 7,807
Mult-inst train 12,370 | 484,822 | 204,124
(Disorders) test 1,530 99,564 27,307
Proc-notes train 1,624 71,151 17,996
(Procedures) | test 201 8,915 2,996

Table 4: Statistics of the datasets and corresponding fact-
types used in our experiments. Integris is used purely as a
development dataset on which we developed and tuned our
models. We trained and evaluated Disorders on the multi-
institution train and test datasets respectively. Similarly, we
trained and evaluated our models on Procedures on the Proc-
notes train and test splits. In the table, nDoc stands for num-
ber of documents, nSent for number of sentences, and nFact

for number of facts.

Table 3 reports the incremental contribution of
each classifier component to the overall perfor-
mance of the shallow coding system. The num-
bers show that each component makes a signifi-
cant contribution towards the overall performance.

Figure 4 compares the various stages involved
in the multi-layered pipeline to the shallow cod-
ing system. The number of stages that need anno-
tated data for training are indicated by boxes with
broken edges in the figure, and is much less for
the shallow system. In fact, both the stages that
need training data in the shallow system, namely
the Match classifier and Overlap classifier use dif-
ferent slices of the same training data, as described
earlier.

58

Dataset Model Prec. | Rec. | F1
Integris Mult-layer | 82.76 | 84.51 | 83.63
Shallow 85.27 | 80.98 | 83.07
Multi-Inst | Mult-layer | 86.36 | 87.72 | 87.03
Shallow 86.68 | 84.54 | 85.60
Proc-notes | Mult-layer | 38.31 | 55.27 | 45.25
Shallow 44.79 | 50.90 | 47.65

Table 5: Performance comparison: the shallow coding sys-
tem is only about 0.6% F1 points below the multi-layered one
on Disorders on the development set. On the unseen data of
Multi-institution using the same fact-types, it is about 1.4%
F1 behind the multi-layered model. On Proc-notes data in-
volving Procedure facts, the shallow system is able to outper-

form the multi-layered architecture by 2.4% F1 points.

4 Experiments and Results

For tuning and developing our model, we used
medical reports from an institution called Integris,
which are partitioned into training and test sets.
We tuned our model only on Disorder facts and
evaluated them on both Disorders and Procedures.
For evaluating the model on Disorders, we used
another dataset from multiple institutions with its
own train and test partitions which we call the
Multi-inst dataset. For evaluating procedures, we
used a dataset consisting of Procedure Notes doc-
uments with its own train and test partitions. The
statistics of the datasets are summarized in Table
4.

The results of our experiments are summarized
in Table 5. The shallow coding model is only
about 1.4% F1 points behind the traditional multi-
layered supervised model on Disorder facts, mak-
ing it attractive for situations where cost savings
are critical. On the more complex medical fact-
types of Procedures, the shallow coding system
outperforms the multi-layered system by 2.4 % F1
points. The fact that Procedure facts are harder
is evident from the performance numbers of ei-
ther system on Procedures compared with those
on Disorders. A a few example Procedure facts,
along with their attribute level annotations are dis-
played in Figure 5.

On complex fact-types involving long distance
relations between the attributes, errors accumulate
over the layers of the multi-layered system result-
ing in poorer performance.!! In such a scenario,
the shallow model may be more attractive.

""'We are unable to show detailed comparison of the errors
of the two models as our datasets are proprietary.

4.1 Weakly supervised training

Further, our experiments on both Disorders and
Procedures showed that the performance of the
shallow system practically remains unchanged
even if it is provided with only sentence-level fact
labels at training time, omitting their actual spans.
The exact span of each fact in a training sentence is
not needed since the model’s alignment stage com-
putes this information reasonably accurately, as
long as it knows that the fact exists in the sentence.
There was however, a caveat in our experiments:
we retained the fact descriptions in the retrieval in-
dex that were created from the fact-spans in train-
ing sentences (see Section 3.1). Without these
augmented descriptions, the performance of the
system degrades considerably. Although this fact-
span information was used only in the IR stage,
it essentially means that the system did ultimately
have access to fact-spans, and therefore is not a
strict weakly-supervised model. Despite this im-
portant caveat, we believe that there is promise in a
weakly-supervised system for medical fact coding,
where facts are annotated only at sentence level
without the exact span information, which may
yield additional annotation cost savings. Note that
such a weakly supervised model will not be ap-
plicable in the context of a sequence tagger that
annotates mentions of facts or attributes first (such
as the multi-layered model described in this paper
or the ones described in (Bodnari et al., 2013) and
(Gung, 2013)), since these models demand avail-
ability of annotated mention spans at training time.

Weakly supervised training has been successful
in other information extraction tasks such as rela-
tion extraction (Surdeanu et al., 2012; Weston et
al., 2013), but has not been used in the context of
entity recognition, to the best of our knowledge.
This may have been due to the fact that in tradi-
tional entity recognition, entities tend to be con-
tiguous and non-overlapping, and therefore anno-
tating entity spans may cause no significant over-
head over annotating only sentences with entity-
labels. Since these two properties do not hold true
in medical fact recognition, weak supervision may
be more attractive here. We hope this work paves
the way for more future work in this direction.

5 Conclusions and Future Work

In this work, we propose a new shallow coding
model that learns to annotate medical facts that
are overlapping and non-contiguous without us-

59

“It was pulled up to the 'abdominal Wa\l:with sutures in each quadrant and then tacked

together for appropriate c'bﬁta_cfr_eﬁu'lréd'fo biologic grafts|.”
119561005:GRAFTING_PROCEDURE_(PROCEDURE)
“We passed a wire through the left main and into the left anterior descending artery right
past an intravascular ultrasound probe and obtained of the
[proximal left anterior descend'\ng] artery| "
241467003:INTRAVASCULAR_ULTRASOUND_OF_ARTERY_(PROCEDURE)

“After_repairing the nail plate down with_the nail bed , a 3 cmas made in

fashion over the skin of the:d\sta\ phalanx: .”

304103008:LOCAL_ADVANCEMENT_FLAP_(PROCEDURE)

Figure 5: Examples of Procedure facts along with their
attributes: the rectangle with sharp edges are Procedure-
Cores, ones with broken edges are Body-sites, rectangles with
rounded edges are Lateralities, and the ovals are Approaches.
Note that the attributes for Procedures are more complicated

and exhibit long-distance relations among themselves.

ing any attribute level annotations and relations
annotations. Our work shows that this approach,
while not being too far behind on Disorders, ac-
tually outperforms a more sophisticated and more
deeply supervised model on Procedures.

As part of future work, we plan to investigate
the feasibility of a weakly-supervised system that
trains on only sentence-level fact labels. We be-
lieve that optimal performance may be achieved
by a hybrid system that uses a small number of an-
notated training facts for generating an augmented
retrieval index, and a large number of sentences
with fact-labels but without span information, for
training the classifiers. This would further reduce
the annotation costs substantially.

We implemented a basic system combination
of the shallow coding and the multi-layered mod-
els where the predictions of the multi-layered sys-
tem are re-ranked based on the prediction of the
shallow model for facts that are aligned between
the two systems. However, such combination did
not result in any significant improvement. As part
of future work, we plan to build a meta-classifier
that learns to effectively combine the outputs of
the two systems using more sophisticated features,
hopefully further improving over either system.

Acknowledgments

We are extremely thankful to Nuance, Inc. for
supporting this work, and for providing all the re-
sources including annotated medical reports for
training and evaluation, and for providing access
to the knowledge-bases needed in this work.

References

A. Bodnari, L. Deleger, T. Lavergne, A. Neveol, and
P. Zweigenbaum. 2013. A supervised named-entity
extraction system for medical text. In Online Work-
ing Notes of the CLEF 2013 Evaluation Labs and
Workshop.

J. Cogley, N. Stokes, and J. Carthy. 2013. Medical
disorder recognition with structural support vector
machines. In Online Working Notes of the CLEF
2013 Evaluation Labs and Workshop.

J. Gung. 2013. Using Relations for Identification and
Normalization of Disorders: Team CLEAR in the
ShARe CLEF 2013 eHealth Evaluation Lab. In On-
line Working Notes of the CLEF 2013 Evaluation
Labs and Workshop.

J. D. Lafferty, A. McCallum, and F. C. N. Pereira.
2001. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data.
In Proceedings of the Eighteenth International Con-
ference on Machine Learning, pages 282-289.

D. Nadeau and S. Sekine. 2007. A survey of named
entity recognition and classification. In Linguisticae
Investigationes, number 30, pages 3-26.

S. Pradhan, N. Elhadad, B. R. South, D. Martinez,
L. Christensen, A. Vogel, H. Suominen, W. W.
Chapman, and G. Savova. 2013. Task 1:
ShARe/CLEF eHealth Evaluation Lab. In Online
Working Notes of the CLEF 2013 Evaluation Labs
and Workshop.

S. Pradhan, N. Elhadad, W. Chapman, S. Manandhar,
and G. Savova. 2014. SemEval-2014 Task 7: Anal-
ysis of Clinical Text. In Proceedings of the 8th In-
ternational Workshop on Semantic Evaluation (Se-
mkEval 2014), pages 54-62.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati,
and Christopher D. Manning. 2012. Multi-instance
multi-label learning for relation extraction. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, EMNLP-
CoNLL 12, pages 455465, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Jason Weston, Antoine Bordes, Oksana Yakhnenko,
and Nicolas Usunier. 2013. Connecting language
and knowledge bases with embedding models for re-
lation extraction. CoRR, abs/1307.7973.

