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Introduction

BioNLP 2015 received 24 high quality submissions, continuing the fine tradition of the preceding thirteen
years of BioNLP. The high quality of the submissions ensured that 12 of those were accepted as full
papers / oral presentations and 11 as short papers / poster presentations. The themes in this year’s papers
and posters show equal interest in clinical text and in biological language processing. The morning
session and the keynote presentations focus on the latest developments in biomedical text processing,
whereas the afternoon session will present innovations in clinical text processing. This year, researchers
continue advancing pathway, event and relation extraction from the literature and information extraction
from clinical text, as well as continuing research in languages other than English.

Keynotes

The DARPA Big Mechanism Program

Kevin Knight

DARPA’s Big Mechanism Program aims to develop automatic machine-reading technology to distill
grounded, causal mechanisms from technical literature, and to assemble those mechanisms into
a large, operational model. The first Big Mechanism domain is cancer biology. This talk will
describe the goals of the program and the techniques being developed.

Kevin Knight is a Senior Research Scientist and Fellow at the University of Southern California’s
Information Sciences Institute, and a Professor in the Computer Science Department at USC. He
received a Ph.D. in computer science from Carnegie Mellon University and a bachelor’s degree
from Harvard University. His research interests include natural language processing, statistical
modeling, machine translation, language generation, and code breaking.

Machine Reading: Attempting to model and understand biological processes

Christopher Manning
Stanford University

Machine reading calls for programs that read and understand textual descriptions, whereas most current
work only attempts to extract atomic facts, often from redundant web-scale corpora. Biological
processes are an example of complex phenomena involving a series of events that are connected to
one another through various relationships. This work focuses on these processes as a reading
comprehension task that requires complex reasoning over a single document. The input is a
paragraph describing a biological process, and the goal is to answer questions that require an
understanding of the relations between entities and events in the process. To answer questions,
we first try to extract from the paragrah a rich structure representing the events of the biological
process and relations between them. We represent processes by graphs whose edges describe a set
of causal and co-reference event-event relations, and characterize the structural properties of these
graphs, so as to be able to better predict them from text descriptions. Then, we map the question to
a formal query, which is executed against the extracted structure. We demonstrate that answering
questions about Freshman biology via predicted structures substantially improves accuracy over
baselines that use shallower representations. This is joint work with Jonathan Berant, Vivek
Srikumar, Peter Clark, and other project members.

Christopher Manning is a Professor of Computer Science and Linguistics at Stanford University. His
Ph.D. is from Stanford in 1995, and he held faculty positions at Carnegie Mellon University
and the University of Sydney before returning to Stanford. He is an ACM Fellow, a AAAI
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Fellow an ACL Fellow, and he has coauthored leading textbooks on statistical approaches to
natural language processing (Manning and Schuetze 1999) and information retrieval (Manning,
Raghavan, and Schuetze, 2008), as well as linguistic monographs on ergativity and complex
predicates. His recent work has concentrated on machine learning approaches to various NLP
problems, including statistical parsing, named entity recognition, robust textual inference, machine
translation, recursive deep learning models for NLP, and large-scale joint inference for NLP.

Overview of BioCreative V Challenge Tasks

Zhiyong Lu

Critical Assessment of Information Extraction in Biology (BioCreative) is a community-wide effort
for evaluating text mining and information extraction systems applied to the biological domain.
For the past ten years BioCreative challenges have spanned a number of tasks from named entity
recognition, to relation extraction, to assisted biocuration. BioCreative V in 2015 is currently
underway and consists of five different tracks. In this talk, I will give an overview of each track
and show how they are aimed to advance text-mining research and provide practical benefits to
real-world applications such as biocuration. Information about BioCreative is available at www.
biocreative.org

BioCreative 2015 Organizing Committee: http://biocreative2015.org/organizers

Zhiyong Lu is Earl Stadtman investigator at NCBI, part of the National Library of Medicine/NIH,
where he leads the biomedical text mining research group. His research focuses on developing
computational methods for analyzing and making sense of natural language data in biomedical
literature and clinical text. Several of his recent research has been successfully adopted in
PubMed/PMC and other community resources like SwissProt. Dr. Lu is an Associate Editor
for BMC Bioinformatics and serves on the editorial board for the Journal Database. He is also an
organizer of the BioCreative challenge. http://irp.nih.gov/pi/zhiyong-lu
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Abstract

Complex mechanisms, such as cell-signaling 
pathways, consist of many highly intercon-
nected components, yet they are often de-
scribed in disconnected fragmentary ways. 
The goal of DRUM (Deep Reader for Under-
standing Mechanisms) is to develop a system 
that can read papers and combine results of 
individual studies into a comprehensive ex-
planatory model. A first step is to automati-
cally extract relevant events and event rela-
tionships from the literature. This paper de-
scribes initial steps in extending an existing 
general deep language understanding system, 
TRIPS, to read biomedical papers. In a pre-
liminary evaluation, our system was the best 
performing system among the participants, 
achieving results close to human expert per-
formance. These results suggested that our 
system is viable for complex event extraction 
and, ultimately, understanding complex sys-
tems and mechanisms.

1. Introduction

Complex mechanisms consist  of many highly  
interconnected components, yet  they are often 
described in disconnected fragmentary ways.  
Examples include ecosystems, social dynamics 
and signaling networks in biology. The study of 
these complex systems is often focused on a 
small portion of a mechanism at a time. In addi-
tion, the huge volume of scientific literature 
makes it difficult to track the fast developments 
in the field to achieve a comprehensive under-
standing of the often distant  and convoluted in-
teractions in the system.

The goal of the DRUM (Deep Reader for Un-
derstanding Mechanisms) project is to develop a 
system that can read papers and combine re-
search results of individual studies into a com-
prehensive explanatory model of a complex 
mechanism. The system will automatically read 
scientific papers, extract  relevant new model 
fragments, and compose them into larger models 
that will expose the interactions and relationships 
between disparate elements in the mechanism.

A first  step towards this goal is to automati-
cally extract  relevant events and event relation-

ships from the literature. In this paper we will 
describe initial steps in extending an existing 
general deep language understanding system, 
TRIPS (Allen et  al, 2008), to the genre of scien-
tific writing, in particular in the biomedical do-
main. Events in biomedical research papers are 
described in a highly specialized and technical 
language, with complex formulations and nested 
constructions. We will discuss adaptations made 
and how the design principles of TRIPS facilitate 
such adaptations.

We will report  on an experimental evaluation 
of this extended system on extracting events and 
relationships centered on the Ras signaling 
pathways from a number of text  passages in sci-
entific papers. Our system was the best  perform-
ing system among those evaluated, achieving  
results close to human expert performance. 

Admittedly this was a small and preliminary 
evaluation.  However, the results suggested our 
system is viable for complex event  extraction. Of 
note, unlike typical statistical approaches, we did 
not train on text  describing the Ras signaling 
pathways (or on any other text for that matter).  
Our results were achieved using a general deep 
language understanding system, with little 
domain-specific customization beyond the rec-
ognition of named entities and some specialized 
vocabularies. Most  important, our goal does not 
stop at  the surface extraction of events, as is the 
case for many existing bio-event  extraction tasks. 
With a general deep language understanding sys-
tem, we are in a good position to develop an un-
derstanding of the underlying connections in 
complex models, and the methods developed to 
achieve that  understanding will be readily trans-
ferrable to domains other than biology.  

2. The TRIPS Architecture

Much recent  text  processing work has focussed 
on developing “shallow”, statistically driven 
techniques. TRIPS takes a different  approach,  
using statistical methods as a preprocessing step 
to provide guidance to a deep parsing system that 
uses a detailed, hand-built, grammar of English 
with a rich set of semantic restrictions. Figure 1 
shows an overview of the system architecture. In 
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the rest  of this section we will describe briefly 
the main components of the system. The content 
extractor, customized for biomedical text, will be 
discussed in more detail in Section 4.

2.1. Parser
The TRIPS grammar is a lexicalized context-free 
grammar, augmented with feature structures and 
feature unification. The grammar is motivated by 
X-bar theory (Jackendoff, 1977), and draws on 
principles from GPSG (Gazdar et  al., 1985), for 
example head and foot features, and HPSG (Pol-
lard and Sag, 1987, 1994). The search in the 
parser is controlled by a set  of hand-built  prefer-
ences encoded as weights on the rules, together 
with domain-general selectional restrictions (en-
coded in the lexicon and ontology) to eliminate 
semantically anomalous sense combinations.

The TRIPS parser uses a packed-forest chart 
representation and builds constituents bottom-up 
using a best-first search strategy similar to A*, 
based on rule and lexical weights and the influ-
ences of the front end components (described 
below). 

The parser constructs from the input a logical 
form, which is a semantic representation that 

captures an unscoped modal logic (Allen, 1995; 
Manshadi et al., 2008). The logical form includes 
the surface speech act, semantic types, semantic 
roles for predicate arguments, and dependency 
relations. Consider the sentence:

ASPP2 can be phosphorylated at serine 
827 by MAPK1.

Figure 2 is a graphical depiction of the logical 
form of this sentence produced by DRUM. The 
nodes in the graph represent the word senses and 
ontology types, together with quantification in-
formation, and the edges represent  semantic role 
relations. Of particular interest are two of the 
core semantic roles: AGENT  (here, MAPK1), 
identifying objects that  play a causal role in an 
event; and AFFECTED (here, ASPP2), identify-
ing objects that are changed as part  of an event. 
Other roles also provide key information that 
needs to be extracted. For instance, LOCATION 
identifies the molecular site (here, serine 827) or 
cellular location (e.g., cytoplasm) associated with 
an event of interest. The logical form also cap-
tures tense, modality and aspect  information, 
which is crucial for determining, for example, 
whether a statement is a stated fact, a conjecture 
or a possibility (as indicated by the modality).

Figure 1. System Architecture.

Figure 2. The logical form produced by DRUM of the sentence “ASPP2 can be phosphorylated 
at serine 827 by MAPK1.”
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2.2. Ontology and Lexicon
The parser draws on a general purpose semantic 
lexicon and ontology which define a range of 
word senses and lexical semantic relations. The 
core semantic lexicon was constructed by hand 
and contains approximately 7,500 lemmas (gen-
erating approximately three times that many 
words) and 2,000 concepts in the ontology. 

The ontology is organized hierarchically and 
each ontology concept has associated with it pos-
sible semantic roles and selectional preferences 
that further refine the concept. For instance, it 
can be specified that  the AFFECTED role of 
phosphorylate may only take a physical object 
that is part  of a molecule (e.g., a protein or a mo-
lecular site). Figure 3 shows a portion of the 
TRIPS upper ontology for events and their asso-
ciated core semantic roles.

A TRIPS lexicon entry is composed of two 
key parts. The first  is the ontology type of the 
word sense, and it  receives the roles and restric-
tions specific to its ontology type together with 
those inherited from its ancestors in the ontology 
hierarchy. The second is the grammatical con-
structions that  the word can participate in, in the 
form of rules that  map syntactic patterns to in-
stantiations of objects from the ontology.

2.3. Extending the Lexicon
To attain broad lexical coverage beyond its hand-
defined core lexicon, TRIPS uses input from a 
variety of external resources, some of which will 
be described in the next  sections. Using the built-
in subsystem WordFinder, TRIPS can augment 

its lexicon by dynamically building lexical en-
tries with plausible semantic and syntactic struc-
tures for virtually any word in WordNet  (Fell-
baum, 1998), thus extending its coverage to over 
100,000 words. 

For words not in the core lexicon, WordFinder 
uses a hand-built mapping between the hy-
pernym information in WordNet  (for all the 
WordNet senses) and the TRIPS ontology. For 
each identified TRIPS class it gathers all the pos-
sible constructions that  words of this class in the 
TRIPS lexicon participate in. It  then generates a 
set of lexical entries for the unknown word by 
combining each possible ontological class with 
each possible construction for that class. While 
this procedure may over-generate, the key is to 
include the correct constructions among the gen-
erated possibilities, since these correct construc-
tions will be the ones realized in parsing sen-
tences (for more information see Allen, 2014). 

2.4. Front End Components
To support more robust processing and domain 
configurability, the core system has the capabil-
ity to incorporate a variety of statistical and sym-
bolic natural language processing components in 
the front end, as well as domain-specific compo-
nents such as specialized named entity recogniz-
ers. These include several off-the-shelf natural 
language tools such as the Shlomo Yona senten-
cizer1, the Stanford part-of-speech tagger 
(Toutanova and Manning, 2000), the Stanford 
named-entity recognizer (NER) (Finkel et al., 
2005) and the Stanford Parser (Klein and Man-
ning, 2003). The output of these and other spe-

1 http://search.cpan.org/~kimryan/Lingua-EN-Sentence-0.29/

Figure 3. A subset of the TRIPS upper event ontology, showing core roles 
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cialized preprocessors (e.g., a street  address rec-
ognizer) is sent to the parser as advice. The 
parser then decides whether to follow these 
pieces of advice as it  searches for the optimal 
parse of the sentence.

3. Extensions and Customization for the 
Biomedical Genre

We describe below several extensions to the gen-
eral TRIPS system to better handle the text char-
acteristics of the biomedical literature.

3.1. Genre Specialization
The chart produced by the parser is searched us-
ing a dynamic programming algorithm to find 
the least cost sequence of constituents according 
to a cost  table that can be varied by genre. For 
instance, in dialogue systems speech acts such as 
CONFIRM (e.g., ok) or GREET (e.g., hello) are 
expected. For papers in the biomedical domain, 
such speech acts almost  never occur and thus are 
discounted in favor of TELL statements. Simi-
larly, in dialogue systems utterances are expected 
to be fairly short and colloquial, whereas in sci-
entific text the sentence structures are expected 
to be much more formal and involved. The pa-
rameters for parsing and the cost table are set 
accordingly.

In addition, the system can choose to incorpo-
rate different  front end components. For instance, 
for the biomedical literature a street address rec-
ognizer would not be very useful, but  a named 
entity recognizer for protein names would be 
most crucial. 

Such customizations not only optimize the 
parser efficiency, but also reduce the potential 

ambiguities the parser has to deal with, since 
each additional component offers additional, po-
tentially conflicting, advice the parser has to take 
into account.

3.2. Lexicon and Ontology Enhancements
The biomedical domain uses specific terminol-
ogy that is outside the core TRIPS lexicon and 
ontology. We extended the system’s coverage by 
incorporating domain-specific terminology, with  
mappings to TRIPS ontology classes. In some 
cases we introduced new ontology categories to 
accommodate domain-specific concepts. Table 4 
lists the resources used, as well as the types of 
entities mapped to the TRIPS ontology. Some of 
these resources organize concepts in ontologies 
(e.g., using the OBO format (Smith et  al., 2007)); 
for these, we grafted the relevant  nodes onto the 
TRIPS ontology (see Blaylock et  al., 2011). For 
example, most  GO biological processes are 
mapped to the existing TRIPS ontology category 
ONT::event-of-change; however, children of 
GO:0007165 (signal transduction) are names/
types of signaling pathways, and they are 
mapped to ONT::signaling-pathway—a domain-
specific category newly added to the TRIPS on-
tology. Controlled vocabularies for single entity 
types (e.g., neXtProt’s Cellosaurus) were 
mapped to single TRIPS ontology types (e.g., 
ONT::cell-line).

In addition, we used the SPECIALIST  lexicon 
(McCray et  al., 1994) for obtaining syntactic 
category information about  domain-specific lexi-
cal items, which is helpful during parsing; how-
ever, since SPECIALIST  does not  include se-
mantic information, the lexical entries are not 
mapped into the TRIPS ontology.

Resource Entities References
BRENDA Tissue Ontology tissues, cell types, cell lines Gremse et al., 2011

Cell Ontology (CL) cell types Diehl et al., 2011

Chemical Entities  of Biological  Interest 
(ChEBI)

chemicals, molecule types, cell components Degtyarenko et al., 2008

Gene Ontology (GO) molecular functions, biological processes, path-
ways, cell components, macromolecular complexes

Ashburner et al., 2000

HUGO Gene Nomenclature (HGNC) genes Gray et al., 2015

Medical  Subject Headings (MeSH®), 
Supplementary Concept Records (SCR)

drugs and chemicals Lipscomb, 2000

neXtProt cell lines, protein families Gaudet et al., 2015

Pfam protein families Finn et al., 2014

Proteomics Standards Initiative for Mo-
lecular Interaction (PSI-MI)

molecular interactions, molecule type, macro-
molecular complexes, genes and proteins, biologi-
cal roles, units of measurement

Hermjakob et al., 2004

UniProtKB (Swiss-Prot) proteins Uniprot Consortium, 2014

Table 4. Sources of domain-specific terminology/concepts and the types of entities 
incorporated into the TRIPS ontology
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3.3. Specialized Constructions
The TRIPS component WordFinder can construct 
lexical entries for words not explicitly found in 
the core lexicon, using a mapping between 
WordNet and the TRIPS ontology.  This mecha-
nism provides broad coverage of words in gen-
eral use.  However, certain “everyday” words 
have specialized usage in biology.  For instance, 
“association” is not just  a vague relationship but 
a specific kind of binding between molecules. 
Some other words are used in idiosyncratic con-
structions.  For instance, “the protein localizes to 
the nucleus”, which means the protein exists in 
the nucleus, required a novel syntactic template 
(and semantic characterization). These words 
pose particular difficulties for our system as our 
automatically derived general constructions 
would be inadequate.  For such cases we often 
have to provide hand-tailored lexical entries with 
appropriate syntactic templates and semantic re-
strictions to distinguish the everyday and bio-
logical senses of the words.

3.4. Handling Nominalizations
Nominalization is prevalent  in the biomedical 
genre (see for instance the example sentence in 
Figure 5). The TRIPS parser has a general 
mechanism for handling verb nominalizations. 

This is enabled by the fact  that the ontological 
information is identical between the verbal and 
nominal forms of the same event (e.g., dominate 
and dominance). The only difference between 
verbal and nominal forms is the grammatical 
linking rules involved. For instance, for verbal 
forms the subject of a certain verb might  map to 
the AGENT role, and the direct  object  to the AF-
FECTED role. In nominalizations, the possessive 
would map to the role identified with the subject 
of the verbal form, and the object  of an of prepo-
sitional phrase would map to the role identified 
with the direct  object  of the verb. While there are 
a number of different constructions used with 
nominals, they appear to be generic across the 
entire set of nominalizations, and a set of a dozen 
or so generic rules is all that is needed. In addi-
tion, virtually all adjunct modifications (e.g., for 
three hours) apply equally well to both verbal 
and nominal forms using the same adverbial 
modification rules in the grammar. 

4. Event Extraction

From the logical forms produced by the extended 
TRIPS parser we need to extract  the events and 
event  relationships of interest. Because much of 
the variation expected in sentence constructions 
is handled by the extended TRIPS system, we are 

Figure 5. The logical form of “RAS activation regulates ASPP2 phosphorylation.”
 and the events and terms extracted by DRUM.

(EVENT ONT::V31830 ONT::REGULATE :AGENT ONT::V31826 :AFFECTED ONT::V31848 :TENSE W::PRES 
:START 0 :END 46)

(EVENT ONT::V31826 ONT::ACTIVATE :AFFECTED ONT::V31823 :START 0 :END 15)

(EVENT ONT::V31848 ONT::PHOSPHORYLATION :AFFECTED ONT::V31845 :DRUM ((:DRUM :ID GO::|0016310| 
:NAME "phosphorylation"...)) :START 25 :END 46)

 (TERM ONT::V31823 ONT::PROTEIN-FAMILY :NAME W::RAS :DRUM ((:DRUM :MEMBER-TYPE ONT::PROTEIN 
:MEMBERS (HRAS NRAS KRAS))) :START 0 :END 4)

(TERM ONT::V31845 ONT::PROTEIN :NAME W::ASPP-2 :DRUM ((:DRUM :ID UP::Q13625)) :START 25 :END 31
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able to use a relatively compact specification for 
defining the events and relationships of interest, 
while coping with fairly complex and nested 
formulations.

4.1. An Example
Consider the sentence: 

RAS activation regulates ASPP2 phos-
phorylation.

whose logical form is depicted in Figure 5. There 
are three events in this sentence: the central regu-
lation event and two nested events, activation 
and phosphorylation, that  serve as the arguments 
to the regulation event. The extractions of the 
three events are also shown in Figure 5, together 
with the two terms, RAS and ASPP2, involved in 
the events.  Note that  the word “activation” is 
mapped to the TRIPS ontology type ONT::start.  
It  is this ontology type that  triggers the extraction 
rule for an ACTIVATE event (see Figure 6).

In addition to the AGENT  and AFFECTED 
roles, the :DRUM slot provides DRUM-specific 
grounding information about  the events and enti-
ties, mostly derived from bio-resources (see Sec-
tion 3.2). For example, UP::Q13625 is the Uni-
Prot identifier for the protein ASPP2.

4.2. Extraction Rule Specification
We capitalized on the TRIPS ontology and parser 
to develop a compact  and easy-to-maintain speci-
fication of event extraction rules. Instead of hav-
ing to write one rule to match each keyword/
phrase that could signify an event, many of these 
words/phrases have already been systematically 
mapped to a few types in the TRIPS ontology, 
using a combination of the TRIPS internal lexi-
con and the WordFinder component  which al-
lows us to attain the coverage of WordNet. For 
instance, accumulate, gain, amplify, multiply, 
boost, double, among others, all map to the 
TRIPS ontology type ONT::increase.

In addition, the parser handles various surface 
structures, and the logical form returned contains 
normalized semantic roles. For example, 

RAS activates RAF
RAF is activated by RAS
The activation of RAF by RAS
Activated RAF
RAF activation

all are parsed into the same basic logical form 
with the semantic roles AFFECTED: RAF and, 
where applicable, AGENT: RAS. Thus, we 

needed very few (often only one) extraction rule 
specifications for each event type, covering a 
wide range of words and syntactic patterns. 

Finally, since most  events of interest  are 
events of action, the usage patterns of these event 
words are often essentially identical, modulo the 
ontology types that  signify the events and (less 
often) the semantic roles that correspond to the 
event  arguments. We generated these rules using 
a module with standardized rule components,  
parameterized by only the event-specific ontol-
ogy types and semantic role mappings. For ex-
ample, X activates / decreases / regulates / phos-
phorylates Y, though denoting different events, 
all exhibit  the same basic structure with the main 
semantic roles AGENT and AFFECTED. Com-
plements denoting for example molecular sites 
and cellular locations for the most  part retain the 
same structure across event types.

Figure 6 shows the stylized specification of 
two event types, ACTIVATE and DECREASE. 
The ACTIVATE line is read as follows:

name of rule: activate
priority of rule: 40
name of event to be extracted: ACTIVATE
semantic role 1: AGENT
semantic role 2: AFFECTED
ontology types: ONT::start; ONT::start-object 

where the rule priority determines which rule is 
selected when multiple rules apply, and the on-
tology types are those in TRIPS that  map to the 
target  event  type (here, ACTIVATE). The seman-
tic roles may have further constraints on the 
types that  can fill these roles.  For instance, only 
molecular and cellular participants (e.g., pro-
teins, chemicals, nucleus) are of interest in the 
context of biological events. 

Note the similarity between the information 
for ACTIVATE and DECREASE. The only dif-
ference between the two lines is the ontology 
types that represent the respective event types 
(ONT::start, ONT::start-object for the former and  
ONT::decrease for the latter). This compact rep-
resentation makes it  easy to specify, maintain and 
update the extraction rules.

These rules were developed from general 
principles rather than based on specific training 
samples on the Ras signaling pathways. They 
were subsequently augmented as we learned 
more about specific biological usages. Although 
we do base our rules on the biological literature, 
we emphasize that  neither the extraction rules 
described above nor any of the domain-specific 

Figure 6. Specification of the extraction rules for two event types

rule-activate (40): ACTIVATE(AGENT, AFFECTED) ← [ONT::start ONT::start-object] (AGENT, AFFECTED)
rule-decrease (20): DECREASE(AGENT, AFFECTED) ← [ONT::decrease] (AGENT, AFFECTED)
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enhancements to our system discussed in Section 
3 are specific to the language or mechanisms 
describing the Ras signaling pathways.  Thus, we 
expect  our system to have comparable perform-
ance on any input describing bio-molecular 
mechanisms.

5. System Evaluation

We participated in a preliminary evaluation of 
event  extraction, in the context of “reading with 
a model”. A biological model was given in Bio-
PAX (Demir et al., 2010), BEL (Selventa, 2011), 
and English. Given a set of text passages from 
scientific papers on the Ras signaling pathways, 
the goal was to extract from these passages 
events (and their arguments) that were relevant 
to the given model and make explicit the links 
between the extracted events and the model.

BioPAX and BEL do not have the linguisti-
cally motivated features and expressivity needed 
for our approach. To minimize hand coding and 
to create a uniform system, we created our initial 
model by reading and processing sentences sim-
plified from the given English model sentences, 
using the same process as for reading and ex-
tracting information from the test  passages. The 
model entities and events such processed were 
then compared to the entities and events ex-
tracted from the text passages. Figure 7 shows an 
overview of the automated end-to-end extraction 
and reasoning system.

Two types of events were distinguished here: 
mechanistic (e.g., X binds to Y) and regulatory/

causal relationship (e.g., X increases Y). These 
were further classified with respect  to the given 
model as: 1) new mechanism and 2) new rela-
tionship not  in the model; 3) specialization and 
4) corroboration of information in the model; and 
5) conflict  with the model. In addition, each re-
sult  was to be accompanied by the supporting 
source text.

The reasoner aligned the extracted entities us-
ing their standardized identifiers (e.g., UniProt, 
HUGO, Gene Ontology). In addition, we derived 
the relationships between the model and text  ex-
tractions based on the hierarchical organization 
of the event types. For instance, a regulation 
event  subsumes a stimulation event, and thus “X 
regulates Y” corroborates “X stimulates Y” and 
the latter is a specialization of the former. 

6. Results

Several passages, mainly from the results and 
discussion sections of two scientific papers, were 
selected as evaluation inputs. An example pas-
sage, from (Godin-Heymann et al., 2013), is 
shown in Figure 8.

The extractions and model comparisons were 
manually scored by a third party, based on the 
combined answers provided by two separate 
teams of biologists (30 events) and the addition 
of 5 events adopted from system submissions 
(see below). In “lenient” scoring for precision, 
incomplete results and results that were correct 
but irrelevant  were excluded, whereas in “strict” 
scoring these results were counted as incorrect. 

Eleven systems of varying degrees of automa-
tion participated in the evaluation. We have 
available only the lenient scores of other teams, 
as shown in Figure 9. For lenient scoring our 
system was the best performing system and our 
performance was close to human performance.

Note that  although the human biologists had 
high precision, there was considerable non-
overlap between the answers they provided. This 
accounted for the approximately 0.50 recall for 
either of the human teams, using the pooled an-
swers of the two teams as the gold standard. 

Figure 7.  Overview of the end-to-end extraction and reasoning system.

Figure 8. Example text passage for evaluation.

We and others have recently shown that ASPP2 can poten-
tiate RAS signaling  by binding  directly via the ASPP2 N-
terminus [2,6]. Moreover, the RAS-ASPP interaction en-
hances the transcription function of p53 in cancer  cells [2]. 
Until now, it has been unclear how RAS could  affect ASPP2 
to  enhance p53 function. We show here that ASPP2 is 
phosphorylated by the RAS/Raf/MAPK pathway and that 
this  phosphorylation leads to its increased translocation to 
the cytosol/nucleus and increased binding to p53, providing 
an  explanation of how RAS can activate p53 pro-apoptotic 
functions (Figure 5). Additionally, RAS/Raf/MAPK pathway 
activation stabilizes ASPP2 protein, although the underly-
ing mechanism remains to be investigated.
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Our precision, recall and F1 results for both 
the lenient and strict scorings are as follows:

P R F1
lenient
(strict)

1.00
(0.67)

0.40 0.57

7. Analysis

We believe precision is much more important 
than recall. A high precision system can generate 
valuable knowledge nuggets, even if it  does not 
have high throughput, whereas output  from a 
system with high recall but  low precision cannot 
be trusted to be accurate. This is especially the 
case for such information-rich domains. Because 
of the huge volume of scientific literature, infor-
mation is likely to be duplicated in multiple pa-
pers, and often also repeated in different forms in 
the same paper. Therefore, extracting (accu-
rately) even a relatively small portion of the in-
formation in these papers could amount  to a fair 
body of knowledge, even if we cannot extract 
everything from every sentence.

Our system showed promising performance on 
the evaluation data set. We achieved perfect  pre-
cision, and recall close to the human experts. The 
modest  recall even for the human experts indi-
cated that  this is a fairly difficult  domain and 
there is not a clear-cut  way to extract  and encode 
the knowledge represented in these papers.  In 
fact, after considering the submitted results, sev-
eral additional events extracted by the systems 
but not  by the human experts were incorporated 
into the gold standard.

We were able to extract  some fairly complex, 
nested, events, similar to the one depicted in 
Figure 5.  The ontology-based extraction and the 
lexical coverage extended by WordFinder al-
lowed us to cope with a variety of expressions.  
For instance, from “... ASPP2 can potentiate RAS 
signaling...” we were able to map “potentiate” to 

an INCREASE event even though “potentiate” is 
not in the TRIPS core lexicon.

Another interesting example is “... monoubiq-
uitination abrogates GAP-mediated GTP hy-
drolysis”.  This  fairly complex sentence illus-
trates some of the strengths and weaknesses of 
our system.  The system was able to extract two 
interleaving events:

ev1: REGULATE(AGENT: GAP; AFFECTED: ev2)
ev2: HYDROLYSIS(AFFECTED: GTP)

In the raw processing we also had the following:
ev3: INHIBIT(AGENT: MONOUBIQUITINATION; 

AFFECTED ev2)

but we failed to identify what was being monou-
biquitinated and thus were not able to include 
this extraction in our results.  The answer, that 
Ras was being monoubiquitinated, could only be 
identified with more sophisticated discourse 
processing. 

We identified several main reasons for omis-
sions in our extractions: 1) fragmented parses 
due to the long and complex sentence structures 
common in scientific publications; 2) insufficient 
domain-specific background knowledge, includ-
ing language patterns specific to biology; 3) need 
for improved discourse processing and corefer-
ence resolution; and 4) lack of inference capa-
bilities and persistent  memory of inferences 
made.  

The last point  can be illustrated by the sen-
tence “... the RAS-ASPP interaction enhances the 
transcription function of p53...”  Here we need to 
be able to deduce that RAS-ASPP interaction 
produces a complex of the two, which then par-
ticipates in further reactions.  

As a final example, to be able to make sense 
of the seemingly simple sentence “We obtained 
similar results using K-Ras...” we need to ad-
dress all of the above issues.  Due to space limi-
tation we will not  discuss here the ongoing work 
towards tackling these challenges.

Figure 9.  Evaluation results for eleven teams.  The diamond ◆ represents the results of our system.  
The two topmost points are the manual scores of the two teams of human biologists.
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8. Related Work and Discussion

With the advent of relatively successful text min-
ing strategies (named entity recognition, infor-
mation extraction and retrieval) for the recogni-
tion and normalization of biologically relevant 
entities, automatic extraction of more complex, 
relational information from the biomedical litera-
ture has become a very active area of research. 
Shared Tasks (STs) such as the Protein-Protein 
Interaction (PPI) Task introduced at BioCreative 
II (Krallinger et  al., 2008) and the BioNLP GE-
NIA Event Extraction Task (Kim et  al., 2009; 
Kim et al., 2011; Kim et  al., 2013) have spurred 
a lot of activity in this area, although examples of 
earlier work certainly exist. 

The goal in the PPI task is to extract binary 
protein-protein interaction pairs from full-text 
articles. More general biological events (e.g., 
regulatory events) beyond PPI involve much 
more varied relationships between entities and, 
indeed, between events themselves, leading to 
complex nested structures. The BioNLP STs 
have evolved to include more complex types of 
events and arguments. The GENIA ST (in par-
ticular 2013 which included coreference) and the 
Epigenetics and Post-translational Modifications 
task (EPI) introduced in 2011 (Ohta et al., 2011) 
are similar to our task. However, there are sig-
nificant  differences, too. We were not provided 
with gold annotations for entities; all relevant 
entities (including drugs, cell lines, cell compo-
nents, sites) had to be extracted, and most of 
them had to be grounded in a reference database. 
Protein families were also important, as was the 
relation between families and the member pro-
teins. Not only were coreferences supposed to be 
resolved, but, as indicated in Section 5, some-
times complex inferences were required to obtain 
a target event. In summary, our task was not de-
signed to accommodate specific Information Ex-
traction (IE) techniques; rather, in our evaluation 
the gold standard was human performance. 

We would like to stress that our goal goes be-
yond IE. The need for deeper semantic ap-
proaches has been recognized before (see, e.g., 
Ananiadou et al., 2010). Still, the field is domi-
nated by ML classifiers (for a list  of the top-
performing systems in the three BioNLP STs 
held so far, see Ananiadou et al., 2014). This 
sometimes results in seemingly paradoxical re-
sults, where systems can extract  with relatively 
good performance phosphorylation events, but 
not ubiquitination events because the training 
data did not contain enough examples of the lat-
ter (Kim et al., 2011).

Indeed, ontological information is rarely used 
in current systems. GenIE (Cimiano et al., 2005) 

is an early example of an ambitious ontology-
driven system that  attempts to identify events 
based on constructing a full semantic representa-
tion of the text (using a semantic lexicon and 
semantic restrictions), as well as relations be-
tween events (using discourse information). The 
ontology they used, however, was a small, 
domain-specific one. To our knowledge the sys-
tem has not  been tested on any of the more recent 
event extraction tasks.

Although semantic (deep) parsing techniques 
have been rarely used for bio-event extraction, 
we note the PPI extraction study by Miyao et  al. 
(2009), who found an HPSG-based parser to 
outperform (particularly in terms of precision) 
dependency and syntactic parsers, especially 
when trained on domain-specific corpora. How-
ever, they used the predicate-argument structures 
output by the parser as additional features for a 
statistical classifier. 

In contrast, we do not depend on training with 
a domain specific corpus (although we have the 
capability to incorporate modules that  do); rather, 
we extract  events directly from the predicate-
argument structures represented in the logical 
form, based on linguistic first  principles that can 
be easily adapted to different domains. The ad-
vantage of this approach can be readily seen in 
this evaluation, in which, with a relatively short 
(but  intensive) ramp up, we were able to outper-
form all other systems in the extraction of com-
plex events and event  relations. Of note, this was 
despite the fact that  our system had lower named 
entity recognition scores than most others, par-
ticularly those with a history of participation in 
biomedical information extraction shared tasks.

The purpose of this evaluation was not a rig-
orous ranking of the different  participating sys-
tems.  Rather, we learned key areas we needed to 
improve. The results of this evaluation suggested 
that our system is viable for complex event  ex-
traction. This is however only the first  step in 
understanding complex models and mechanisms. 
A general deep language understanding system 
that can be extended with domain-specific in-
formation will allow us to go beyond standard 
surface extraction tasks and develop the capabili-
ties to truly understand big and complex mecha-
nisms.
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Abstract

Automatic recognition of relationships be-
tween key entities in text is an impor-
tant problem which has many applications.
Supervised machine learning techniques
have proved to be the most effective ap-
proach to this problem. However, they re-
quire labelled training data which may not
be available in sufficient quantity (or at all)
and is expensive to produce. This paper
proposes a technique that can be applied
when only limited training data is avail-
able. The approach uses a form of distant
supervision but does not require an exter-
nal knowledge base. Instead, it uses in-
formation from the training set to acquire
new labelled data and combines it with
manually labelled data. The approach was
tested on an adverse drug data set using a
limited amount of manually labelled train-
ing data and shown to outperform a super-
vised approach.

1 Introduction

Relation extraction is a widely explored prob-
lem that has been applied to a range of do-
mains (Craven and Kumlien, 1999; Agichtein and
Gravano, 2000; Xu et al., 2007) using a vari-
ety of techniques (Yangarber, 2003; Bunescu and
Mooney, 2006; Neumann and Schmeier, 2012).
In the biomedical domain relation extraction has
been used to identify a wide range of types of
relation, including adverse drug effects (ADE),
gene regulations and drug-drug interactions. Com-
munity evaluation exercises, such as the BioNLP
Shared Task (Kim et al., 2011; Nédellec et al.,
2013) or the Drug-Drug Interaction (DDI) chal-
lenge (Segura-Bedmar et al., 2013), have shown
that supervised learning techniques normally pro-
duce better results than other approaches.

Supervised learning techniques rely on labeled
training data but these are not available for all
relations of interest and are also difficult and
time-consuming to create. Other approaches may
be more appropriate in situations where training
data is limited or unavailable. Minimally super-
vised approaches, such as seed and bootstrapping
techniques (Brin, 1999; Riloff and Jones, 1999;
Agichtein and Gravano, 2000), are provided with
a small set of seed instances (examples of related
information) or patterns and acquire further exam-
ples from a large corpus by applying an iterative
process. While these approaches do not require la-
belled training data they often suffer from low pre-
cision or semantic drift (Mintz et al., 2009). Dis-
tant supervision combines the advantages of mini-
mally supervised and supervised approaches to re-
lation extraction.

Distant supervision makes use of an external
knowledge source that provides information about
pairs of entities which are related. Sentences con-
taining both entities in a pair are identified from
a corpus and used in place of labeled training ex-
amples. For example, knowledge that hair loss is
a drug-related adverse effect of paroxetine would
allow further positive examples to be identified by
searching for other sentences containing the same
drug and side-effect. Many knowledge sources
only contain positive entity pairs. Therefore nega-
tive examples are often generated using a closed-
world assumption. Given the known positive en-
tity pairs, negative entity pairs are generated by
producing new combinations of entities. Negative
example sentences are generated by selecting sen-
tences containing these negative entity pairs.

The example in figure 1 shows the limitations
of distant supervision since related entities might
express a different relation. This can lead to ex-
amples being falsely labelled as positive examples
of a relation. Classifiers trained using data gen-
erated using distant supervision do not generally
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perform as well as those trained using manually
labelled data. However, distant supervision allows
large data sets to be generated at low cost.

There are a few case reports on
[CONDITION:hair loss] associated
with tricyclic antidepressants and
serotonin selective reuptake inhibitors
(SSRIs), but none deal specifically with
[DRUG:paroxetine].

Figure 1: Generation of false positives by using
automatically labelled data, PMID=10442258

The majority of distant supervision approaches
use structured knowledge sources such as
Wikipedia (Hoffmann et al., 2010) or Freebase
(Mintz et al., 2009; Riedel et al., 2010; Ritter et
al., 2013; Augenstein et al., 2014). However there
may not be a suitable knowledge base available
for a particular relation of interest. This paper
addresses the problem of developing relation
extraction systems in situations where only a
small amount of training data is available.

We introduce a method for relation extraction
that can be used when only limited amounts of
training data are available. The approach is based
on distant supervision but, rather than relying on
a knowledge base, seed pairs are extracted from
Medline articles. Sentences from the Medline
Baseline Repository containing these seed pairs
are extracted to generate a large distantly labelled
training data set. Using this data manually labelled
data can be extended and combined to a hybrid
mixture model which outperforms both the super-
vised and the distantly supervised models.

This paper makes the following contributions:
1) introduces a method which can be used to train
a relational classifier when only a small set of
labelled training data is available, 2) provides a
method for combining distant supervision with su-
pervised learning methods and 3) presents distant
supervision without the need of a knowledge base.

The remainder of the paper is structured as fol-
lows. The next section presents the background
on relation extraction from biomedical documents.
Section 3 introduces the data set which is used
for the experiments. The techniques for generat-
ing the distantly supervised training data and rela-
tional classifier are described in sections 4 and 5.
Section 6 describes the experiment and the results.
Conclusions are presented in section 7.

2 Related Work

Supervised learning techniques are popular and ef-
ficient approaches to detecting relations between
entities in natural language. Results using super-
vised learning methods tend to improve as more
training data is available. However the genera-
tion of labelled data is cumbersome, expensive and
time-consuming. It often requires expert knowl-
edge in restricted domains, such as biomedicine.
A new labelled data set is required for each target
relation.

In recent years, distant supervision has become
very popular. Rather than using manually an-
notated data, distant supervision uses knowledge
about which entity pairs are instances of the tar-
get relation to generate automatically labelled data
which is used to train a relational classifier. Craven
and Kumlien (1999) introduced distant supervi-
sion for relation extraction. The authors used the
Yeast Protein Database (YPD) as source of knowl-
edge and mapped this information to PubMed arti-
cles to generate training examples. The technique
has been widely applied particularly outside the
medical domain. Many approaches such as (Mintz
et al., 2009; Sun et al., 2011; Hoffmann et al.,
2011; Krause et al., 2012; Xu et al., 2013) focus on
approaches using Freebase as knowledge source
to generate automatically labelled data. In recent
years distant supervision has also become more
popular in the biomedical domain beeing used
to detect protein-protein interactions using IntAct
(Thomas et al., 2011), protein-residue associations
with PDB (Ravikumar et al., 2012) or relation-
ships of the National Drug File-Reference Termi-
nology (NDF-RT) using the UMLS Metathesaurus
(Roller and Stevenson, 2014). Liu et al. (2014) fo-
cus on the detection of genes in brain regions from
literature using the UMLS Semantic Network and
Ellendorff et al. (2014) uses the Comparative Toxi-
cogenomics Database (CTD) to detect interactions
between genes and chemicals.

The distantly supervised methods of Nguyen
and Moschitti (2011) and Pershina et al. (2014)
differ slightly from many other approaches. Both
combine supervised and distantly supervised mod-
els. Nguyen and Moschitti (2011) use a sup-
port vector machine and combine the supervised
and the distantly supervised classifier with a lin-
ear combination. Pershina et al. (2014) instead in-
tegrate the manually labelled data directly within
their distantly supervised multi-learning approach.
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Both approaches show that a combination of a
large set of distantly supervised (noisy) data with
manually labelled examples can improve the clas-
sification results. The combination of noisy data
and hand-selected training examples is also used
in this paper.

3 Data

The experiments in this work uses the ADE data
set (Gurulingappa et al., 2012b) which contains
examples of adverse drug effects (ADE). An ADE
is a response of a drug which is noxious and unin-
tended, and which occurs at doses normally used
in humans for the prophylaxis, diagnosis, therapy
of disease, or for the modification of physiologi-
cal function1 (Gurulingappa et al., 2012b). ADEs
contribute to one of the most common causes of
death in industrialised nations and are the fourth
leading cause of death in the U.S. (Giacomini et
al., 2007). To reduce this risk the side-effects of
drugs need to be detected and made publicly avail-
able as quickly as possible.

The ADE data set consists of Medline case re-
ports examined by three human annotators. Sen-
tences in these case reports containing adverse ef-
fects between drugs and conditions were extracted
and entities annotated to generate the data set. An
example relation between a drug and a condition
from this data set is shown in figure 2. Accord-
ing to the given sentence the condition pseudopor-
phyria is caused by the two drugs naproxen and
oxaprozin.

METHODS: We report two cases of
[CONDITION:pseudoporphyria] caused by
[DRUG:naproxen] and [DRUG:oxaprozin].

Figure 2: Example of a drug-related adverse effect
taken from PMID=10082597

The ADE corpus only contains examples of
positive relations. Negative examples are also re-
quired to set-up a meaningful ADE prediction task
and to train a supervised ADE classifier. A set of
negative examples were generated using the fol-
lowing process.

Named entity recognition is applied to detect
drugs and conditions. MetaMap2 (Aronson and
Lang, 2010) was run on the unannotated sen-

1World Health Organization (WHO) glossary of terms
used in Pharmacovigilance.

2http://metamap.nlm.nih.gov/, MetaMap version 13 with
UMLS 2013AA

tences in the ADE corpus to detect biomedical
concepts from the UMLS. MetaMap provides dif-
ferent possible UMLS concept mappings and we
select the best (highest ranked) mapping. Each
biomedical concept detected by MetaMap now
refers to a unique UMLS CUI thereby allow-
ing identical concepts to be merged and assigned
semantic types. Using the same approach as
Kang et al. (2014), sentences containing con-
cepts with semantic types which belong to the
two groups “Chemicals & Drugs” and “Disorders”
are extracted and considered as negative examples.
Nested relations are not included in our data set.

Training and evaluation sets were then gener-
ated. The set of utilised ADE abstracts consists of
1644 publications. 200 abstracts were removed to
be used to create training data and the remainder
used to form the evaluation set. The training data
is created by extracting all positive and negative
labelled sentences from the 200 abstracts. In order
to provide reliable results we run the same exper-
iment 5 times. Each time we randomly choose a
different selection of 200 training and 1444 test
abstracts.

4 Automatic Generation of Annotated
Training Data

Many of the previous approaches to distant su-
pervision use information about related instances
(e.g. drugs and known adverse effects) to auto-
matically generate training data. In the major-
ity of cases this information is obtained from a
knowledge base. We employ an alternative ap-
proach and make use of information from a small
set of abstracts. For example, the sentence shown
in figure 2 suggests that there are cases when the
drugs oxaprozin and naproxen cause pseudopor-
phyria. Consequently sentences containing these
two drug-condition entity pairs (i.e. oxaprozin-
pseudoporphyria and naproxen-pseudoporphyria)
are extracted and treated as positive examples.

The data is generated by applying a three stage
process (see Figure 3).

1) Map CUIs to the related entities in the train-
ing data set. We begin by normalising medical
concepts. Medical terms can occur in literature
with different names, using a different spelling
or abbreviations. For instance Naproxen can be
also described as Methoxypropiocin, MNPA or 6-
Methoxy-alpha-methyl-2-naphthaleneacetic Acid.
UMLS maps these different names to the same
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Figure 3: Automatic generation of training data for ADE relations

CUI, C0027396. We run MetaMap with the same
configuration on the sentences containing positive
examples. In many cases it is possible to assign
a MetaMap annotation to the existing related enti-
ties.

We only assign a CUI to an entity if MetaMap
identifies a CUI that can be mapped to the entity
in its full length (not only a substring). Negative
training examples already include CUI informa-
tion for each entity (see section 3).

2) Extract a set of positive and negative seed in-
stance pairs. In the next step, we extract all CUI
pairs from the positive ADE examples and add
them to a set of positive instance pairs P . We also
extract CUI pairs of negative ADE examples and
add them to a negative instance pair set N . Each
CUI pair which occurs in both sets (P and N ), is
removed from N . Considering the 200 training
abstracts of the first setup (of five) it is possible to
extract 310 different positive CUIs pairs and 869
negative CUI pairs. 12 CUI pairs occur in both
sets. Therefore the number of different CUI pairs
in N is reduced to 857.

3) Extract sentences containing positive and
negative seed instances from abstracts. The dis-
tantly labelled training data is generated using the
Medline Baseline Repository (MBR)3, a large col-
lection of biomedical abstracts annotated using
MetaMap4. We use 3,000,000 abstracts published
between 1997-2003. Then sentences from this
subset containing positive and negative CUI pairs
are extracted and labelled as positive and negative
examples.

3http://mbr.nlm.nih.gov/
4MetaMap annotations use UMLS release 2011AB,

http://mbr.nlm.nih.gov/Download/
MetaMapped\_Medline/2012/

Regarding the the 200 training abstracts of the
first setup a total of 7868 sentence containing pos-
itive instance pairs and 14,4315 sentence contain-
ing negative instance pairs were identified and ex-
tracted. Although 310 different positive and 857
different negative CUI pairs were extracted from
the 200 abstracts (see above), only 290 different
positive and 441 different negative CUI pair com-
binations were detected within the portion of MBR
used for this experiment. It is also interesting to
note that only 13 positive CUI pairs occur more
than 100 times within the 7868 positive examples.
The most frequent positive CUI pairs are listed in
table 1. 213 of the positive CUI pairs occur fewer
than 10 times.

The automatically generated data has a strong
bias. To generate an automatically labelled train-
ing data with a similar bias as the test set we re-
duce the amount of negative examples to the same
ratio as the manually labelled examples.

5 Relation Extraction

We use the Java Simple Relation Extraction5

(jSRE) (Giuliano et al., 2006) which is based on
LibSVM (Chang and Lin, 2011). jSRE includes
an implementation of the shallow linguistic kernel
which provides reliable classification results and
has been used also for other experiments on the
ADE data set (Gurulingappa et al., 2012a; Kang et
al., 2014).

The shallow linguistic kernel is a combination
of the global context kernel and the local con-
text kernel. The global context kernel considers n-
grams of the words (and other information such as
stemmed words and part of speech tags) between

5https://hlt.fbk.eu/technologies/jsre
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frequency drug condition
#1352 C0019134=‘Heparin’ C0272285=‘Heparin-induced thrombocytopenia’
#1199 C0026549=‘Morphine’ C0030193=‘Pain’
#980 C0023175=‘Lead’ C0020538=‘Hypertensive disease’
#396 C0031507=‘Phenytoin’ C0036572=‘Seizure’

Table 1: Most frequent positive CUI pairs found in the automatically labelled data set

the two entities. The local context kernel consid-
ers only a limited amount of information around
each entity.

Sentences from the training and test data are
parsed using the Charniak-Johnson Parser (Char-
niak and Johnson, 2005) to generate part of speech
tags. Next, words are reduced to their stem using
the Porter Stemmer (Porter, 1997).

We use three different methods within the ex-
periments: supervised relation extraction, dis-
tantly supervised relation extraction and a rela-
tion extraction using a mixture-model. The su-
pervised model uses a set of abstracts (1-200)
from the training data as input. The distantly su-
pervised model takes the automatically generated
data based on the MetaMap annotated Medline
Baseline Repository as input. The mixture-model
merges the automatically generated and manually
labelled training data to form a combined training
set.

6 Experiment

In this experiment we examine different sizes of
manually labelled training data. Starting with a
single abstract for training we slowly increase the
number of seed abstracts to 200. In parallel we
generate for each training set a different distantly
labelled data set using the given ADE seed facts
of the training data. The more information the
manually labelled data contains, the more different
seeds can be extracted which increases the size of
the distantly labelled data. Thereafter we combine
in each step both data sets to a mixture-model.

In order to provide reliable results we repeat this
experiment five times (five evaluation rounds) with
a different selection of abstracts for training and
test. In each evaluation round the abstracts utilised
for training are chosen randomly. The remaining
abstracts are used for evaluation. During a specific
evaluation round (increasing training data) the test
set remains unchanged. The results of the exper-
iments are presented in table 2 and figure 4. The
results represent the mean of all five different eval-

uation rounds.
The results show that the performance for all

models improves as the amount of data increases.
Performance of the supervised classifier increases
sharply as the number of abstracts is increased
from 1 to 10 abstracts. Increasing the size of the
training data to 50 abstracts produces a further im-
provement of approximately 30%. These results
demonstrate that even small amounts of training
data are sufficient to provide reasonable results on
the ADE data set.
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Figure 4: Effect of varying number of seed ab-
stracts

Performance of the distantly supervised classi-
fier shows a similar pattern. Increasing the num-
ber of seed abstracts results in a larger distantly
labelled training data set which improves classi-
fication results. The distantly supervised classi-
fier outperforms the supervised one when there are
fewer than 100 seed abstracts. The reason for this
is the supervised classifier does not have access to
a sufficient volume of training data while the dis-
tant supervision is able to generate more. As the
number of seed abstracts increases the situation is
reversed with the supervised classifier outperform-
ing the distantly supervised one. When more than
100 abstracts are available the supervised classi-
fier has the advantage of having access to enough
accurately labelled examples to train a relation ex-
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supervised model distant supervision mixture model
#SA prec. rec. F1 prec. rec. F1 prec. rec. F1
1 52.75 42.33 35.18 42.20 53.95 45.84 43.54 50.40 43.20
5 68.48 32.53 37.92 76.78 37.47 39.45 78.40 38.76 43.98
10 66.85 51.17 56.53 71.90 61.33 62.66 73.90 61.97 65.43
25 68.01 69.88 68.57 69.01 81.48 73.99 71.88 81.58 75.96
50 72.29 76.88 74.48 69.27 86.68 76.39 72.62 86.46 78.66
75 73.77 79.18 76.27 68.35 91.10 78.01 73.43 88.30 80.13
100 75.41 80.85 78.00 67.79 92.56 78.24 73.80 89.99 81.09
125 75.79 84.16 79.75 69.11 91.65 78.77 74.91 89.77 81.64
150 76.89 85.06 80.77 70.15 90.99 79.19 75.81 89.65 82.13
175 77.14 86.15 81.39 68.50 93.03 78.84 74.45 91.40 82.04
200 77.32 86.28 81.54 68.77 92.98 79.02 75.01 91.63 82.47

Table 2: Effect of varying size of training data set

traction system. The distantly supervised classifier
still has access to more data but it is not as accu-
rate.

manual lab. distantly lab. seeds
#SA pos neg pos neg pos neg
10 67 121 510 891 15 54
25 180 232 1048 1404 38 103
50 388 485 2026 2580 81 213
75 590 756 2643 3398 123 330
100 804 1024 3818 4851 172 448
150 1200 1447 5663 6863 248 636
200 1632 1900 8289 9607 336 834

Table 3: ADE training data size (mean across five
runs)

The mixture model produces the best results of
all approaches when 5 or more abstracts are used.
This result is interesting since the manually la-
belled data is simply extended using a simple form
of distant supervision that is straightforward to ap-
ply. The mixture model tends to achieve higher
precision but lower recall than the distantly super-
vised approach, possibly because the training data
used by the mixture model is more accurate and
contains fewer ”false positive” examples. On the
other hand the precision and recall of the mixture
model are often higher than the supervised model.
The increase in recall is presumably caused by
having access to additional training data and the
precision scores suggest that the classifier is not
harmed by some of these containing noisy labels.

The difference in performance between the su-
pervised and the mixture-models gets smaller as

the number of seed abstracts increases.
Table 3 shows the mean size of the different sets

of training data. The amount of distantly labelled
data is much larger than the manually labelled data
at each classification step. Larger amounts of man-
ually labelled data increase the number of ADE
seed instances that can be extracted which leads to
more distantly supervised examples.

7 Discussion and Conclusion

This paper introduced a new distantly supervised
method for relation extraction that was applied to
the identification of ADE relations from biomed-
ical documents. The approach is able to use in-
formation from an existing training data set to au-
tomatically acquire new training data. Using this
data, a relational classifier can be trained to de-
tect and extract similar information in natural lan-
guage. The classifier is able to provide compara-
ble results to a supervised classifier using a small
gold standard as input. Furthermore we presented
a mixture model using manually labelled and dis-
tantly labelled data which is able to outperform a
classifier using only (a small set of) gold standard
data. This result is notable since distantly super-
vised data tends to be much noisier than manually
labelled data and therefore produce less accurate
classifiers.

Distant supervision is a well explored technique
for relation extraction that has proven to be effec-
tive. Our proposed methods differs slightly in the
way seed instances are generated. Rather than us-
ing a knowledge base we directly extract positive
and negative seed pairs from an existing data set
and use them for distant supervision.
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We plan to extend the work described in this
paper in various ways. Firstly we would like to
experiment with alternative classifiers such as ap-
plying dependency features and stacking or merg-
ing to combine different kernel models. We would
also like to explore different techniques for com-
bining the supervised and the distantly supervised
model.
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Abstract

Kernel-based methods are widely used for
relation extraction task and obtain good
results by leveraging lexical and syntac-
tic information. However, in biomedi-
cal domain these methods are limited by
the size of dataset and have difficulty in
coping with variations in text. To ad-
dress this problem, we propose Extended
Dependency Graph (EDG) by incorporat-
ing a few simple linguistic ideas and in-
clude information beyond syntax. We be-
lieve the use of EDG will enable machine
learning methods to generalize more eas-
ily. Experiments confirm that EDG pro-
vides up to 10% f-value improvement over
dependency graph using mainstream ker-
nel methods over five corpora. We con-
ducted additional experiments to provide
a more detailed analysis of the contribu-
tions of individual modules in EDG con-
struction.

1 Introduction

With growing amount of biomedical information
available in textual form, there has been consid-
erable interest in applying NLP techniques and
machine-learning (ML) methods to biomedical
literature. Some of these projects involve ex-
tracting relations such as protein-protein interac-
tion (Krallinger et al., 2008).

In biomedical domain, most relation extraction
work is currently applied on the abstracts of arti-
cles. These abstracts by nature are dense with in-
formation and often use constructions such as ap-
positives and relative clauses. The abundance of
textual variations can thus be problematic for ML
systems, especially with small training corpora.

One solution to this issue is to find a suitable
level of abstraction in the text representation so

that ML methods become easier to generalize. Use
of syntax and parse information provides one such
abstraction. Using syntactic dependency informa-
tion has become prevalent in biomedical relation
extraction. It has been suggested dependency links
are close to the semantic relationship needed for
the next stage of interpretation (Covington, 2001).

There have been significant advances in the de-
velopment of advanced machine learning and ker-
nel methods and the use of sophisticated parame-
ter tuning in the biomedical domain. In this work,
we focus on the representation of the text used
in learning rather than the machine learning tech-
nique, with the hope that advances in both direc-
tions will be improve the performance of the re-
lation extraction systems. In this paper we pro-
pose Extended Dependency Graph (EDG), which
includes information about text that goes beyond
syntax. We will define EDG and discuss how we
construct it from a given sentence by using some
simple linguistic notions.

The hypothesis we test here is that EDG allows
ML techniques to generalize more easily. To de-
termine the effect of EDG, we conducted experi-
ments on protein-protein interaction (PPI) extrac-
tion. For this purpose, we used two kernels: a
simple kernel based on edit distance (Erkan et al.,
2007) and a more elaborate kernel that is one of
the top performing kernels on the PPI task (Airola
et al., 2008). We compared the performance of
both kernels using dependency graph and EDG on
5 corpora. Our results suggest EDG provides up to
10% f-value improvement over dependency graph.
On 3 out of 5 corpora the results are better than
the overall best system in the study of (Tikk et al.,
2010), as well as an ensemble method that builds
on them (Miwa et al., 2009a). We also evaluate
the contributions of the individual components in-
cluded in EDG.
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Figure 1: Framework.

2 Related work

Many kernel-based relation extraction systems
have employed lexical and syntactic informa-
tion (Bunescu and Mooney, 2005; Zhou et al.,
2007; Ning and Qi, 2011). There has been a
growth in the use of more complex kernels and so-
phisticated parameter tuning methods to improve
the results (Zhang et al., 2006; Choi and Myaeng,
2010). In PPI task, machine learning methods
using rich feature vectors (Miwa et al., 2009b),
edit distance kernel (Erkan et al., 2007), depen-
dency tree kernel (Chowdhury et al., 2011), all-
path graph kernel (Airola et al., 2008), or their
combination and variations (Miwa et al., 2009a;
Zhang et al., 2012) have been proposed.

Our focus is on improving the representation of
information in natural texts, rather than on devel-
oping new kernels. There have been several at-
tempts to leverage syntax and shallow semantic
argument structure (Miwa et al., 2010; Van Lan-
deghem et al., 2010; Van Landeghem et al., 2012;
Liu et al., 2013; Oepen et al., 2014; Peng et al.,
2014; Nguyen et al., 2015). Though the focus of
these works was not to utilize the information with
machine learning methods, they offer insight on
utility of information beyond syntax. We develop
the EDG approach for relation extraction based on
these ideas.

3 Method

Figure 1 illustrates the overall architecture with
the core component highlighted: EDG construc-
tion. The input is a sentence with named enti-
ties marked. We use Charniak-Johnson parser and
Stanford conversion tool to get the basic syntactic
dependency graph (SDG). Our approach focuses
on how to leverage simple linguistic principles and
information beyond syntax to construct EDG from
SDG.

3.1 Extended dependency graph (EDG)

In this paper, we use EDG to represent the struc-
ture of the sentence. Like in the case of many
dependency graph representations used in relation

extraction, the vertices in a EDG are labelled with
information such as the text, part-of-speech, and
the word lemma. If an entity mention spans mul-
tiple tokens in a sentence, we merge their corre-
sponding vertices (called contracting vertices) into
one vertex.

EDG has two types of dependencies. The syn-
tactic dependencies that are obtained from col-
lapsed dependencies output by applying Stan-
ford dependencies converter on a syntactic pars-
ing tree (De Marneffe and Manning, 2008). The
other type of dependencies are the numbered argu-
ments based on the guidelines of PropBank (Bo-
nial et al., 2012). Because we are currently fo-
cusing on binary relation extraction, we use only
arg0 and arg1 (probably better stated as not-arg0)
in EDG. Figure 2 shows EDGs of three text frag-
ments with syntactic edges appearing above the
words and numbered argument edges appearing
below. From a relation extraction perspective, the
syntactic dependencies in Figure 2 are less rele-
vant but their numbered arguments between two
entity mentions are same.

There are two motivations for using numbered
arguments. One is to “provide consistent argument
labels across different syntactic realizations of the
same verb” (Bonial et al., 2012) with the intention
of making generalizations easier downstream. The
other is to add/propagate new arg0 and arg1 using
reasoning that goes beyond syntax.

Following these two motivations, we will first
discuss how to capture arg0 and arg1 using dif-
ferent syntactic dependencies obtained from Stan-
ford dependencies. Then we will describe rela-
tions such as is-a, member-collection, and part-
whole and how to propagate arg0 and arg1 using
them.

3.2 Syntax based arg0 and arg1

We follow approaches of SemRep (Rinaldi et al.,
2006) and PASMED (Nguyen et al., 2015) to ob-
tain the basic edges arg0 and arg1 from the syntac-
tic dependencies. For example, EDG will include
an arg0 from a verb to the noun if the syntactic de-
pendency is nsubj or agent and include an arg1 if
the dependency is nsubjpass or dobj.

In addition, we consider situation where verbs
in gerund form are used as noun modifiers. Fig-
ure 3 shows a compound noun phrase. We know
that there is a PPI between “retinoblastoma” and
“protein”, because we can rewrite the phrase into
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Jak-2 activated Raf-1

nsubj dobj

arg0 arg1

(a)

Raf-1 was activated by Jak-2

auxpass prep by
nsubjpass

arg1 arg0

(b)

activation of Raf-1 by Jak-2

prep of
prep by

arg1
arg0

(c)

Figure 2: Sample EDGs with an active (a), passive
(b), or normalized (c) verb.

the retinoblastoma binding protein , RBP1

nn
nn

appos

arg0 arg1
arg1 (propagation)

Figure 3: A sample compound noun phrase.

“retinoblastoma binds to protein, RBP1”. There-
fore, we add arg1 from “binding” to “protein” in
Figure 3. This operation will introduce cyclicity
because the gerund is included in the noun phrase
headed by “protein”. We posit that these edges
are useful when found in combination with other
construction, such as appositive. We will discuss
how to propagate arg1 from the gerund “binding”
to “RBP1” later.

Next we consider two cases of argument elision.
Elided argument relation Here we con-

sider cases when the argument of a predicate is
not explicit but implicit. Figure 4 shows a sen-
tence where arg0(interaction, Presenilin 1) can
be inferred. The SDG includes a prep via from
the first verb “suppresses” to the nominalized verb
“interaction”, to indicate the PP attachment to the
verb. In this case, we add an edge arg0 from
the nominalized verb to the arg0-argument of the
first verb. In constructing EDG, we also consider
prep through as well as prep by when a gerund
verb, rather than a nominalized verb, follows it.

Reduced relative clauses Relative clause is
a clause that modifies a noun phrase. There are
two types of relative clauses that frequently ap-
pear in biomedical text. Full relative clauses are
introduced by relative pronouns, such as “which”

serine/threonine kinase that is phosphorylated by Pto

nsubjpass
auxpass agent

arg1 arg0

(a) A sample full relative clause.

a Ca(2+)-binding protein phosphorylated by protein kinase A

vmod prep by

arg1 arg0

(b) A sample reduced relative clause.

Figure 5: Sample relative clauses.

and “that”. Reduced relative clauses start with a
gerund or past participle and have no overt sub-
ject.

The PropBank annotation guidelines (Bonial et
al., 2012) posit a numbered argument link from
the relative clause verb to the trace in the parse
tree which also indicates the referent noun phrase.
For full relative clauses, we follow the normal pro-
cedure for verbs (Figure 5a). For reduced rela-
tive clauses, since we use the dependency struc-
ture that includes no traces, we use the edge vmod
in the SDG from the head of the noun phrase to
the reduced relative clause’s verb (Figure 5b). The
direction of this edge indicates that the relative
clause is syntactically included in the larger noun
phrase. For the arg edge, we reverse the direc-
tion of vmod and create an edge from the relative
clause’s verb, as shown in Figure 5b. When com-
pared to Figure 5a, the arg construction unifies the
treatment for full relative clauses.

Notice that although in both cases, the arg1 is
not an incident on named entities, it might still
lead to the named entity through the propagation
of edges as discussed in the next subsection.

3.3 Going Beyond Syntax

Here we consider the propagation of arg using in-
formation that goes beyond syntax.

Co-reference If an edge arg from a vertex
v reaches a pronominal node, we add a new edge
arg from v to any named entity the pronoun co-
refers to. To detect the coreference we use the
implementation of the technique described in (Qiu
et al., 2004). For the acronyms with long-form
and short-form, we treat them in the same way as
coreference. We add extra edge arg when there
is an arg incident on the long-form. We use the
acronym detector of (Schwartz and Hearst, 2003)
to add acronyms missed in SDG. Interestingly,
SDG uses appos for both acronym and appositive.

Appositive Reconsider the fragment “the
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Presenilin 1 suppresses the function of c-Jun homodimers via interaction with QM/Jif-1

nsubj
dobj

det nn
prep of
prep via

prep with

arg0

arg0 (elided)

arg1 arg1

Figure 4: A sample elided argument relation.

HOX11 is a cellular oncogene that targets · · ·
amod

det
cop

nsubj

nsubj

rcmod

is-a arg0
arg0 (propagation)

Figure 6: A sample is-a relation.

retinoblastoma binding protein, RBP1” in Fig-
ure 3. Using the construction discussed thus far,
the arg1 will reach “protein”. Further, SDG uses
an edge appos from “protein” to “RBP1” for ap-
positional modifier. We integrate arg1 and appos
to construct another edge arg1 from “binding” to
the actual named entity “RBP1”.

Is-A In addition to appositive, we consider
other forms of is-a relation mentioned textually,
but cannot be directly found from the syntactic
dependences. For example, in Figure 6, there is
no edge in SDG to explicitly capture the is-a re-
lation. It is worth noting that the edge nsubj it-
self does not indicate the is-a relation, but together
with two other edges cop and det, we can figure it
out. Hence we add a new edge from “oncogene”
to “HOX11” to reflect this relation in EDG (dotted
edge). Afterwards, we propagate arg0 from “tar-
gets” to “HOX11”.

Besides the pattern shown in Figure 6, we also
identify “known as”, “designated as”, “considered
as”, “identified as” and “act as” as patterns that
signal is-a relations. These patterns contain and
extend rules in (Snow et al., 2005; Hearst, 1992).

Member-collection links a generic reference
(called collection) to a group of entity mentions
(called members). Like in Figure 7, typical key
words that can identify member-collection rela-
tions are “including” and “such as”. We consider
the cases where mention group follows the key-
words and the generic reference precedes these
words. After the detection, we propagate arg from
the collection to its members.

Part-whole links an entity part to its mention,
typically denoting construction of larger entities
out of smaller ones. Just like “breaking the glass

TBP binds to distinct domains of hTAFII28

nsubj
prep to

amod prep of

arg0 arg1 part-whole
arg1 (propagation)

Figure 8: A sample part-whole relation.

of the window” can be stated as “breaking the win-
dow”, in biomedical tasks an action on a larger
unit can often be inferred from a mention of the
action applied on its part. That is, in Figure 8, af-
ter we detect a part-whole relation, an edge arg1
incident on the part is propagated to the object that
contains it.

In this paper, we focus on three types of pat-
terns to recognize part-whole relations. The first
is the preposition phrase such as “domain of e”.
Here “domain” indicates the part and e indicates
the larger entity mention the “domain” belongs
to. Other keywords indicating parts include “frag-
ment”, “portion”, and “region”. The second struc-
tural elements is a compound nominal like “e do-
main”. The third group exploits keywords such
as “contain”, “consist”, and “compose”. For each
part-whole relation, we propagate edges from the
part to its entity mention.

4 Experiments

We evaluated our method on protein-protein in-
teraction (PPI) extraction task, where the system
identifies whether a given protein pair in a sen-
tence has PPI relationship or not. We used SDG
or EDG as input representation of the sentences,
which includes the named protein entities.

4.1 Kernels

We tested the effect of using EDG on two kernels
that have been employed for PPI extraction.

Edit distance kernel is based on the edit dis-
tance among the shortest paths between entities in
the dependency graph and is based on the minimal
number of operations (deletion, insertion, substi-
tution at word level) needed to transform one path
(p1) into the other (p2). Following (Erkan et al.,
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Cdi1 interacts with cyclin-dependent kinases , including human Cdc2 , Cdk2 , and Cdk3

nsubj amod
prep with prep including

prep including

prep including

amod conj and
conj and

arg0 arg1 member-collection
member-collection

member-collection
arg1 (propagation)

arg1 (propagation)

arg1 (propagation)

Figure 7: A sample member-collection relation.

2007), this number is normalized by the length
of the longer path and converted into a similarity
measure.

sime(p1, p2) = e−γeditdist(p1,p2) (1)

When comparing two shortest paths, we consid-
ered the word lemma and the edge labels . We also
renamed the candidate pair in the sentence as “E1”
and “E2” and the remaining proteins provided in
the annotation as “EX”. For example, the follow-
ing are the shortest paths of Figure 2a, 3, and 8.

(a) E1← arg0← activate→ arg1→ E2
(b) E1← arg0← bind→ arg1→ E2
(c) E1← arg0← bind→ arg1→ E2

Therefore, the edit distance between (a) and (b) is
1 because the predicate verbs are different. The
distance between (b) and (c) is 0. It shows the
generalizability of using EDG.

All-paths graph kernel is a practical instanti-
ation of a graph kernel framework (Gärtner et al.,
2003). It counts weighted shared paths of all pos-
sible lengths in a graph (Airola et al., 2008). All-
paths graph kernel uses two graph representations:
(1) a dependency graph where all edges on the
shortest paths between the candidate pair receive a
weight of 0.9 and other edges receive a weight of
0.3; and (2) a linear graph where each word node is
connected by an edge to its succeeding word node
with weight 0.9.

We used word (not lemma) and edge labels
to compute the all-paths graph kernel. Sim-
ilar to the case with the edit distance ker-
nel, we replaced the protein names in a sen-
tence with “E1”, “E2” and “EX”. We use the
APG software (http://mars.cs.utu.fi/
PPICorpora/GraphKernel.html) to train
and test the kernel. The software uses sparse reg-
ularized least squares method instead of SVM.

Table 1: Basic statistics of the corpora.

Corpus Sentences # Positives # Negatives

AIMed 1,955 1,000 4,834
BioInfer 1,100 2,534 7,132
HPRD50 145 163 270
IEPA 486 335 482
LLL 77 164 166

4.2 Experimental setup

We evaluated our method on five PPI cor-
pora that have been used in the community:
AIMed (Bunescu et al., 2005), BioInfer (Pyysalo
et al., 2007), HPRD50 (Fundel et al., 2007),
IEPA (Ding et al., 2002), and LLL (Nédellec,
2005). These corpora have different sizes (Ta-
ble 1) and vary slightly in their definition of
PPI (Pyysalo et al., 2008).

(Tikk et al., 2010) conducted a compari-
son of a variety of PPI extraction systems on
these corpora (http://mars.cs.utu.fi/
PPICorpora). We used the same experimen-
tal setup to evaluate our methods: self-interactions
were excluded from the corpora and 10-fold
document-level cross-validation is used for eval-
uation.

For our experiments, we used the Charniak-
Johnson parser (Charniak and Johnson, 2005) and
the Stanford conversion tool with “Collapsed” set-
ting to obtain SDG (De Marneffe and Manning,
2008). The edit distance kernel was trained with
LIBSVM (Chang and Lin, 2011). The APG ker-
nel was trained with APG software.

Both these kernels have several parameters,
whose settings can influence the performance. In
this paper, we did not perform exhaustive system-
atic parameter search and optimization. We be-
lieve such parameter tuning techniques might lead
to further improvements.

For the edit kernel, we set γ to 4.5, which was
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the value used in the original application of edit
kernel on these corpora (Erkan et al., 2007). We
set c in SVM to 10, which was the average best
value used in (Tikk et al., 2010). For the APG ker-
nel, we used the default settings of implementation
of (Airola et al., 2008) which uses a grid parame-
ter search for each iteration of the 10-fold cross
validation. The parameter search selects the best
setting based on a random set of 1,000 samples
from the training sets (9 folds). If there are less
than 1,000 samples, the software used the whole
training set. Note that the test sets (the remaining
fold) were not used for the parameter tuning.

4.3 Results

Performance, as measured by precision, recall,
and F-value, is shown in Table 2. To provide con-
text, we also include the results published in (Tikk
et al., 2010) and (Miwa et al., 2009a). The first
reports the results of the APG kernel (Airola et al.,
2008) that was found to be a leading performer on
these 5 corpora in the study reported in (Tikk et
al., 2010). The second set of results is those of an
ensemble method that combines different systems.

Although we are using the same corpora in the
study of (Tikk et al., 2010), and the same imple-
mentation of the APG kernel, the results in Row 1
and Row 6 in the table are not the same. The dif-
ferences are possibly due to the fact that different
parsers were used and how parameters were cho-
sen. However, we want to emphasize that all our
own measurements (e.g., in Rows 3-5 or Rows 6-
8) are directly comparable to each other because
the same parameter settings were used for each
corpus.

The first part of Table 2 shows results us-
ing the edit distance kernel with original depen-
dency graph (Row 3), and with the complete EDG
(Row 4). We also experimented with different
configurations of EDG by dropping one of the
extra edge types added in EDG. The results ob-
tained by the best configuration are reported in
Row 5. On three of the corpora, the best results
are obtained by using the full EDG. However, bet-
ter results were obtained on HPRD50, when the
member-collection relations were not included and
on LLL, when the is-a relations were not included.
In the next subsection we will address why these
relations were not included.

Overall, comparing Rows 3 and 4, we obtain F-
value improvements using EDG over using SDG

on 4 corpora (except LLL), with around 10% gains
on AIMed and HPRD50 and noticeable gain in re-
call. For 3 of the corpora (AIMed, HPRD50 and
IEPA), there is an increase in both precision and
recall. For BioInfer, the gain in precision slightly
exceeds the loss in recall whereas in LLL the gain
in precision is slightly lower than the loss in re-
call. When Row 5 is used for comparison, we ob-
tain an improvement in F-value for all 5 corpora
with improvement in recision and recall in 4 cor-
pora (BioInfer being the exception). We now see
over 18% F-value improvement on HPRD50.

Despite weak performance of the edit kernel us-
ing the baseline SDG, the performance of this ker-
nel with full EDG is close to or exceeds the results
of the leading PPI systems using kernel methods
(Rows 1 and 2) on 4 corpora and exceeds them on
these 4 corpora when results of Row 5 is consid-
ered.

The second part of Table 2 (Rows 6–8) shows
results using the APG kernel. The EDG (Best) in
Row 8 is achieved on AIMed, BioInfer and LLL
by dropping the is-a relation and on HPRD50 by
not including the member-collection relations. We
see F-value gains on 4 corpora through the use of
EDG.

Comparing the results on the edit distance and
APG kernels, we find that the more complex APG
kernel (the best one overall in (Tikk et al., 2010)
study) gets generally better results than Edit kernel
using the baseline SDG. However, the use of EDG
not only closes the gap between the kernels but in
fact, edit kernel with EDG obtains higher F-value
than APG with SDG or EDG in 4 of the 5 corpora.

To provide the comparision with non-kernel
methods, we also include the results published in
(Miwa et al., 2009b), which is the state-of-the-art
system on the five corpora. This paper develops
several systems that use a rich feature vector, com-
bining analysis from different parsers and the val-
ues obtained from multiple kernels including the
APG’s score. L2-SVM and SVM-CW are among
the leading SVM-based systems proposed in this
paper.

Row 9 shows the results of L2-SVM on these
corpora. We observe that both edit kernel and
APG kernel with EDG (Best) gets improvements
on two of the corpora. Row 10 shows the results of
SVM modified for corpora weighting (SVM-CW).
Using one of the corpora as the target corpus,
SVM-CW weights the remaining corpora (called
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Table 2: Evaluation results. Performance is reported in terms of Recall/Precision/F-value.

Kernel AIMed BioInfer HPRD50 IEPA LLL

1 (Tikk et al., 2010) 53.6 /59.9 /56.2 61.3 /60.2 /60.7 69.8 /68.2 /67.8 82.6 /66.6 /73.1 98.0 /68.0 /78.4
2 (Miwa et al., 2009a) 68.8 /55.0 /60.8 71.1 /65.7 /68.1 76.1 /68.5 /70.9 78.6 /67.5 /71.7 86.0 /77.6 /80.1

Edit kernel
3 SDG 40.0 /61.4 /48.4 64.7 /49.5 /56.1 55.8 /68.4 /61.5 69.6 /74.7 /72.0 89.6 /71.7 /79.7
4 EDG 57.3 /65.3 /61.1 57.6 /59.9 /58.7 66.9 /75.7 /71.0 69.9 /76.2 /72.9 85.4 /74.1 /79.3
5 EDG (Best) – – 76.7 /83.3 /79.9 – 92.1 /78.2 /84.6

All-paths graph kernel
6 SDG 69.0 /48.0 /56.6 73.5 /58.8 /65.3 69.3 /60.1 /64.4 77.9 /65.4 /71.1 87.8 /69.9 /77.8
7 EDG 66.0 /52.3 /58.3 72.1 /56.1 /63.1 71.2 /62.7 /66.7 75.2 /65.3 /69.9 82.9 /69.4 /75.6
8 EDG (Best) 71.3 /51.1 /59.5 69.2 /58.7 /63.5 76.1 /62.6 /68.7 76.1 /68.2 /71.9 87.2 /75.3 /80.8

Feature vector (Miwa et al., 2009b)
9 L2-SVM 63.2 66.2 67.2 73.0 80.3

10 SVM-CW 64.0 66.7 72.7 75.2 85.9

the source corpora) with “goodness” for training
on the target corpus, adjusting the effect of their
compatibility and incompatibility (Miwa et al.,
2009b). Thus, their results are not directly com-
parable with our results. However we obtain im-
provements using edit kernel with EDG (Best) on
HPRD50.

4.4 Contribution of individual relation

Table 3 compares the effects of different tech-
niques in EDG on five corpora using the edit dis-
tance kernel. We first evaluated SDG obtained
from the Stanford conversion tool with “CCPro-
cessed” setting (Row 2) for processing conjunc-
tions, and next added only syntax based arg0 and
arg1 (Row 3). After that, we added in succes-
sion referential links (including coreference, ap-
positive, and is-a), member-collection, and part-
whole detection in the EDG construction step by
step (Row 4–6). Overall, using “CCProcessed”
increases the F-values on all five corpora. EDG
constructed using syntax based arg achieves addi-
tional increases on 4 out of 5 corpora (exception
was IEPA). Every subsequent step generally pro-
vides more improvements on F-values. However,
we observed that on HPRD50, member-collection
decreased F-value. Therefore we tried to switch
off this part in the EDG construction but included
the rest of the relations and achieved a higher F-
value of 79.9% on this corpus (Row 7). This cor-
responds to the same result we displayed in Row
5 (EDG Best) in Table 2. On the LLL corpus,
as components were successively added, we no-
ticed a drop in F-value when referential linking
was added. So similarly by turning off is-a detec-
tion and including all other EDG edges enabled us

to obtain the EDG best F-value of 84.6% on LLL.
We also identified that is-a decreased F-values

on IEPA, however no further improvement could
be made by switching it off. We plan to further
analyze this result in the future.

Additionally, due to the gap in the performance
between our system and (Miwa et al., 2009a) on
BioInfer, we analyzed the error cases and noticed
several cases similar to the following example.
The candidate pair of named enitites are marked
in bold.

• This process involves other actin-binding
proteins, such as cofilin and coronin.

Using techniques as shown in Figure 3, we
can create arg0 (binding, actin) and arg1 (bind-
ing, proteins) in EDG and also detect member-
collection relation between “actin-binding pro-
teins” and “cofilin”. With propogation, an inter-
action between “actin” and “cofilin” can be pre-
dicted. However, this relation is annotated as a
negative, but instead the annotation in BioInfer in-
cludes a positive relation between “actin-binding
proteins” and “cofilin”. Because of similar exam-
ples in BioInfer, the member-collection and is-a
and propagation failed to improve the results in
BioInfer.

5 Conclusion

In this paper, we strive to find a level of abstrac-
tion that is more suitable for tasks such as rela-
tion extraction. For this purpose, we introduced
techniques to create a new dependency graph rep-
resentation (EDG) that goes beyond syntactic de-
pendencies. We evaluated the efficacy of EDG
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Table 3: Contributions of different part in SDG and EDG using edit kernel. Performance is reported in
terms of Recall/Precision/F-value.

Kernel AIMed BioInfer HPRD50 IEPA LLL

1 SDG (Collapsed) 40.0 /61.4 /48.4 64.7 /49.5 /56.1 55.8 /68.4 /61.5 69.6 /74.7 /72.0 89.6 /71.7 /79.7
2 SDG (CCProcessed) 46.4 /58.9 /51.9 56.2 /57.1 /56.6 58.9 /67.6 /63.0 70.2 /74.8 /72.4 89.6 /73.5 /80.8
3 EDG (syntax based arg) 48.1 /61.2 /53.9 56.3 /58.5 /57.4 66.9 /73.2 /69.9 69.3 /74.4 /71.7 89.0 /74.1 /80.9
4 EDG (above, coref, app, isa) 52.2 /58.6 /55.2 56.7 /58.3 /57.5 65.6 /77.0 /70.9 69.0 /74.0 /71.4 87.2 /72.2 /79.0
5 EDG (above, mem-coll) 53.2 /59.2 /56.0 57.1 /58.6 /57.8 64.4 /77.8 /70.5 69.6 /76.4 /72.8 85.4 /74.5 /79.6
6 EDG (above, part-whole) 57.3 /65.3 /61.1 57.6 /59.9 /58.7 66.9 /75.7 /71.0 69.9 /76.2 /72.9 85.4 /74.1 /79.3
7 EDG (Best) 57.3 /65.3 /61.1 57.6 /59.9 /58.7 76.7 /83.3 /79.9 69.9 /76.2 /72.9 92.1 /78.2 /84.6

with the edit distance and APG kernels and ap-
plied them on 5 different PPI-related datasets. We
obtained improvements in F-value by using EDG.
We find that despite the simplicity of the edit ker-
nel and its weak performance with the baseline
graph, results comparable to state-of-the-art sys-
tems using kernel methods are obtained on differ-
ent corpora with the inclusion of EDG.

While the use of EDG has led to gain in recall
as well as precision mostly, the recall drops with
BioInfer dataset. We would like to analyze this re-
sult further in the future. One of our main motiva-
tions for developing EDG is to develop methods to
learn with small datasets and whether the abstrac-
tion captured in EDG allows for easier generaliza-
tion. The testing of learning with small datasets
and use in context of active learning will be inves-
tigated in the future.

We plan to test the use of EDG on other rela-
tion extraction tasks in the biomedical domain. We
also plan to investigate richer features and their
combinations in conjunction with the use of EDG.
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Abstract

Biomedical event extraction systems have
the potential to provide a reliable means of
enhancing knowledge resources and min-
ing the scientific literature. However, to
achieve this goal, it is necessary that cur-
rent event extraction models are improved,
such that they can be applied confidently
to unseen data with a minimal rate of error.
Motivated by this requirement, this work
targets a particular type of error, namely
partial events, where an event is miss-
ing one or more arguments. Specifically,
we attempt to improve the performance
of a state-of-the-art event extraction tool,
EventMine, when applied to a new can-
cer pathway curation corpus. We propose
a post-processing ranking approach based
on relaxed constraints, in order to recon-
sider the candidate arguments for each
event trigger, and suggest possible new ar-
guments. The proposed methodology, ap-
plicable to the output of any event extrac-
tion system, achieves an improvement in
argument recall of 2%-4% when applied
to EventMine output, and thus constitutes
a promising direction for further develop-
ments.

1 Introduction

In text mining, events are currently the most com-
plex information unit that can be extracted from
raw text, in terms of their ability to capture n-ary
dynamic relations between entities and/or other
events as indicated in Figure 1. Their dynamic
properties mean that events constitute the closest
equivalent to human-extracted information. The
structured information representation of events
can be used to enrich current knowledge sources
such as ontologies and databases in an automated

In order to study whether ATX expression affects motility-dependent processes

non-expressing cell lines, parental and ras-transformed NIH3T3 (clone7) cells.

The effect of ATX secretion on in vitro cell motility was variable.

The ras-transformed, ATX-secreting subclones had enhanced motility to

NIH3T3 cells transfected with atx, an inactive mutant gene, or empty vector.

In MatrigelTM invasion assays, all subclones, which secreted enzymatically active

appropriate controls.

This difference in invasiveness was not caused by differences in gelatinase production,
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Figure 1: Event Extraction example: Localisation
events nested as arguments to Positive Regulation
(+Reg) event 1

manner. This can be particularly useful for re-
searchers in the biomedical domain, who use com-
plicated models to represent molecular reactions,
pathways etc. In order to improve these models,
biologists currently need to sift through a continu-
ously growing mountain of literature (Ananiadou
et al., 2014). Thus, an automated means to ex-
tract knowledge, using event extraction technol-
ogy, and to exploit this knowledge to augment ex-
isting models, would be an immense asset within
biomedical research.

Motivated by the above, the Big Mechanism
project (Cohen, 2014) aims to augment cancer
pathway models automatically with events ex-
tracted from biomedical literature. To this end,
event extraction systems need to be able not only
to extract high quality events that cover a wide
range of biomedical event types but also to ro-
bustly do so even when applied to unseen data. In-
deed, the expectation is that event extraction sys-
tems will be successful in carrying out this task
even when parameters such as text type or domain,
are altered, without the need to retain the system.

However, the structure of current event extrac-
tion systems can hinder the ability to achieve the
above goal. Since event extraction has so far been
treated as a supervised learning task, the perfor-
mance of systems is heavily dependent on the an-
notation, context and domain of the training data,
and may drop significantly when one of the initial

1Sentence taken BioNLP 2013 CG corpus (Nédellec et
al., 2013). Annotation visualised with BRAT annotation tool
(Stenetorp et al., 2012).
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specifications changes, even within the same do-
main. Especially in pipelined architectures, which
consist of sequential classification tasks, addi-
tional annotation constraints are learned from the
training corpus at each stage in the pipeline. While
these additional constraints improve the model’s
precision, they render it less adaptable to deviating
event structures. One of the consequences of this
is the failure to retrieve some of the information
that should be associated with the event, leading to
so-called partial event identification, where some
of the event arguments are missing. Although such
errors may not be of vital importance in all do-
mains, they can be extremely detrimental when at-
tempting to link an event to a biomedical model,
since they can lead to erroneous or useless asser-
tions.

The work described here focusses on resolv-
ing the problem by applying a generic constraint
relaxation post-processing strategy to the output
of an event extraction system (EventMine (Miwa
and Ananiadou, 2013)), with the aim of reducing
the number of recognised events that have miss-
ing arguments. Motivated by an analysis of the
Big Mechanism testing corpus described in Sec-
tion 3, we relax the annotation constraints related
to argument roles and subsequently reconsider all
the entities within a sentence that are valid argu-
ment candidates, by exploiting syntactical depen-
dencies. We employ the confidence values ob-
tained from an Adaboost (Freund and Schapire,
1997) classifier to rank candidate arguments for
each event trigger, and to determine which of them
constitute valid additions to the event. Using this
approach, we are able to improve the recall on par-
tial events identified by EventMine by at least 2%
and, importantly, we gain fruitful insights into fac-
tors that could further improve performance.

2 Background: The Event Extraction
Task in Biomedicine

In this section we provide an overview of the
event extraction procedure, focussing on biomed-
ical events. Our emphasis is on the details of
pipelined event extraction, since this is the ap-
proach employed by the EventMine system, which
we use to perform event extraction. Finally, we re-
view the main approaches for adapting event ex-
traction to new or unseen data.

2.1 Event Structure
In text mining, events refer to units representing
dynamic, n-ary relations between named entities.
In the biomedical domain, this definition can be
narrowed to units representing molecular interac-
tions stated within textual documents (Björne and
Salakoski, 2011).

The typical structure of events (as defined and
used in BioNLP shared tasks, e.g., (Kim et al.,
2009), (Nédellec et al., 2013)) includes an obliga-
tory predicate/trigger, i.e., a word sequence in text
that characterises the event type. Potentially, an
event may also have one or more arguments, i.e.,
entities in text that are semantically linked to the
trigger. Considering the trigger and the arguments
as nodes, the links between them can be consid-
ered as directed edges (from the trigger to the ar-
gument), which represent the role that the argu-
ment plays with respect to the trigger. As events
are dynamic elements, the same entity can partici-
pate in different events, and may assume different
roles in each event. Also, since events are solid in-
formation units, they can themselves act as argu-
ments to other events, leading to the extraction of
complex/nested events (Björne et al., 2010). These
characteristics can be observed in the example of
Fig 1 presented in Section 1.

2.2 Event Mining Architecture
In order to extract structures of the complex-
ity illustrated in Figure 1, current state-of-the-art
systems break event extraction down into multi-
ple classification tasks that have to be solved in
order to produce the final structured event rep-
resentation. The learning process to carry out
these tasks can be undertaken either sequentially
in a pipelined manner, as in EventMine (Miwa
and Ananiadou, 2013) and TEES (Björne and
Salakoski, 2013), or as joint learning task, as for
FAUST (Riedel and McCallum, 2011). Event-
Mine, the system employed in this work, utilises
the pipelined approach, and consists of the follow-
ing modules:

• Event trigger classifier: Identifies spans of text
that act as triggers and annotates them with the
corresponding type (event label).
• Argument detector: Links each trigger with at

most one argument and annotates the edge (link)
with the corresponding argument role type.
• Multiple argument detector: Adds additional ar-

guments to the pairs of the previous step, final-

32



ising each event structure.
• Modification detector: Identifies event modifi-

cations (negation and speculation)

All the above are formulated as multi-class
tasks that are learned in a supervised way, using
one-versus-rest SVM implementation of LibLin-
ear (Fan et al., 2008). EventMine is able to per-
form with state-of-the-art accuracy, achieving F-
score of 52% on the CG and 53% on PC task of the
latest BioNLP shared task (Nédellec et al., 2013),
rendering it a suitable tool for this study.

2.3 Adaptation and generalisation
approaches

One of the problems usually encountered with su-
pervised models, such as those used by Event-
Mine, is that they are specifically tailored to fea-
tures of the corpus on which they have been
trained. As a result, their functionality is restricted
to the trigger, argument and role types that they
have been trained to identify and extract. For ex-
ample, some corpora focus only on protein-protein
interactions, while others include chemical reac-
tions, anatomical entities and or a combination of
the above. Intuitively, in order to capture events
that encompass all the above types, either one
would have to re-annotate a corpus with all the
required types of interest, or use some combina-
tion of either the corpora or the models trained on
them.

Since corpus annotation is an expensive and
time consuming task, various computational ap-
proaches to combining information have been pro-
posed. A particularly straightforward approach is
to combine the models in a stacking manner as in
(Wolpert, 1992), where a method inspired from
cross-validation is used to train different models
on subsets of the different corpora, and then use
the validation set to learn how to combine their
outputs to obtain the desired result. More re-
cently, a range of domain adaptation techniques
have been proposed that try to adapt to a new cor-
pus by either selectively training on the instances
and/or features that are expected to maximize per-
formance (Chen et al., 2011; Xia et al., 2013),
or by attempting to tailor feature distributions to
the one of the new corpus with various methods
such as kernel based ones (Daumé III, 2009; Kulis
et al., 2011) or transfer component analysis (Pan
et al., 2011). Finally, (Miwa et al., 2013) sug-
gests the use of a filtering model, which consid-

ers the overlap of the available corpora and filters
redundant and contradicting labelling across dif-
ferent corpora and then merges the corpora in or-
der to train a single model on their combination.
The filtering, as Miwa explains, is heuristically
achieved by limiting the generation of negative in-
stances in each corpus to only those cases in which
the corresponding surface expression matches at
least one positive instance of an annotated type
in any corpus that shares that type. The method,
referred to as wide coverage, when implemented
in EventMine outperforms other stacking and do-
main adaptation methods as shown in (Miwa et al.,
2013). Accordingly, it was the chosen approach
for this work.

3 Corpora and Annotation
Considerations

3.1 Training Corpora
For training the wide coverage method was ap-
plied on the combination of the training sets of the
following corpora, treated as described in (Miwa
et al., 2013) : Genia09 of BioNLP ’09 (Kim et al.,
2009), Genia11, EPI & ID of BioNLP ’11 (Kim et
al., 2011), DNA-methylation (Ohta et al., 2011),
ePTM (Pyysalo et al., 2011), mTOR (Caron et al.,
2010), and MLEE (Pyysalo et al., 2012).

3.2 Testing Corpora
The corpus that provided the motivation for this
work, henceforth referred to as BM, is a small
annotated set of six passages extracted from full-
text biomedical research papers in PubMed 2. It
concerns cancer pathway curation and was manu-
ally annotated with biomedical named entities and
events by expert biologists participating in the Big
Mechanism project (Cohen, 2014). In total it con-
sists of 155 event and 247 named entity annota-
tions. The range of the entities and events anno-
tated render it a valid candidate for the application
of the wide coverage approach described in Sec-
tion 2.3, because the entities span across Chem-
ical, Protein and Cell instances, while the event
types cover pathways, various protein interactions
(Binding, Regulation, etc) and other cancer related
events. Since there is no single related training
corpus with similar annotations, a model that can
learn labels from different corpora is necessary to
facilitate recognition of all of the above event and
entity types.

2PubMed ids: PMC2872605, PMC3058384
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The annotation scheme in BM corpus differs
from the uniform annotation scheme used in the
training corpora in the following ways:

• The entity labels are different to those used in
the training corpora (see Fig 3 and section 4.1)
• No distinction is made between different event

types in the test corpus annotations
• A simplified edge type annotation was followed

in the BM corpus, discriminating only between
simple arguments and arguments indicating the
site (cellular location) where the event took
place. As opposed to the BioNLP schema the
edge annotations in BM contain less semantic
information (there is no discrimination between
roles such as Instrument, Participant, Cause etc)

Figure 2 illustrates an event annotated according
to both BioNLP guidelines and to the BM corpus
guidelines. The simplifications of the BM corpus

All four drugs blocked ERK activity in BRAFmutant A375 melanoma cells

ChemicalOrDrug ProteinFamily Predicate GeneOrProteinPredicate

CellLine
SecondArg

SecondArg

FirstArg

Site

Chemical GGP Pos Regulation GGPNeg Regulation

CellularComponent
Theme

Theme

Cause

Site

All four drugs blocked ERK activity in BRAFmutant A375 melanoma cells

Figure 2: Example of event annotation in the BM
corpus (top) versus BioNLP (bottom) : we can ob-
serve the different labels used for entities, events
and edges

annotation scheme, compared to the scheme used
in the training corpora, motivated our approach to
relaxing the constraints used to link arguments to
event triggers, as described in the previous section.

Due to the small size of BM corpus presented
above, our experiments were repeated on the
MLEE corpus (Pyysalo et al., 2012), using the
development set as a test case. The MLEE cor-
pus was chosen because as BM it displays a wide
range of entities and events that spanned across
different levels of biological organisation (molec-
ular to organ) instead of focusing on protein reac-
tions. The experiments were repeated twice, once
including the MLEE training corpus in the train-
ing data, and once keeping it only for test pur-
poses, in order to provide a comparison between

application on seen and unseen data (see Section
6). For the purposes of this study, the edge anno-
tations in MLEE are simplified to Arg1 and Arg2,
such that it is in line with the annotation scheme of
the BM corpus, allowing for the relaxed constraint
approach to be applied and for a better comparison
of the results.

Protein

Chemical

OrganismCell

Cellular_Component

Organ

Multi_tissue_structure

Developing_structure

Immaterial_anatomical_entity

Organ_system

Organism_subdivision

Organism_substance

Pathological_formation

Tissue

GeneOrProtein

Cell

ChemicalOrDrug
CellLine

ProteinSite

ProteinFamily

= All corpora

= MLEE only
= ID and MLEE

= BM corpus

Training corpora BM corpus

Figure 3: Initial named entity labels for the cor-
pora used in the experiments. BM corpus labels
were adapted to the training corpora as explained
in section 4.1

4 Methodology

4.1 Adapting the entity labels without
supervision

Since there is no widely accepted standard in the
community in terms of the annotation labels for
named entities, a common issue when processing
multiple corpora, is overlapping annotations. In
other words, different labels may be used to de-
scribe the same entity type, and that exactly is
the case for the BM corpus when compared to
the training corpora.3 Hence, when testing on un-
seen data, it is necessary to map the labels of the
test corpus to the ones that the model is trained to
recognise, in order to obtain optimal results. For
example, proteins were annotated as GeneOrPro-
tein in the BM corpus and as Protein in the training
corpora. For the filtering and unification of anno-
tations instead of manually identifying the over-
lapping annotations, a heuristic automated label
filtering method was implemented, in order to map
the labels of the target/test corpus (TL) to those of
the source/training one (SL). To that end, label
similarity was calculated based on the following
heuristic formula:

3The training corpora also contained conflicting / over-
lapping annotations initially that were priorly resolved in a
similar manner
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TLi → SLj ,

SLj → argmax
k

(
#(AnnE TLi ∩AnnE SLk)

#AnnE SLk
)

(1)
where AnnE TLi corresponds to an annotated

text span under the label TLi in the target corpus,
while AnnE SLj to an annotated text span un-
der the label SLj . The aforementioned text spans,
can be single or multi-word tokens. Using this
method, each label from the test corpus was as-
signed to the most similar label in the training cor-
pus. For BM the labels were adapted as following:

BM corpus Training Corpora
GeneOrProtein → Protein
ProteinFamily → Protein
ProteinSite → Protein 4

ChemicalOrDrug → Chemical
CellLine → Cellular component
SubcellularLocation → Protein

Table 1: Mapping between BM and trining cor-
pora named entity annotations

It should be mentioned that in the case of the BM
corpus, while there were obviously synonymous
labels, the actual overlap found by the above tech-
nique was less than 10% for all labels, nonetheless
still valid. In general this technique allows cor-
pora to be added or removed without the need to
fully revise the corpus. The same method could be
used for different annotation types, such as event
or edge type annotation.

4.2 Re-evaluating argument candidates of
correct partial events

We hypothesise that, owing to the complexity of
event patterns sought by the model, it sometimes
fails to identify the complete set of arguments for
an event, even if those arguments are correctly
identified in the text as entities. This leads to the
identification of partial events, such as the one pre-
sented in Figure 4. In order to identify the miss-
ing arguments, we aim to reduce the complexity of
learned patterns, while complying with the anno-
tation of the BM corpus.

Thus, we apply a relaxed post-processing step
to the event extraction results, such that constraints
regarding the learned roles of arguments are no
longer imposed. Approaches that relax rule or
pattern constraints have previously been shown to

4No overlap found, manual decision.

BRAF is not active and is not required for MEK/ERK activation in RAS mutant cells.

Ent Predicate
Predicate

EntEnt Predicate
Predicate
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Site
Missing_Argument
Missing_Argument Argument

Argument
Argument

Figure 4: Example of partial event from the test
corpus: BRAF should also be linked to the event
but is missed by the EventMine model

constitute an efficient method of achieving gener-
alisation and allowing models to be better adapted
to other natural language processing tasks such
as named entity recognition in (Tatar and Cicekli,
2011) and (Zhou and Su, 2003) or information ex-
traction in (Ciravegnia and Lavelli, 2004). In our
case, the relaxed constraints permit a re-evaluation
of the possible relations between event triggers
and recognised entities in a given sentence.

We implemented a ranking approach such that
for each identified event trigger, all the entities in
the same sentence that are not already linked to it
by the EventMine model are ranked according to
their likelihood of being related to the trigger.

The entity ranking is based on syntactic depen-
dencies between word tokens for each sentence.
The underlying assumption is that for an entity
to be linked to an event trigger as an argument,
there has to be some syntactic relation between
the two terms. Syntactic analysis is undertaken
by the Enju syntactic parser (Miyao et al., 2008),
which has a model trained on biomedical corpora.
Since each dependency can be seen as a link be-
tween two words, we can consider dependency re-
lations as structured dependency graphs. Depen-
dency graphs have been used before in event ex-
traction (Buyko et al., 2009; Liu et al., 2013) with
Liu’s approach, on subgraph matching of directed
dependency graphs, achieving high precision but
low recall. Aiming for high recall, we take a dif-
ferent approach; in the undirected graphs, we ex-
pect the path between a trigger word and its related
arguments to be shorter than the path between the
same trigger word and other, non related entities
in the same sentence. We thus consider the short-
est dependency path length as the main feature for
ranking. For example from the Enju output for the
partial event shown in Figure 5, we can see that
the shortest dependency path length between the
entity BRAF and the event trigger is equal to 1
(direct link). To facilitate full exploitation of the
dependency graph, we considered the following:
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BRAF is not active and requirednot for MEK/ERK activationis

Figure 5: Dependency link representation example
for a Biomedical sentence as analysed by Enju

• Dependency type: Enju provides the depen-
dency type (prepositional, coordination, noun
modifier, etc) for each dependency link/edge.
This type can be exploited either to assign dif-
ferent weights to each dependency edge of the
argument-trigger path, or to consider different
path patterns. Such manipulation has been em-
ployed in rule-based event extraction in (Kil-
icoglu and Bergler, 2009), achieving good ac-
curacy but low recall. Also, extracting specific
path patterns renders the approach dependent on
a particular parser, thus limiting the indepen-
dence and adaptability of its application. Since
the focus of this study was on recall and adapt-
ability, the dependency type information was ig-
nored, except for the case that follows.

• Flattening coordination: We decided that pre-
processing was necessary to resolve coordi-
nation dependencies, such that a given entity
would have the same distance to a trigger, re-
gardless of the existence of a coordination ar-
gument dependency. Accordingly, in the calcu-
lation of the shortest paths, all coordination de-
pendencies (labelled as coord arg by Enju) are
flattened as shown in Figure 6.

BRAF inhibitors hyperactivate andCRAF MEK

BRAF inhibitors hyperactivate andCRAF MEK

Figure 6: Flattening coordination dependencies

• Nested Events: To handle nested events, ex-
tracted events were also considered as entities,
using the trigger as the representative text span,
used to calculate the distance to the trigger of
the top-level event and the rest of the features.

In order to obtain the rankings, we firstly consider
our problem as one of binary classification, where

the task is to classify each entity with respect to
each trigger, as a valid (positive case) or non-valid
(negative case) argument. Then, in training a clas-
sifier on the above binary classification task, we
can employ the prediction confidence of the clas-
sifier model in order to rank the entities with re-
spect to the event. The top ranked entity is selected
and added to the event. In order to train a strong
classifier model, a greater number of attributes that
indicate the relation of an entity to a trigger were
considered and implemented as additional features
for the classifier. The main feature classes of the
final feature set are listed below:

• Shortest dependency path (numeric)
• Entity Type (nominal)
• Participation in other events (binary)
• PoS (Part of Speech) (nominal)
• Context PoS (surrounding tokens) (nominal)
• Relative position to the event trigger (be-

fore/after) (nominal)
• Dependency on a prepositional token - type

of prepositional token (binary-nominal)
• Event type (nominal)
• Token distance to trigger (numeric).

For the binary classification task, after comparison
of an SVM, a logistic regression and an Adaboost
classifier (implemented with random tree models),
the AdaBoost classifier was chosen as it outper-
formed the rest by at least 10% (10 fold cross val-
idation F-score on training set: 0.93). 5

We also tried to avoid the addition of spurious
arguments to events. Our initial experiments re-
vealed that a considerable number of events re-
quire either a single argument or no arguments.
For some event types such as Gene Expression,
such cases constituted more than 80% of the
events. In order to avoid the addition of spuri-
ous arguments, and inspired by (Rahman and Ng,
2009) , an artificial ”null” named entity instance
was created for each event, and assigned to the
events in the training set that did not require a sec-
ond (or even a first) argument. Thus, the classifier
would consider and rank the null entity along with
the rest for each event.

Finally, to account for entities that are indirectly
linked to events, i.e. those which occur as argu-
ments of nested events, for each trigger, entities

5It should be noted that, while Adaboost appears to be
most efficient for the purposes of our study, our classification
task is only binary, and it is not straightforward to assume
that it would outperform SVM in the rest of the EventMine
pipeline, without additional testing
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belonging to its parent event or its nested events
were excluded from ranking. Furthermore, enti-
ties that were already assigned to a different event
having the same trigger, as in Figure 7, were con-
sidered mutually exclusive.

BRAF inhibitors hyperactivate CRAF and MEK in these cells

Pro Predicate
Predicate

Pro Pro
SecondArg

SecondArg

Figure 7: CRAF and MEK are mutually exclusive

5 Evaluation

In order to evaluate the performance of our method
we compare the identified arguments with the ones
annotated in the gold corpus.

For each event annotated by EventMine, we de-
fine argument recall and precision as :

Recall =
argEM ∩ arggold

arggold
(2)

Precision =
argEM ∩ arggold

argEM
(3)

where argEM is the set of arguments EventMine
identifies for this event and arggold the corre-
sponding set of arguments identified in the gold
standard. 6

6 Results and Discussion

6.1 Experimental Results
We applied and evaluated the ranking methodol-
ogy to the corpora described in Section 3 and the
results are shown in Tables 2 and 3.

Precision Recall Fscore Percent.
EM +R EM +R EM +R in corpus

Phosphorylation 0.93 0.82 0.86 0.93 0.89 0.87 10
Planned process 0.5 0.5 0.5 0.5 0.50 0.50 2

Negative regulation 0.91 0.86 0.83 0.83 0.87 0.84 16
Localization 1 1 0.67 0.67 0.80 0.80 1
Regulation 0.88 0.88 0.88 0.88 0.88 0.88 3

Gene expression 0.8 0.8 0.75 0.75 0.77 0.77 7
Binding 0.47 0.47 0.43 0.47 0.45 0.47 2

Positive regulation 0.66 0.59 0.61 0.63 0.63 0.61 44
Total 0.67 0.63 0.62 0.64 0.64 0.63

Table 2: Results on BM corpus before (EM) and
after Re-ranking (+R)

For both corpora, our ranking method leads
to an increase in recall compared to the default
EventMine application. However, our method
also results in a decrease in precision. In or-
der to appreciate the impact of missing argu-
ments on unseen data we repeat the experiment

6For events that are not matched in the gold standard both
values are zero.

Precision Recall Fscore Percent.
EM +R EM +R EM +R in corpus

Protein catabolism 0.5 0.5 0.5 0.5 0.50 0.50 2
Phosphorylation 0.69 0.59 0.69 0.69 0.69 0.64 5

Dissociation 0.78 0.44 1 1 0.88 0.61 1
Transcription 0.5 0.5 0.5 0.5 0.50 0.50 2

Negative regulation 0.5 0.48 0.38 0.5 0.43 0.49 9
Regulation 0.53 0.43 0.4 0.47 0.46 0.45 4

Gene expression 0.88 0.88 0.86 0.86 0.87 0.87 27
Localization 0.63 0.61 0.69 0.76 0.66 0.68 6

Positive regulation 0.72 0.65 0.63 0.67 0.67 0.66 32
Binding 0.66 0.68 0.56 0.64 0.61 0.66 11

Total 0.7 0.67 0.64 0.68 0.67 0.67

Table 3: Results on MLEE corpus before (EM)
and after Re-ranking (+R)

using the MLEE training corpus during training
for EventMine. In this case (see Table 4), the re-
call is higher and the improvement from the post-
processing step not significant, suggesting that
the post-processing methodology is advantageous
mostly when EventMine is applied to new do-
mains.

Precision Recall Fscore Percent.
EM +R EM +R EM +R in corpus

Protein catabolism 0.6 0.6 0.6 0.6 0.60 0.60 1
Death 0.71 0.71 0.71 0.71 0.71 0.71 1

Transcription 0.5 0.5 0.5 0.5 0.50 0.50 1
Localization 0.76 0.67 0.77 0.77 0.76 0.72 5
Development 0.55 0.55 0.55 0.55 0.55 0.55 4
Regulation 0.49 0.45 0.45 0.46 0.47 0.45 7
Breakdown 0.78 0.78 0.78 0.78 0.78 0.78 1

Positive regulation 0.68 0.64 0.63 0.64 0.65 0.64 22
Growth 0.88 0.88 0.88 0.88 0.88 0.88 3

Phosphorylation 0.69 0.56 0.69 0.69 0.69 0.62 2
Blood vessel development 0.96 0.96 0.75 0.75 0.84 0.84 16

Dissociation 0.67 0.42 1 1 0.80 0.59 1
Cell proliferation 0.92 0.92 0.92 0.92 0.92 0.92 1

Pathway 0.54 0.46 0.46 0.48 0.50 0.47 1
Planned process 0.81 0.77 0.7 0.71 0.75 0.74 10

Negative regulation 0.76 0.7 0.66 0.67 0.71 0.68 10
Gene expression 0.88 0.88 0.88 0.88 0.88 0.88 9

Binding 0.73 0.71 0.65 0.68 0.69 0.69 4
Tissue remodeling 1 1 1 1 1.00 1.00 1

Total 0.76 0.73 0.68 0.69 0.72 0.71

Table 4: Results on MLEE corpus before (EM)
and after Re-Ranking (+R) (MLEE training set
added to the training corpora of EventMine)

Moreover, we can observe in Tables 3 and 4 that
the event types recognised are not 100% overlap-
ping. Indeed, since in the first case EventMine is
not trained on the MLEE corpus, the set of event
types that it is trained to recognise only partially
overlaps with the event types annotated in MLEE.
As such, in a large number of cases, even though
the event trigger is correctly extracted, it is at-
tributed an event type other than the one annotated
in the gold standard. For example some of the
BreakDown events (in Table 4) tend to be recog-
nised as Negative Regulation when the model is
not trained on the MLEE events (Table 3). We
thus wanted to examine the impact of erroneous
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event type identification on the linking and pre-
cision of argument linking, given that EventMine
models learn different annotation constraints for
each event type. Table 5 compares the perfor-
mance achieved by our method when the event
type assigned by EventMine matches the label in
the gold standard, with the overall performance.
It can be observed that when the labels do match
the performance increases significantly. Thus, it
seems that part of error in linking arguments to an
event derives from an erroneous recognition of the
type of the argument, that is often linked to events
that the model is not trained to recognise properly.

Overall Results Same label in GS
Precision Recall Precision Recall Percentage

Protein catabolism 0.5 0.5 1 1 0.67
Phosphorylation 0.69 0.69 1 1 1

Dissociation 0.78 1 1 1 0.33
Transcription 0.5 0.5 1 1 1

Negative regulation 0.5 0.38 1 0.75 0.93
Localization 0.53 0.4 0.89 0.67 0.93

Gene expression 0.88 0.86 1 1 0.91
Regulation 0.63 0.69 0.79 0.87 1

Binding 0.72 0.63 0.93 0.81 1
Positive regulation 0.66 0.56 0.87 0.75 0.94

Table 5: Performance of EventMine for matching
type annotations versus overall results

6.2 Analysis of Results and Performance
Considerations

The results shown in the previous section are
promising in terms of recall. However, there is still
considerable room for improvement, especially in
terms of decreasing the added noise, so as to min-
imise the drop in precision. Below we present the
most important observations regarding our results
and we analyse the errors produced.

• Correct identification of the partial event but
erroneous identification of the missing argu-
ment: Of the noisy events, 60% constituted
cases that were correctly identified as partial
events, but where the ranking algorithm failed to
identify the correct entity to link to the trigger.
This was a common pattern in cases where the
argument was an event, but the ranking system
actually selected one of that event’s arguments
instead of the whole event, as illustrated in Fig-
ure 8. It is important to note that in some of
such cases, the event trigger was not annotated
by EventMine in the first place. Thus, it was im-
possible for our method to capture it. This em-
phasises the strong dependency of our method
on EventMine’s performance. A possible solu-
tion to this problem, which will be considered as

Dopamine pretreatment increases the translocation of SPH-2

Dopamine pretreatment increases the translocation of SPH-2

Chemical Predicate Predicate Predicate Pro
FirstArg FirstArg FirstArgSecondArg

Chemical Predicate Predicate Predicate Pro
FirstArg FirstArgSecondArg

FirstArg

Figure 8: Linking the nested event argument in-
stead of the trigger: Compare correct annotation
(top) with produced one (bottom)

future work, is to reformulate the problem as a
joint learning task, in which one classifier would
focus on ranking single named entity candidates
and the other on ranking event candidates, and
they would be combined in the test corpus in or-
der to choose the most likely solution. Such an
approach would, however, have increased com-
plexity, and its results remain to be tested. 7

• Entities related to the event in a complemen-
tary manner: In a considerable number of er-
roneous cases, the ranking system identified ar-
guments that were not annotated in the gold cor-
pus, but which nevertheless were related to the
trigger. Two distinctive patterns emerged, as il-
lustrated in Figure 9.

1. Aliases of the original argument, used in the
same sentence (usually a superclass)

2. Text spans with multiple annotations that are
linked multiple times to the event as separate
entities

Its PLX4720 phenotype was associated with MEK/ERK activation

Sorafenib is a class II drug that inhibits V600EBRAF at 40 nM

Pro Chemical Pro

Pathway

Pro

Predicate
Predicate

Argument
Equiv_Argument
Equiv_Argument
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Chemical Chemical Predicate Protein
ArgumentEquiv_Argument2

Argument2

Figure 9: Multi annot. (top): Pathway entity erro-
neously considered a valid additional argument
Alias (bottom): Sorafenib and its superclass both
considered valid argument candidates that are not
mutually exclusive

• Overfitting to “null” instances: As can be de-
duced from the result tables (2, 3 and 4), there
was a considerable percentage of partial events
whose missing arguments were still not fully
identified by our method. In those cases, the
classifier ranked the “null” instance mentioned
7However the performance will still depend on the recall

of the event extraction system.
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in Section 4 as the best option. Investigation re-
vealed that for partial events, the correct missing
argument was ranked second after the “null” in-
stance in more than 50% of cases (null instance
suggestions accounted for 80%-70% of the to-
tal suggestions). A possible solution to further
increase the recall would be to drop the “null”
instance implementation, and use a confidence
threshold instead. However, such a method
would be more ad hoc, having severe implica-
tions on the generalisability of the model.

As a final note, it should be mentioned that in some
cases, our method made suggestions that could
correct events containing errors (i.e., correct trig-
ger but wrong argument). While these cases were
not considered in the scope of this work, it would
be interesting to investigate how our method could
be adapted/expanded to suggest argument correc-
tions as well as additions.

7 Conclusions and Future Work

Our novel approach to improving event extraction
results has successfully shown that identifying and
ranking additional arguments by relaxing annota-
tion constraints can aid in improving the argument
recall and reducing partial (and sometimes even
erroneous) event extraction. Of particular note is
the demonstration that our approach has the great-
est impact when applied to unseen data. As such,
we consider that our results are extremely promis-
ing, even though there is still a large margin for
further improvements and experimentation.

An important feature of our approach is that
the methodology employed is generic enough to
be applied to output of any other event extraction
architecture (particularly pipelined ones) or any
other biomedical corpus without significant mod-
ification. Future testing on different corpora and
annotation schemes will help to reinforce the ro-
bustness and generalisability of our method.

However, this study has already revolved var-
ious promising areas for further investigation, in
terms of both increasing recall and reducing noisy
additions. Of particular interest would be to
see whether employing methods with multiple
classifiers (co-training, joint-learning or ensemble
methods) would improve the performance and re-
duce the noise. Such an approach could target ei-
ther classifiers trained on different argument types
(named entities or entire events) or even classifiers
specialising in particular event types. However,

this would constitute a whole new area of research
and experimentation.

A further aspect, only minimally considered in
this work, is the influence of the training instances
and labels on the performance. On the MLEE cor-
pus, it was observed that for events whose auto-
matically assigned event type did not match the
gold standard, argument recall and precision also
deteriorated. Hence, we can deduce that improv-
ing the accuracy of event type assignment would
have a positive impact on event extraction perfor-
mance. The same conclusion could hold also for
the named entity labels; as mentioned in Section 4,
the BM corpus was initially annotated with a dif-
ferent NE label-set that was automatically (with-
out supervision) aligned with the training corpus
annotations in order for the trained model to be ap-
plied to it. However, instead of adapting the test-
ing corpus annotations, it would be worthwhile to
provide efficient unsupervised methods for adapt-
ing the labels in the training corpus to those in
the testing corpus. Such an approach could boost
the precision without compromising recall by re-
ducing the impact of training on instances (events)
that are not related to the ones in the test set. To
that end, it would be interesting to combine the
wide coverage approach (Miwa et al., 2013) with
domain adaptation approaches such as the ones
mentioned in Section 2.3 or simply instance re-
weighting ones such as (Jiang and Zhai, 2007).

The above considerations will be vital in facil-
itating the incorporation of constraint relaxation
as an integral part of the EventMine architecture,
rather that as a post-processing step. This will
help to enhance EventMine’s properties of gener-
alisability and adaptability, and thus allow it it to
achieve more robust performance. However, the
challenge will be to consider the constraint relax-
ation and adaptation problem globally, rather than
only for argument role annotation constraints.
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Abstract

This paper describes an an open-source
software system for the automatic conver-
sion of NLP event representations to sys-
tem biology structured data interchange
formats such as SBML and BioPAX. It is
part of a larger effort to make results of the
NLP community available for system biol-
ogy pathway modelers.

1 Introduction

Biological pathways represent important insights
into the flow of information within a cell by en-
coding the sequence of interactions among various
biological players (such as genes, proteins etc.)
in response to certain stimuli (or spontaneous at
times) which leads to a change in the state of the
cell. Studying and analyzing these pathways is
crucial to understanding biological systems.

Traditionally, pathways are represented as maps
which are constructed and curated by expert cu-
rators who manually read numerous biomedical
documents, comprehend and assimilate the knowl-
edge into maps. This process is aided by a vari-
ety of graphical tools such as CellDesigner (Funa-
hashi et al., 2008).

Such manual pathway curation comes with a
number of problems. Most importantly: 1) the
amount of time and therefore cost for detailed
pathway maps is high. 2) As new research find-
ings are published these pathway need to be up-
dated or augmented. Often, the speed at which
molecular research is progressing, means it is hard
to keep pathways in sync. 3) Many times the in-
terpretation of details is left to the judgment of the
curator, which leads to considerable variability of
pathways.

Considering these limitations, there has been
an increased emphasis on using Natural Language

∗These two authors contributed equally to this paper and
the software system.

Processing (NLP) techniques for automated path-
way curation. The BioNLP Shared Task - Pathway
Curation (BioNLPST-PC) competition (Nédellec
et al., 2013; Ohta et al., 2013) was focused on this
specific problem. From the NLP perspective the
extraction of biological knowledge is posed as an
event detection problem with standard NLP event
detection algorithms used to extract the biological
information from text (Ananiadou et al., 2010).

Although there has been a lot of work on the
problem of automatic pathway extraction from
text, to our knowledge there has been little ef-
fort to make the extracted information available in
standard pathway formats. The majority of path-
way data is represented, stored and exchanged us-
ing standard formats such as SBML (Hucka et al.,
2003) and BioPAX (Demir et al., 2010). Contrary
to these formats existing NLP extraction systems
often use a data format called the “standoff for-
mat”, to represent their results. While the stand-
off format is often described as easily convert-
ible into SBML and BioPAX, no actual software
seems to exist to automate this conversion. This
paper tries to fill this gap by describing a software
system for the conversion of NLP event represen-
tations to the system biology structured data in-
terchange formats SBML and BioPAX. We also
provide open sourced software tools st2sbml
and st2biopax to convert from stand-off to
SBML/BioPAX format. The software tools and
additional information about the contents of this
paper can be found on our supplementary web-
page1.

2 NLP Event Representations

Existing NLP systems often use an event repre-
sentation format comprised of a set of annotation
rules and file formats to represent pathway events
and entities (Kim et al., 2011). For the purpose of

1https://github.com/sbnlp/
standoff-conversion
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Figure 1: Graphical representation of the event
representation of Example 1

this paper we base ourselves on the standoff rep-
resentation (ST) proposed for the BioNLP Shared
Task 2011, 2013 (Nédellec et al., 2013).

Annotations in ST link spans of texts through
character offsets to entities (e.g. Proteins,
Genes etc.) and events (Positive Regulation
etc.). Events and entities are represented line by
line with links between them.

The following is an example sentence and a pos-
sible event representations.

(1) YAP modulates the phosphoryla-
tion of Akt1.

T1 Protein 0 3 YAP
T2 Protein 37 41 Akt1
T3 Regulation 4 13 modulates
T4 Phosphorylation 17 32 phosphorylation
E1 Phosphorylation:T4 Theme:T2
E2 Regulation:T3 Theme:E1 Cause:T1

Each annotation starts with a unique annotation-
ID. The annotations-IDs encodes the annotation
type in the first letter (T - text bound annotation,
E - event annotation). This is followed by the
annotation-type. For instance, the text bound an-
notation T1 is of type protein, whereas T3 is of
type Regulation. Text bound annotations also en-
code the start and end position as well as the text
they annotate. Text bound annotation T1 for in-
stance ranges from character 0 to character 3 of
the annotated text and the actual text is “YAP”.

Event annotations build on top of text bound an-
notation. The annotations-ID for an event is fol-
lowed by an event-type and the reference to the
text bound annotation. For instance, E1 is a Phos-
phorylation event and the corresponding text is
T4 “phosphorylation”. Additionally, event annota-
tions encode roles. T2 is the theme of E1, which in
this case means that “Akt1” is undergoing a phos-
phorylation. Events can also be used as theme. For
example the theme of E2 is E1, which means that
the phosphorylation is regulated by “YAP”. Dif-
ferent roles are possible depending on the type of
the event.

Figure 2: Example 1 converted into SBML
(viewed with CellDesigner)

3 From Event Representations to SBML

Systems Biology Markup Language, or short
SBML (Hucka et al., 2003), is a XML-based
markup language to describe, store and com-
municate biological models. It is among the
most widely used formats with numerous software
support. SBML essentially encodes models us-
ing biological players called sbml:species2.
sbml:species can participate in interac-
tions, called sbml:reaction. Species par-
ticipate in interaction as sbml:reactant,
sbml:product and sbml:modifier. The
basic idea being that some quantity of reactant is
consumed to produce a product. Reactions are in-
fluenced by modifiers.

SBML supports mathematical representations
of the underlying dynamics of the reactions and
is essentially used to simulate models. Due to
this, there is no SBML vocabulary to specify dif-
ferent types of reactions (such as transcription,
phosphorylation etc.) or species (such as pro-
tein, DNA etc.). Alternatively, species and re-
actions can be annotated and uniquely specified
using MIRIAM resources and annotations (No-
vere et al., 2005). We use controlled vocabulary
from the Systems Biology Ontology (SBO) and
the Gene Ontology (GO). This information is also
useful to convert SBML files to other formats such
as SBGN (Le Novere et al., 2009) using tools such
as VANTED (Junker et al., 2006).

Figure 2 shows Example 1 converted into an
SBML model using the mapping algorithm de-
scribed in the following paragraphs.

3.1 Mapping Algorithm

The conversion of standoff formatted information
to an SBML model consists of five steps.

2We will refer to SBML vocabulary using the prefix
“sbml”.
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Standoff
Entity

SBO term SBO name

Complex SBO:0000253 non-covalent complex
Gene or
gene product SBO:0000245 macromolecule
Dna SBO:0000251 deoxyribonucleic acid
DnaRegion SBO:0000251 deoxyribonucleic acid
Drug SBO:0000247 simple chemical
Ion SBO:0000327 non-macromolecular ion
Protein SBO:0000252 polypeptide chain
Rna SBO:0000250 ribonucleic acid
RnaRegion SBO:0000250 ribonucleic acid
Gene SBO:0000354 informational molecule

segment
Small
Molecule SBO:0000247 simple chemical
Simple
molecule SBO:0000247 simple chemical

Table 1: Mapping of Annotation-type to SBO
term.

Step 1: Initialize the Model Firstly, read the
event annotation files and create a memory in-
ternal representation of triggers and events. We
initialize an empty SBML model with a single
sbml:compartment named “default”.

Step 2: Create sbml:species For each entity in
the standoff format, a sbml:species is added
to the SBML model. This only applies to stand-
off entities that can be mapped to an SBO term.
Then the following is done 1) map the annotation-
ID of the trigger to the id in the sbml:species,
2) create a meta id by appending ”metaid 0000”
and annotation-ID; meta id facilitates that anno-
tations to this species can uniquely refer to it
3) add the annotation-text as the name of the
sbml:species, 4) map the annotation-type to
an SBO term and add to the sbml:species (see
Table 1)

For instance, the standoff line
T2 Protein 37 41 Akt1

will be mapped to
<species sboTerm="SBO:0000252"
id="T2" name="Akt1"
metaid="metaid_0000T2"
compartment="default"/>

On the other hand, a line such as
T39 Entity 641 648 nucleus

will not be used to create a species in the SBML
model, because “Entity” cannot be mapped to an
SBO term. Here, “nucleus” actually refers to a
compartment which is not directly deducible from
the entity definition in the standoff format. To deal
with such cases, we need to take into account their
role in Events something that is described in the
next few paragraphs.

Standoff Event SBO/GO term SBO/GO name
Conversion SBO:0000182 conversion
Acetylation SBO:0000215 acetylation
Deacetylation GO:0006476 Protein Deacetyla-

tion
Methylation SBO:0000214 Methylation
Demethylation GO:0006482 Protein Demethyla-

tion
Phosphorylation SBO:0000216 phosphorylation
Dephosphoryla-

tion
SBO:0000330 Methylation

Ubiquitination SBO:0000224 Ubiquitination
Deubiquitination GO:0016579 Protein Deubiquiti-

nation
Degradation SBO:0000179 degradation
Catabolism GO:0009056 Catabolic Process
Catalysis SBO:0000172 Catalysis
Protein
catabolism GO:0009056 Catabolic Process
Association SBO:0000177 non-covalent bind-

ing
Binding SBO:0000177 non-covalent bind-

ing
Dissociation SBO:0000180 dissociation
Regulation GO:0065007 biological regula-

tion
Positive GO:0048518 positive regulation
regulation
Activation SBO:0000412 biological activity

Negative GO:0048519 negative regulation
regulation
Inactivation SBO:0000412 biological activity

Gene
expression GO:0010467 Genetic Production
Transcription SBO:0000183 Transcription
Translation SBO:0000184 Translation

Localization GO:0051179 Localization
Transport SBO:0000185 Transport Reaction

Pathway SBO:0000375 Process

Table 2: Mapping of annotation-type to SBO/GO
term.

Step 3: Create sbml:reaction Most events are
added to the SBML model as sbml:reaction.
For instance, the text trigger and event annotation
corresponding to E1 in Example 1 result in the fol-
lowing SBML description

<reaction metaid="metaid_0000E1"
sboTerm="SBO:0000216"
id="E1"
name="Phosphorylation"
reversible="false">

<annotation> ... </annotation>
</reaction>

The SBO/GO term is assigned according to the
mapping depicted in Table 2. The reaction id
is based on the event id (E10). The metaid of
the form ”metaid 0000 + id” is also added and
the sbml:reaction name is the event-type.
Lastly, all reactions are constructed as non re-
versible.
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In a second step sbml:reactant,
sbml:product and sbml:modifier
are added to SBML reactions based on the roles
of events.

Theme is the entity that undergoes the ef-
fects of the event. It is mapped to the
sbml:reactant of the SBML reaction.
For this a reactant reference is created and the
species corresponding to the entity is linked
to that reference via the id of the species
(annotation-id of the entity).

Product can be specified for Binding, Disso-
ciation3 and Conversion events. Product is
mapped to sbml:product of the corre-
sponding reaction. The entities appearing in
the product role are used for creating a prod-
uct reference with the same entity.

Cause is an entity/event causing the event.
Cause is eventually mapped to entities
which are then mapped to the reaction as
sbml:modifier (via modifier reference).

Information in Site (which describes the site on
the Theme entity that is modified in the event) is
added to the “Notes” section of the SBML reaction
as there seems to be no direct way to represent this
information in SBML. Notes are human-readable
annotations that can be added to SBML reactions.

Step 4: Handle Localization and Transport
Events Localization and Transport events are
handled differently from other events. They occur
with additional roles besides Theme.

AtLoc describes the location/compartment at
which the entity/species is located not
an actual reaction. Hence, localization
events with AtLoc roles do not end
up as reactions in SBML. Instead, first
we check if a sbml:compartment de-
scribed by the AtLoc role exists, else
a new sbml:compartment is created
(see the nucleus example discussed earlier).
Next, the compartment of the theme en-
tity of the event is set to the corresponding
sbml:compartment.

3In data used for evaluation we also encountered Dissoci-
ation events with Participant and Complex roles. They
are mapped to sbml:product and sbml:reactant re-
spectively.

FromLoc/ToLoc Transport and Localization
events can also include FromLoc and
ToLoc roles which describes the transport
of the theme entity/species from some loca-
tion/compartment to another. Consequently,
we create a reaction where the Theme en-
tity/species starts out in the compartment de-
scribed by FromLoc (sbml:reactant)
and ends up in the compartment de-
scribed by the ToLoc (sbml:product)
role. If the FromLoc/ToLoc
sbml:compartment does not exist
when creating the sbml:reaction, a
new sbml:compartment is created
corresponding to FromLoc/ToLoc.

Step 5: Handle Gene Expression Events We
model Gene expression events (e.g. Transcrip-
tion and Translation) as reactions in SBML. How-
ever, this class of reactions does not have the
sbml:reactant role. For Transcription events
(process in which a gene sequence is copied to
produce RNA) if the type of Theme is RNA,
it gets mapped to sbml:product. If the
type of Theme is DNA, then it gets mapped
to the sbml:modifier of the Transcription
sbml:reaction.

Translation events are handled in a similar man-
ner.

Step 6: Handle Regulation Events In principle
regulation events such as Positive/Negative Reg-
ulation, Activation and Inactivation can be han-
dled as described in Step 3 when the Theme and
Cause are species. If Theme and Cause are
species then they are added to a regulation reac-
tion as reactant and modifier respectively.

However, the standoff format definition also al-
lows regulation events where Theme and Cause
are themselves events4. For example, the follow-
ing standoff lines describe a Positive regulation of
a Phosphorylation event.

T14 Protein 776 782 eIF-4E
T15 Protein 852 859 insulin
T43 Phosphorylation 820 835
phosphorylation
T44 Positive_regulation 839 848

increased
E21 Phosphorylation:T43 Theme:T14
E22 Positive_regulation:T44 Cause:T15

Theme:E21

4In some of the data used to test our conversion we also
encountered Catalysis events which had event themes. They
are handled exactly as Positive Regulation events.
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If the Theme is an event, then we do not cre-
ate a reaction but simply add the Cause entity
as a modifier to the reaction corresponding to the
Theme event of the regulation. For the example
above this means that the Phosphorylation reac-
tion E21 is positively regulated (modified) by in-
sulin (T15).

In reality though things are a bit more compli-
cated since the Theme event might itself not exist
as a reaction. For instance, there could be an event
description as follows:

E23 Positive_regulation:T35 Cause:T21
Theme:E13
E13 Positive_regulation:T36 Theme:E21

Here, the event E23 has Theme E13, which
itself is a Positive regulation with Theme E21.
However, E13 itself does not correspond to a reac-
tion. In this case the algorithm recursively tracks
down the Theme event across multiple event an-
notations until it finds an event that exists in the
SBML model as a reaction (In this case E21 is
identified as the Theme for E23).

In case the Cause is an event, the product of the
Cause event is used as a modifier. If the reaction
corresponding to the Cause event does not have a
product yet, then a corresponding product species
is first created and added to the model.

Step 7: Optional Cleanup and Annota-
tion Operations As a last step optional
cleanup/enhancement operations can be per-
formed. They can be used to ensure consistency
of the resulting SBML model.

Add UniProt information We use the annotation
-text to retrieve information about species
from UniProt. The UniProt ID is added as
controlled vocabulary to the corresponding
SBML species. Other information is added
as XML annotation and XHTML notes. This
includes information about alternate names,
gene names, gene ids where available and ap-
propriate.

Remove unused species Not all entities end up as
products, reactants or modifiers of an SBML
reaction. In many cases, the named entity
recognizer might recognize some entity but
no links to events is established. However,
the entities might have been added to the
model (see Step 1). Entities not partaking in
any reaction can be removed automatically.

Complete reactions Our software supports auto-
matic adding of products and reactants for
reactions that were not explicitly annotated
in that way. For instance, all phosphoryla-
tion events can extended with corresponding
sbml:product species. The completion
takes into account that certain reactions such
as Gene expression reactions do not have re-
actants.

Here is an example of what we mean.
For a Phosphorylation reaction, the
first pass of the algorithm maps the
Theme to sbml:reactant and no
sbml:product is added. For example,
E1 (in Example 1) would have Akt1 as
a sbml:reactant. To complete this
reaction a new sbml:species with name
phoAkt1 is created representing the phos-
phorylated form of Akt. phoAkt1 is added as
the sbml:product to the reaction E1 (See
Figure 2).

Remove reactions without reactants, products
In other defunct cases the standoff file might
include events that cannot be translated into
reactions with reactants and/or products.
For example, we encountered in real data
that a reaction might only have a modifier
(Cause). Such reactions are automatically
removed if requested by the user.

3.2 Implementation
We used python and the python version of libS-
BML to develop the conversion algorithm. libS-
BML was used for generating and accessing the
SBML model content. We used a custom imple-
mentation of a Standoff parser which translates
the line-wise description of standoff triggers and
events in a1/a2 and ann files into a memory struc-
ture of triggers (id, type, text) and events (id, type,
roles). These structures are the basis for generat-
ing and completing the SBML model. The conver-
sion is fast. It scales linearly with the number of
entities, events and roles.

3.3 Discussion
The conversion of standoff format files to SBML is
quite straightforward with a few exceptions where
events cannot be mapped directly to an SBML re-
action as is the case with Localization events that
have an AtLoc role. Moreover, not all entities
end up as sbml:species. Cellular components
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Figure 3: Example 1 converted into BioPAX
(viewed with the ChiBE editor)

used in Localization and Transport events, for in-
stance, end up as compartments. Another example
are Regulation events that have events as Theme.
In all of these cases, events in the standoff do not
have a direct correspondent in the sbml model.

The algorithm is open to extension. For in-
stance, in order to integrate a new event with
Theme, Cause, Product, Site roles only a
new SBO mapping needs to be defined.

SBML has graphical editing tool support
through, for example, CellDesigner. Although
CellDesigner uses SBML as its base format, there
are a lot of tool specific custom XML annota-
tions that convey a more fine grained view of
sbml:species and sbml:reactions for
visualization purposes. Our focus in this paper is
the conversion to pure SBML format without tool-
based customizations.

4 From Event Representations to
BioPAX

Biological Pathway Exchange (BioPAX) is an-
other widely used pathway data format based on
RDF/OWL. It is used for storage, analysis, inte-
gration and exchange of pathway models (Demir
et al., 2013) . BioPAX, unlike SBML is more fine
grained in its explicit handling of different types
of biological players (bp:PhysicalEntity5),
and their interactions (bp:Interaction).

The BioPAX conversion algorithm is similar in
structure to the SBML conversion. Figure 3 shows
Example 1 converted into a BioPAX model using
the mapping algorithm described in the following
paragraphs.

Step 1: Initialize the model Read the event
files, parse and create a memory internal repre-
sentation of triggers and events. Create an empty
model BioPAX model.

5We will henceforth use the the prefix bp to refer to
BioPAX vocabulary

Step 2: Create bp:PhysicalEntity Each en-
tity in the standoff format is mapped to the
corresponding bp:PhysicalEntity class in
BioPAX. bp:PhysicalEntity is a super-
class of molecules such as proteins, DNA,
RNA, Small molecules, Complex etc. Depend-
ing on the granularity of the description of
the entity, the element is initialized as a sub
class of bp:PhysicalEntity. The map-
ping is described in Table 3. The created
bp:PhysicalEntity is assigned a unique-id
which is the same as the annotation-ID of the en-
tity. The name of the bp:PhysicalEntity is
assigned the annotation-text. For instance, the pro-
tein T8, described in the previous section will be
encoded as:
<bp:Protein rdf:about="T8">
<bp:name rdf:datatype =

"http://www.w3.org/2001/XMLSchema#string">
IkappaBs</bp:name>
</bp:Protein>

Standoff Entity BioPAX class
Cellular component prefix.CellularLocationVocabulary
Complex prefix.Complex
DNA prefix.Dna
Drug prefix.PhysicalEntity
Entity prefix.PhysicalEntity
Gene or gene product prefix.PhysicalEntity
Gene product prefix.PhysicalEntity
Gene prefix.Gene
Ion prefix.PhysicalEntity
Protein prefix.Protein
Receptor prefix.PhysicalEntity
RNA prefix.Rna
Simple molecule prefix.SmallMolecule
Simple chemical prefix.SmallMolecule
Tag prefix.PhysicalEntity

prefix = org.biopax.paxtools.model.level3

Table 3: Mapping of Annotation-type to BioPAX
term.

Step 3: Create bp:Interactions Each
event is mapped to the corresponding
bp:Interaction class in BioPAX.
bp:Interaction is a superclass used to
describe reactions and the relationship between
the bp:PhysicalEntity elements. Depend-
ing on the type of the event, an appropriate sub
class of the bp:Interaction is chosen. The
mapping is described in Table 4. The created
bp:Interaction is assigned a unique id
which is the same as the annotation-ID of the
event in the standoff. Additionally, all interaction
which have the bp:ConversionDirection
attribute, are set to bp:LEFT TO RIGHT.
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Standoff Event BioPAX Class
Conversion prefix.Conversion

Acetylation prefix.BiochemicalReaction
Deacetylation prefix.BiochemicalReaction
Methylation prefix.BiochemicalReaction
Demethylation prefix.BiochemicalReaction
Phosphorylation prefix.BiochemicalReaction
Dephosphorylation prefix.BiochemicalReaction
Ubiquitination prefix.BiochemicalReaction
Deubiquitination prefix.BiochemicalReaction

Gene expression prefix.TemplateReaction
Transcription prefix.TemplateReaction
Translation prefix.TemplateReaction

Catalysis prefix.Catalysis
Degradation prefix.Degradation
Catabolism prefix.Degradation
Protein catabolism prefix.Degradation
Association prefix.ComplexAssembly
Binding prefix.ComplexAssembly
Dissociation prefix.ComplexAssembly
Regulation prefix.Control

Positive regulation prefix.Catalysis
Activation prefix.Control

Negative regulation prefix.Control
Inactivation prefix.Control

Localization prefix.Transport
Transport prefix.Transport

prefix = org.biopax.paxtools.model.level3

Table 4: Mapping of annotation-type to BioPAX
interaction class.

Step 4: Add participants Events rele-
vant for this paper fall into 3 categories 1)
bp:TemplateReaction (for transcription
,translation and Gene expression events), 2)
bp:Conversion (for conversion events in-
cluding phosphorylation, dephosphorylation etc.,
transport events, binding events and dissociation
events) and 3) bp:Control (for regulation,
positive regulation, activation, negative regulation
and inactivation events).

Gene Expression, Transcription and
Translation events are modeled as a
bp:TemplateReaction. If the Theme
of a transcription event is of type RNA, then
it is mapped to the bp:product prop-
erty of the bp:TemplateReaction. If
the Theme is a DNA, then it is added as
bp:template property. Similarly, if the
Theme of a Gene expression event (Transla-
tion or Transcription) is of type Protein, then
the corresponding bp:PhysicalEntity
is set as the bp:product of the
bp:TemplateReaction. If the Theme
of a Translation event is an RNA, then it is set as
the bp:template property.

Conversion events are easily mapped to
BioPAX elements. Conversion events are all

modeled as bp:BiochemicalReaction.
The bp:PhysicalEntity correspond-
ing to Theme is set to the bp:left of
the bp:BiochemicalReaction. Site
information is encoded into the suitable
bp:sequenceSite property.

For instance, in the case of a Phosphoryla-
tion event, the reaction corresponds to Theme
becoming phosphorylated. For this a new
bp:PhysicalEntity is created which has the
same properties as Theme, except that it has
an additional bp:ModificationFeature,
which corresponds to the phosphorylated residue.
This new entity is then set to bp:right of
the bp:BiochemicalReaction. If these
reactions have the Cause entity, then, a new
bp:Control interaction is created with the
Cause entity as the bp:controller and the
created bp:BiochemicalReaction as the
bp:controlled.

Similarly, Binding, Dissociation and Degrada-
tion events map from their definitions onto the
BioPAX setting.

Localization and transport events with the
ToLoc and FromLoc roles are handled differ-
ently. The ToLoc and FromLoc entities are
added as compartments in the BioPAX model.
We then model a bp:Transport reaction with
the Theme entity transported from the FromLoc
compartment to the ToLoc compartment. Local-
ization events with AtLoc role are not explicitly
modeled as reaction. Only the compartment of the
corresponding Theme’s bp:PhysicalEntity
in the BioPAX model is appropriately set. Ad-
ditionally, the annotation-ID of the event is ap-
pended as a comment to the corresponding ele-
ment in BioPAX.

Control events are more complex since they
can involve another event as a Theme or Cause.
Positive/Negative Regulation, Activation and
Inactivation events where Theme is mapped
to a bp:PhysicalEntity are modeled as
a bp:BiochemicalReaction. Here the
entity is converted from an active/inactive form
to an inactive/active form. Next, a corresponding
bp:Control interaction is created (see Table
4). If the Cause is also an entity then it is added
as the bp:controller to the bp:Control
interaction. However, in case Cause is an event,
then the right side entity (or product) of the In-
teraction encoded by the Cause event is derived
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and added as the bp:controller. The pre-
viously created bp:BiochemicalReaction
is then added as the bp:controlled el-
ement for the bp:Control interaction.
The bp:controlType property is set to
bp:ACTIVATION and bp:INHIBITION for
the Positive Regulation/Activation and Negative
Regulation/Inactivation events respectively.

Regulation, Positive Regulation and Negative
Regulation can also have events in the Theme
role. In this case, the Interaction corre-
sponding to the Theme is searched, and added
as the bp:controlled element of a new
bp:Control interaction. Should there be a
Cause entity or event then it is handled as de-
scribed previously.

Step 5: Optional Postprocessing Operations
The software for BioPAX supports post process-
ing similar to the SBML converter: 1) Un-
used entities can be removed, 2) interactions
completed and 3) interactions without reactants
and products removed. Additionally, we can
assign a unique identifier to BioPAX entities
by querying external databases like UniProt,
this information is encoded into the bp:Xref
class using either bp:RelationshipXref or
bp:UnificationXref.

4.1 Discussion

The conversion from standoff to BioPAX is rel-
atively straightforward. The finer grained options
to represent different types of information makes it
more naturally suited to translate annotations from
standoff format. Nevertheless, issues highlighted
in the SBML conversion exist in the BioPAX con-
version too. For example, certain events such as
Localization events with an AtLoc role do not
end up as bp:Interaction etc.

4.2 Implementation

The algorithm is implemented in python. It uses
the Java Paxtools 4.2.1 toolkit (Demir et al., 2013)
to encode and manipulate models into the BioPAX
format. JPype is used as the bridge to connect
python to the Paxtools library. The other compo-
nents of the implementation (such as the standoff-
parser) are the same as used in the SBML imple-
mentation.

5 Results and Evaluation

For initial evaluation of our software we used the
mTOR pathway event corpus also used in a related
study on converting pathway models to standoff
format (Ohta et al., 2011). The corpus consists of
60 PubMed abstracts and the same number of files
of hand-annotated standoff files. The 60 abstracts
contain 11960 words. The hand-annotated data
contains 1284 events, 1483 Protein, 1 Entity, 201
Complexes (which gives a total of 2970 text bound
annotation triggers). In total the annotations con-
tain 1228 Theme roles, 19 Product roles, 205
Causes, 139 Site, 8 atLoc, 4 fromLoc, 16
toLoc and 51 participant. The conversion
run on the hand-annotated data correctly translates
entities and events to SBML and BioPAX accord-
ing to the mapping described in the previous sec-
tions.

In order to check our software with state-of-the-
art event extraction systems we applied an unal-
tered, freshly downloaded Turku Event Extraction
System/TEES Version 2.1 (Björne et al., 2013) to
the 60 PubMed abstracts. The resulting TEES/60
corpus contains 1472 text bound triggers (in a1)
and 783 text bound triggers (in a2). TEES ex-
tracted 1473 Proteins which were all successfully
translated to SBML and BioPAX. 20 entities were
detected, 3 of which were translated into compart-
ments (based on their usage in Localization), 10
were used as site and translated into site com-
ments. In total 1126 events were detected by
TEES of which the majority was translated. The
exception were 30 localization events of which 1
was a localization with an AtLoc role (translated
into a compartment). 29 Localization events were
only annotated with a theme and therefore were ig-
nored. 270 regulation events have an event based
theme. Only 99 of those are also cause anno-
tated and handled as sbml:reaction. The remain-
ing 171 disappear since the extracted information
from TEES is not enough to establish links in the
models (both BioPAX and SBML).

Importantly, the failure to translate some of
these events into SBML/BioPAX is caused by in-
complete information provided by the NLP event
extraction system. For instance, Localization
events which only have a Theme role do not pro-
vide enough information to be added to the model.
Obviously this is one of the areas where hand-
annotated data provides better conversion results.
Nevertheless, these kind of results are encourag-
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ing because the translation into biological knowl-
edge allows for further processing and cleaning of
automatically extracted data and potentially may
lead to better extraction systems by providing ad-
ditional learning signals.

Working with Natural language is never easy.
Natural language is full of underspecification, am-
biguities and context-dependencies. Standoff for-
mats represent a compromise between exact spec-
ifications such as SBML and BioPAX that come
with their own design approach and assumptions.
Trying to map from one world into the other we
noticed a few problems

Coarse type granularity of biological players:
Coarse granularities such as ”Gene or gene
product”, which encompass genes, RNA and
protein, make it difficult to assign a type for
the entity. This is important for reactions
such as Gene expression, where the decision
whether something is a sbml:product
or sbml:modifier depends on exact
distinctions.

Underspecification of event types: The event
type Regulation refers to any process
(Cause) that modulates any attribute of
another process (Theme). In the pathway
representation context, it is more natural that
the process that gets modulated be an event
(which is modeled as a sbml:reaction
in SBML and bp:Interaction in
BioPAX). It is not clear how to correctly
represent the scenario when the process
that gets modulated is an entity (mod-
eled as sbml:species in SBML and
bp:PhysicalEntity in BioPAX). How-
ever, the event specification allows Theme
(that which is regulated) to be either an entity
or an event.

Underspecification of roles: Event extraction
systems try to extract as much as possible
but often are not able to extract all necessary
information. For example, the following
says there is a Positive regulation on Theme
T23, but no information is available on the
process that is regulating it (no Cause).
E13 Positive regulation:T36
Theme:T23
In such cases the converter is unable to
extract SBML and BioPAX information.

6 Conclusion

In this paper we proposed and discussed a scheme
to convert NLP event representations to stan-
dard biomedical pathway data formats (SBML and
BioPAX). This is important for several reasons.
The system allows curators to integrate event ex-
traction data into their normal work flow. For in-
stance, the extracted information can give curators
a base template, which can be further edited in
their favorite drawing tool. The integration into
graphical annotation tools could provide the ba-
sis to later capture the curator’s changes. These
changes could in turn be used to generate new hu-
man annotations and to improve current event ex-
traction systems. Together with other tools that
support the conversion of SBML models into NLP
standoff representations (Ohta et al., 2011), our
system bridges the gap between biological model-
ing and automatic event extraction and opens the
way to a more tight interaction between the two
fields.

Tight integration of NLP and biomedical re-
search is a recent trend (Huang and Lu, 2015)
with a number of groups moving in this direc-
tion (Wei et al., 2013; Cejuela et al., 2014; Miwa
et al., 2013, for example). For pathway cura-
tion, it is important that the results of event extrac-
tion technologies become part of curation appli-
cations/workflows. To achieve this we will have
to overcome problems inherent in the design of
formats such as SBML/BioPAX and/or standoff
formats. For instance, SBML wa s primarily de-
veloped as process-based transition notation that
cannot faithfully capture all known biochemistry.
Popular software like CellDesigner add a layer of
custom XML annotations to resolve this. For our
tools to be used in CellDesigner we have to add
such information in the conversion process. An-
other layer of information can be provided by au-
tomatic annotation using UniProt. For the future it
will be important to integrate other databases and
external references.

Lastly, we plan to perform a more thorough
evaluation of the conversion by reconstructing a
complete known pathway (e.g. the mTOR path-
way, for which high quality maps are already
available). We are also performing a large scale
evaluation of the software on the EVEX event
database – a text mining resource of PubMed ab-
stracts and full texts (Van Landeghem et al., 2011)
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Abstract

A typical NLP system for medical fact coding

uses multiple layers of supervision involving fact-

attributes, relations and coding. Training such a

system involves expensive and laborious annotation

process involving all layers of the pipeline.

In this work, we investigate the feasibility of a shal-

low medical coding model that trains only on fact

annotations, while disregarding fact-attributes and

relations, potentially saving considerable annota-

tion time and costs. Our results show that the shal-

low system, despite using less supervision, is only

1.4% F1 points behind the multi-layered system on

Disorders, and contrary to expectation, is able to

improve over the latter by about 2.4% F1 points

on Procedure facts. Further, our experiments also

show that training the shallow system using only

sentence-level fact labels with no span information

has no negative effect on performance, indicating

further cost savings through weak supervision.

1 Introduction

Medical fact coding is the joint task of recogniz-
ing the occurrences of medical facts from elec-
tronic patient medical records expressed in natu-
ral language, and linking each occurrence of a fact
to a specific code in a medical taxonomy such as
SNOMED1.

A representative sentence from a medical record
along with its annotated facts is shown in Figure 1.
In the parlance of traditional natural language pro-
cessing, this task is roughly equivalent to the tasks
of named-entity recognition (Nadeau and Sekine,
2007) and entity-linking2 rolled into one.

Several open evaluations such as ShARe-CLEF
(Pradhan et al., 2013) and Semeval (Pradhan et al.,

1http://www.nlm.nih.gov/research/umls/
Snomed/snomed_main.html

2http://www.nist.gov/tac/2013/KBP/
EntityLinking/index.html

2014) have been run recently to address the twin
problems of fact recognition (recognizing occur-
rences of medical facts in text) and fact-coding
(linking each occurrence of a fact to a pre-assigned
code). These evaluations report performance num-
bers on both the tasks separately.

Often times, facts that occur in a medical text
may not correspond to any pre-assigned codes,
and are referred to as CUI-less facts in the Semeval
evaluation. In the aforementioned evaluations, the
systems are expected to output and are evaluated
against CUI-less facts as well. However, in typical
end-user applications such as medical billing, one
does not care about the occurrences of unrecog-
nized, non-billable facts. This work is targeted at
such end applications where discovering only the
occurrences of fact-codes recognized by a medi-
cal taxonomy is desirable. Consequently, CUI-less
facts are ignored in our evaluation framework.3

In this work, we will focus only on the fact types
of Disorders and Procedures, and use SNOMED
as our medical taxonomy. We also use Linkbase4

as our knowledge-base for descriptions of the fact
codes.

2 Multi-layered Models for Fact Coding

Some of the unique characteristics of medical fact
coding compared to the traditional entity recogni-
tion are as follows:

1. Unlike traditional entities, medical facts can
be non-contiguous.

2. Unlike traditional entities, medical facts can
be overlapping.

3In the official data of the Semeval task, it is reported that
at least a quarter of the annotated facts are CUI-less (Pradhan
et al., 2014). Hence ignoring these facts essentially renders
a comparison of our evaluation numbers with the official Se-
meval numbers meaningless.

4http://www.nuance.com/
for-healthcare/resources/
clinical-language-understanding/
ontology/index.htm
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“IMPRESSION :    fracture     or    dislocation   within the    right ankle    .”

16114001:FRACTURE_OF_ANKLE_(DISORDER)

269114000::DISLOCATION_OR_SUBLUXATION_OF_ANKLE_(DISORDER) 

Figure 1: An example sentence containing two non-

contiguous and mutually overlapping facts: Fact 1 is com-

posed of the words ‘fracture’, ‘right’, and ‘ankle’ while Fact

2 comprises the words ‘dislocation’, ‘right’ and ‘ankle’. Note

that both facts are non-contiguous, since there is a break be-

tween ‘fracture’ and ‘right ankle’ as well as between ‘disloca-

tion’ and ‘right ankle’. Likewise, both facts are overlapping

with each other since they share the tokens ‘right’ and ‘an-

kle’.

The example sentence in Figure 1 satisfies these
two unique criteria. Since entities may not oc-
cur contiguously, a BIO (Begin-Inside-Outside)
style sequence tagger is no longer directly ap-
plicable (Bodnari et al., 2013). Therefore,
some researchers have used BIOT (Begin-Inside-
Outside-BeTween) style coding to model the non-
contiguous nature of the entities (Cogley et al.,
2013), while others have attempted the approach
of breaking down the entities into attributes that
satisfy the contiguousness requirement of the BIO
style taggers, and then reconstructing the original
non-contiguous entities by tying the mentions of
attributes together using relations (Gung, 2013).
The former approach of BIOT tagging addresses
the problem of non-contiguous entities but does
not address the problem of overlapping entities,
while the latter can address both the problems.
Hence, in this work, we will use the latter ap-
proach as our multi-layered baseline system.

An example output produced by various stages
of the multi-layered system for the example sen-
tence of Figure 1 is shown in Figure 2. In this
example, a Disorder fact is broken down into at-
tributes such as Disorder-Core, Body-site and Lat-
erality, whose occurrences are always contiguous.
The mentions of these attributes are identified by a
BIO-style sequence tagger such as the CRF (Laf-
ferty et al., 2001). Next, a relations classifier is run
on all pairs of attribute mentions in a given sen-
tence. Finally, all attribute-mentions connected by
relations are aggregated to produce fact-mentions,
which are then lexically compared to a database of
fact-descriptions to output the code of each men-
tioned fact, if one exists in the taxonomy.

“IMPRESSION :    fracture     or    dislocation   within the    right    ankle    .”

Core Core Laterality Body Site

TEXT:

MENTIONS:

RELATIONS:

fracture right ankle dislocation right ankleAGGREGATED FACTS:

CODING: 16114001:FRACTURE_OF_ANKLE 269114000:DISLOCATION_OR_SUBLUXATION_OF_ANKLE

Figure 2: Output of various stages of the multi-layered

pipeline on the example sentence in Figure 1. The mentions

stage produces mentions of contiguous attributes, while the

relations stage ties them together to produce larger, poten-

tially non-contiguous entities. The final coding stage com-

pares the fact-text to a database of fact-codes and their de-

scriptions, and outputs the predicted medical codes.

Although the above mentioned strategy of a
multi-layered system is very effective, annotat-
ing the training data required for all stages of
the pipeline can be quite laborious and expensive.
The motivating question for us in this work is
whether we can eliminate some of the stages such
as attribute-mentions and relations and still deliver
comparable fact-coding performance. We call our
approach shallow coding as it aims to reduce the
number of layers of supervised data needed to
train the model.

3 Shallow Coding Model

The multi-layered model uses a bottom-up ap-
proach starting from attribute-mentions and incre-
mentally building all the way to fact-codes. In
contrast, the shallow coding model uses a top-
down approach wherein the entire text of the sen-
tence is used as a query to retrieve matching facts
directly. Note that this model does not use any se-
quence tagger to identify relevant spans of the text
before matching them with the fact-descriptions.
Since using the entire sentence for matching re-
sults in retrieval of many spurious facts, they are
further analyzed in subsequent stages to output the
final set of predicted facts.

This approach detects occurrences of only the
facts with pre-assigned codes in the taxonomy
since the retrieved candidate facts are those that al-
ready exist in the taxonomy. In contrast, the multi-
layered model can also detect facts that have no
pre-assigned codes since the fact-recognition step
is independent of the taxonomy. Since our final
objective in this work is to generate recognizable
fact codes, the shallow coding model is an appro-
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Fact Code Description Source
(Fact-Type)
49436004 atrial fibrillation Linkbase
(Disorder) af DocID-131

afib DocID-236
195080001 atrial fibrillation and flutter Linkbase
(Disorder) atrial flutter DocID-567

Table 1: A sample of the database of fact codes and their

descriptions collected from a union of Linkbase and training

data annotations.

priate candidate for the task. It is however not an
appropriate model for the ShARe-CLEF and Se-
meval evaluations that also care about unrecogniz-
able (CUI-less) facts. Hence we are unable to eval-
uate this model using the official evaluations. We
however, compare the shallow model with our own
implementation of the multi-layered approach as a
baseline.5

The rest of the section discusses in detail, the
various stages of the shallow coding system in the
order of their execution.

3.1 Information Retrieval (IR) Stage

An inverted-index of codes and their corre-
sponding concept-descriptions, as provided in the
Linkbase knowledge-base is first created. The in-
dex is also augmented with fact annotations from
training data, treating each fact-mention as an ad-
ditional description for the corresponding fact-
code. Such augmentation with training anno-
tations is necessary since the language used in
SNOMED descriptions differs significantly from
that used in medical reports.6 To prevent over-
fitting at training time, we use a leave-one-out
strategy where for each sentence in the training
set, the retrieval results exclude fact-annotations
from the document that the sentence belongs to. A
few example descriptions augmented with training
data annotations are shown in Table 1.

During the retrieval process for a given sen-
tence, the sentence is first filtered for all punctu-
ation and stop-words, and an initial search is per-
formed using a sliding-window of length 3 words
and the retrieved descriptions over all the window

5The multi-layered approach should in fact be considered
an upper-bound since it has access to more layers of labeled
data.

6For example, one of the descriptions for Disorder code
49436004 is ‘Atrial fibrillation’. However, in medical re-
ports, doctors typically use the short form ‘afib’ to represent
the same fact. Such variations can only be captured if we
include training annotations as additional descriptions in the
index.

searches are pooled together by their fact-codes.
The reason for using a sliding-window search is
that it minimizes spurious long-distance matches
with the sentence. Any facts that span longer than
the sliding window size may be ranked lower in
the initial search, but are boosted in the re-ranking
stage as described below.

The pooled descriptions are then pruned by their
retrieval scores to a maximum of 10 descriptions
per code. We then re-rank the retrieved facts by the
maximum of the inclusion scores of their retrieved
descriptions computed with respect to the entire
sentence:

incl-score(f, s) = max
d∈f

(
∑

w∈(d∩s) TF(w, f)IDF(w)∑
w∈d TF(w, f)IDF(w)

),

(1)
where f is a fact-code, s is a sentence, d is
a description pooled into f , and w is a word-
token in the description obtained after removing
stop-words and stemming the remaining words.
The inverse-document-frequency (IDF) weights
are computed from the index of descriptions
and not from the training documents, and term-
frequency TF(w, f) is computed as the proportion
of all descriptions in the fact f that contain the
specific word w. The inclusion score is simply
the IDF-weighted fraction of the description to-
kens contained in the sentence.

Further, to ensure that a single instance of
the sliding window query does not dominate the
search results, we also introduce a redundancy
based penalty term into the inclusion score in Eqn.
1 where each word w in the numerator is dis-
counted by log(1+c(w)), where c(w) is the count
of the number of times the word w is seen in the
retrieved descriptions in the original ranking thus
far.

The number of top ranking facts we return
per sentence is a variable based on the sentence-
length:

n(s) = max(25, min(3× len(s), 50)), (2)

where n(s) is the number of facts returned for the
sentence s, and len(s) is the number of processed
tokens in s.

Note that we use unstemmed tokens in the ini-
tial search, but stemmed tokens for re-ranking,
as this has been empirically found to improve
performance by a small amount. In all our ex-
periments, the initial search is performed us-
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Component Recall
Lucene Search only 89.10
+ Inclusion-score-reranking 95.68
+ Redundancy penalty 96.12

Table 2: Contribution of various components towards the

performance of the IR system. The numbers reported are on

our Integris development set on Disorders facts.

ing default-ranking function as implemented in
Lucene.7

Table 2 lists the contribution of Lucene search,
re-ranking using inclusion score and using re-
dundancy based penalty on our development set.
The results indicates that while re-ranking is very
critical towards achieving high recall, using a
redundancy-based penalty to encourage diversity
of results also is incrementally useful.

3.2 Alignment
All the descriptions retrieved from the previous
step are then independently aligned word-to-word
with the sentence text. For each description, we
compute the alignment that has the minimum span
but maximal possible matching, using a dynamic
programming implementation that has a quadratic
complexity in sentence length. We allow non-
contiguous alignments in keeping with the fact
a medical fact may consist of non-contiguous
words. If multiple alignments satisfy this crite-
rion, we return all such alignments. Note that the
matches are computed using stemmed tokens, and
order of matching is disregarded in computing the
alignment. An example alignment where a single
fact matches twice in a sentence via multiple de-
scriptions is displayed in Figure 3.

For each description d aligned with the sentence
s, an alignment score is computed as follows:

Align-score(a(d, s)) = incl-score(d, s) ×
tightness-ratio(a(d, s)) ×

(
∑

w∈d∩s

(log(1.0 + IDF(w)))),

(3)

where a(d, s) is the alignment of the description
with the sentence, incl-score(d, s) is computed as
shown in Eqn. 1, and tightness-ratio(a(d, s)) is
computed as follows:

tightness-ratio(a(d, s)) =
∑

w∈d∩s(1)
span-len(a(d, s))

,

(4)
7http://lucene.apache.org/

DIAGNOSES : Encephalopathic state ; acutely delirious and agitated state .

State DeliriousEncephalopathy State
2776000:

of

ConditionEncephalopathy Delirium

SENTENCE

DESCRIPTION 
CLUSTERS

Figure 3: The Disorder code 2776000 occurs twice in

the same sentence expressed as ‘encephalopathic state’ and

‘delirious state’. Note that word order is ignored in com-

puting the alignment. The words ‘encephalopathy’ and ‘en-

cephalopathic’ match with each other due to matching of

their stems. Also worth noting is the observation that the

word ‘state’ in the description ‘state of encephalopathy’ could

have been aligned with the last word in the sentence, but it

does not happen since the alignment algorithm prefers maxi-

mal matches that have minimal span. The descriptions ‘state

of encepahlopathy’ and ‘encephalopathy condition’ overlap

over the word ‘encephalopathy’ and therefore form a cluster

of descriptions. Likewise, the descriptions ‘delirious state’

and ‘delirium’ overlap over the word ’delirious’ in the sen-

tence, and form another cluster with the same fact code.

These two clusters represent two distinct occurrences of the

fact-code 2776000 in the sentence.

where span-len(a(d, s)) is the difference between
the sentence-positions of right-most word in the
alignment and the left-most word. Tightness ra-
tio is higher for contiguous alignments than other-
wise. As Eqn. 3 indicates, alignments that have a
high inclusion score, tight alignment and a num-
ber of ‘important’ aligned words (as measured by
their IDF scores) get high alignment-scores.

Since each fact can have multiple descriptions
each of which may align in one or more ways
with the sentence, we cluster the alignments of
each fact based on their alignment positions in
the sentence. In other words, each alignment-
cluster c for a given fact contains all the descrip-
tions that have at least one aligned position in
common with another description in the cluster.
Each such alignment-cluster constitutes an exam-
ple, that goes to classifier-stages for further anal-
ysis. The alignment of a cluster with respect to a
sentence is given by the alignment of the descrip-
tion in the cluster that has the best alignment score
as given by Eqn. 3.

a(c, s) = arg max
a(d,s) ∀ d∈c

Align-score(a(d, s))

(5)
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3.3 Match Classifier

As mentioned above, each alignment cluster is
treated as an example that is analyzed by the
Match-classifier. At training time, the clusters are
first mapped to positively annotated facts, such
that each cluster is aligned with a positive fact in
a greedy manner on a one-to-one basis. All the
clusters mapped to positively annotated facts are
considered positive examples, and the rest, nega-
tive.

Further, for training the Match-classifier, we
only use those negative examples whose align-
ments do not overlap with those of any positive
examples. This is done so that the Match-classifier
accurately captures the semantics of similarity be-
tween the sentence and retrieved facts. The neg-
ative examples that overlap with the positive ones
may have been annotated as negative for one of
the following two reasons: (i) the retrieved fact is
not related to the sentence, and (ii) the retrieved
fact is related but is overruled because some other
retrieved fact applies more accurately to the sen-
tence. The Match-classifier is designed to deal
with only case (i) above, hence we ignore the neg-
ative facts that overlap with any of the positive
facts for training purposes. These facts will be
handled separately by the Overlap-classifier in the
next stage.

At test time, all the examples are run through
the Match-classifier and classified as positive or
negative for a given sentence. If the alignment of a
given positively classified example does not over-
lap with that of any other example, it is directly
output as positive for the given sentence. Else, it
is sent to the subsequent stages for further analy-
sis.

The following is the full list of features used in
the Match-classifier.

Similarity features:
Unigrams: number of words and proportion of
words in the description that are matched in the
sentence, as well as the IDF-weighted versions of
these two features.
Bigrams: number and proportion of bigrams in the
description matched, as well as IDF-weighted ver-
sions of these features, where the IDF of a bigram
is computed as the average of the IDFs of the pair
of words in it.
Unordered bigrams: same as above, but ignoring
the ordering of the bigrams.

Character-trigram features: each word in the de-
scription is mapped to a word in the sentence
that has the highest number of character-level tri-
grams in common, and its similarity to the mapped
word is measured in terms of the proportion of its
character-trigrams matched. As features, we use
the number and proportion of words in the descrip-
tion mapped, weighted by the character-trigram
similarity scores.
Edit-distance based features: similar to character-
trigram features, we map each word in the de-
scription to a word in the sentence using mini-
mum edit-distance as the criterion. Next, we com-
pute number and proportion of words matched us-
ing (1-edit-distance)/(word-length) as the similar-
ity weight.
Synonym features: each word in the description
is replaced with one of its synonyms from a dic-
tionary8, and computed unigram features with the
replaced words, as above. The maximum value of
the features over all synonyms is used as the final
feature value.

For each of the above features, we compute its
maximum value over all descriptions in the cluster
and it as the final feature value.

Lexical features:
Matched and unmatched words: the matched
words and their bigrams in the best alignment of
the cluster, conjoined with the code, as well as the
unmatched words within the span of the alignment
conjoined with the code.
POS features: the parts-of-speech categories of
matched words and their bigrams in the best align-
ment of the cluster, conjoined with the code,
as well the POS categories of unmatched words
within the span of the alignment, conjoined with
the code.
Context words: Two words to the left and two
words to right of the alignment, conjoined with the
code of the description, used both as unigrams and
bigrams.

Other features:
Alignment-based features: the tightness ratio (see
Eqn. 4 above) of the best alignment for the cluster,
average distance between the words in the align-

8The synonyms are generated in an unsupervised fashion
based on descriptions that co-occur in a fact but differ by a
single word, e.g.: ‘lung cancer’, and ‘pulmonary cancer’ are
used to describe the same fact, hence ‘lung’ and ‘pulmonary’
are considered synonymous.
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ment, and the number of unmatched words in the
span of the alignment.
Prior features: the number and fraction of times
the best aligned description in the cluster has been
annotated with the given code in the training set.
Header features: the section-header name of the
current sentence (E.g.: Diagnosis, History of ill-
nesses, Discharge Summary, etc.) conjoined with
the code of the matching description.

3.4 Overlap Classifier

All the examples classified as positive by the
Match classifier that overlap with at least one other
positively classified example are input to the Over-
lap classifier, that further analyzes these examples.
The Overlap classifier uses all the features used in
the Match-classifier as well as additional features
based on the type of overlap between the two ex-
amples, and hierarchy relationship in SNOMED
taxonomy between the two overlapping facts. We
compute these features for each example with re-
spect to all other examples that overlap with it. For
a given example, even if the same feature fires with
multiple overlapping examples, we do not add up
the counts since we consider it as a binary feature.
Overlap features: For each example, a binary fea-
ture is computed to characterize whether its align-
ment (a) is subsumed by the alignment of the other
example, (b) subsumes the alignment of the other
example, (c) exactly equals the alignment of the
other example or (d) overlaps without any of the
three properties above. Other variants of this fea-
ture also include the feature conjoined with the
overlapping words, and conjoined with the fact
codes of the two examples.
Hierarchy features: For each example, we define
a binary feature to characterize whether an exam-
ple’s fact-code is (a) a descendant, (b) an ancestor,
(c) a sibling or (d) a co-parent of the other overlap-
ping example’s code in the taxonomy. Variants of
this feature also include the feature conjoined with
words in the overlap, and the fact codes of the two
examples.

We only use positive examples that overlap with
at least one other example, and negative examples
that overlap with at least one positive example for
training the classifier. This kind of sub-sampling
of the training data allows the Overlap classifier to
learn the semantics of how certain facts overrule
other facts although both facts may be equally re-

Component F1
Match Classifier only 78.65
+ Overlap Classifier 81.73
+ Rejection Rules 83.07

Table 3: Contribution of the two classifiers and the rejection

rules towards the performance of the Shallow coding system.

All numbers are reported on Disorder facts on the Integris

development set.

lated to the sentence in question.9

At test time, each example is classified in an
I.I.D. manner10 , and the positively classified ex-
amples are then input to the final stage as de-
scribed below.

3.5 Rejection Rules

In the final stage of the Shallow coding model, we
apply two rules to potentially reject inconsistently
classified examples from the previous stage. The
two rules are listed below:
Rejection of subsumed examples: If the alignment
of a positively classified example A strictly sub-
sumes that of another positively classified example
B, then example B is rejected and labeled as neg-
ative, since example A, with its longer alignment,
is usually the more reliable and more specific fact.
E.g.: Fact#195080001 with alignment ‘atrial fib-
rillation and flutter’ overrules Fact#49436004 that
aligns with only ‘atrial fibrillation’, as its align-
ment is subsumed by the former’s.
Rejection of ancestors: If the alignment of a pos-
itively classified example A overlaps with that of
another positively classified example B and A is
an ancestor of B, then the example A is rejected,
since B, being the descendant is a more specific
fact than A.

Note that the above rules are applied to pairs of
positively classified and overlapping examples A
and B, where A’s confidence score as given by the
Overlap classifier is higher than that of B.

9For example, if the medical text contains the phrase
’atrial fibrillation and flutter’, it would match against both the
facts shown in Table 1. However, Fact#195080001, being the
more specific match is the correct fact and therefore overrules
Fact#49436004.

10It is easy to see that the interactions of the overlap-
ping examples may be modeled by a joint model such as the
CRF. We have tried using CRFs in our experiments. Since
the structure of the CRF can be arbitrary depending on the
overlapping structure in a sentence, exact inference is hard.
Hence, we used pseudo-likelihood for training the CRF and
Gibbs sampling for testing, but it has not produced better re-
sults than the I.I.D. classifier using the features listed above.
Hence we do not report the CRF’s performance.
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Figure 4: Comparison of various stages in the multi-layered

pipeline vs the Shallow coding pipeline: the boxes with bro-

ken borders in either pipeline represent the stages that require

labeled data. In the Shallow coding pipeline, Match-classifier

and Overlap-classifier are the only stages that need training

data, and they both use different slices of the same fact-span

data for training. In contrast, the deep pipeline needs separate

training data for mentions, relations and coding.

Dataset Subset nDoc nSent nFact
(FactType)
Integris train 409 14,218 10,906
(Disorders) test 384 28,408 7,807
Mult-inst train 12,370 484,822 204,124
(Disorders) test 1,530 99,564 27,307
Proc-notes train 1,624 71,151 17,996
(Procedures) test 201 8,915 2,996

Table 4: Statistics of the datasets and corresponding fact-

types used in our experiments. Integris is used purely as a

development dataset on which we developed and tuned our

models. We trained and evaluated Disorders on the multi-

institution train and test datasets respectively. Similarly, we

trained and evaluated our models on Procedures on the Proc-

notes train and test splits. In the table, nDoc stands for num-

ber of documents, nSent for number of sentences, and nFact

for number of facts.

Table 3 reports the incremental contribution of
each classifier component to the overall perfor-
mance of the shallow coding system. The num-
bers show that each component makes a signifi-
cant contribution towards the overall performance.

Figure 4 compares the various stages involved
in the multi-layered pipeline to the shallow cod-
ing system. The number of stages that need anno-
tated data for training are indicated by boxes with
broken edges in the figure, and is much less for
the shallow system. In fact, both the stages that
need training data in the shallow system, namely
the Match classifier and Overlap classifier use dif-
ferent slices of the same training data, as described
earlier.

Dataset Model Prec. Rec. F1
Integris Mult-layer 82.76 84.51 83.63

Shallow 85.27 80.98 83.07
Multi-Inst Mult-layer 86.36 87.72 87.03

Shallow 86.68 84.54 85.60
Proc-notes Mult-layer 38.31 55.27 45.25

Shallow 44.79 50.90 47.65

Table 5: Performance comparison: the shallow coding sys-

tem is only about 0.6% F1 points below the multi-layered one

on Disorders on the development set. On the unseen data of

Multi-institution using the same fact-types, it is about 1.4%

F1 behind the multi-layered model. On Proc-notes data in-

volving Procedure facts, the shallow system is able to outper-

form the multi-layered architecture by 2.4% F1 points.

4 Experiments and Results

For tuning and developing our model, we used
medical reports from an institution called Integris,
which are partitioned into training and test sets.
We tuned our model only on Disorder facts and
evaluated them on both Disorders and Procedures.
For evaluating the model on Disorders, we used
another dataset from multiple institutions with its
own train and test partitions which we call the
Multi-inst dataset. For evaluating procedures, we
used a dataset consisting of Procedure Notes doc-
uments with its own train and test partitions. The
statistics of the datasets are summarized in Table
4.

The results of our experiments are summarized
in Table 5. The shallow coding model is only
about 1.4% F1 points behind the traditional multi-
layered supervised model on Disorder facts, mak-
ing it attractive for situations where cost savings
are critical. On the more complex medical fact-
types of Procedures, the shallow coding system
outperforms the multi-layered system by 2.4 % F1
points. The fact that Procedure facts are harder
is evident from the performance numbers of ei-
ther system on Procedures compared with those
on Disorders. A a few example Procedure facts,
along with their attribute level annotations are dis-
played in Figure 5.

On complex fact-types involving long distance
relations between the attributes, errors accumulate
over the layers of the multi-layered system result-
ing in poorer performance.11 In such a scenario,
the shallow model may be more attractive.

11We are unable to show detailed comparison of the errors
of the two models as our datasets are proprietary.

58



4.1 Weakly supervised training

Further, our experiments on both Disorders and
Procedures showed that the performance of the
shallow system practically remains unchanged
even if it is provided with only sentence-level fact
labels at training time, omitting their actual spans.
The exact span of each fact in a training sentence is
not needed since the model’s alignment stage com-
putes this information reasonably accurately, as
long as it knows that the fact exists in the sentence.
There was however, a caveat in our experiments:
we retained the fact descriptions in the retrieval in-
dex that were created from the fact-spans in train-
ing sentences (see Section 3.1). Without these
augmented descriptions, the performance of the
system degrades considerably. Although this fact-
span information was used only in the IR stage,
it essentially means that the system did ultimately
have access to fact-spans, and therefore is not a
strict weakly-supervised model. Despite this im-
portant caveat, we believe that there is promise in a
weakly-supervised system for medical fact coding,
where facts are annotated only at sentence level
without the exact span information, which may
yield additional annotation cost savings. Note that
such a weakly supervised model will not be ap-
plicable in the context of a sequence tagger that
annotates mentions of facts or attributes first (such
as the multi-layered model described in this paper
or the ones described in (Bodnari et al., 2013) and
(Gung, 2013)), since these models demand avail-
ability of annotated mention spans at training time.

Weakly supervised training has been successful
in other information extraction tasks such as rela-
tion extraction (Surdeanu et al., 2012; Weston et
al., 2013), but has not been used in the context of
entity recognition, to the best of our knowledge.
This may have been due to the fact that in tradi-
tional entity recognition, entities tend to be con-
tiguous and non-overlapping, and therefore anno-
tating entity spans may cause no significant over-
head over annotating only sentences with entity-
labels. Since these two properties do not hold true
in medical fact recognition, weak supervision may
be more attractive here. We hope this work paves
the way for more future work in this direction.

5 Conclusions and Future Work

In this work, we propose a new shallow coding
model that learns to annotate medical facts that
are overlapping and non-contiguous without us-

“It was pulled up to the abdominal wall with sutures in each quadrant and then tacked

together for appropriate contact required for biologic grafts .”

119561005:GRAFTING_PROCEDURE_(PROCEDURE)

“We passed a wire through the left main and into the left anterior descending artery right

past an intravascular ultrasound probe and obtained intravascular ultrasounds of the

proximal left anterior descending artery .”

241467003:INTRAVASCULAR_ULTRASOUND_OF_ARTERY_(PROCEDURE)

“After repairing the nail plate down with the nail bed , a 3 cm incision was made in

curvilinear fashion over the skin of the distal phalanx .”curvilinear fashion over the skin of the distal phalanx .”

304103008:LOCAL_ADVANCEMENT_FLAP_(PROCEDURE)

Figure 5: Examples of Procedure facts along with their

attributes: the rectangle with sharp edges are Procedure-

Cores, ones with broken edges are Body-sites, rectangles with

rounded edges are Lateralities, and the ovals are Approaches.

Note that the attributes for Procedures are more complicated

and exhibit long-distance relations among themselves.

ing any attribute level annotations and relations
annotations. Our work shows that this approach,
while not being too far behind on Disorders, ac-
tually outperforms a more sophisticated and more
deeply supervised model on Procedures.

As part of future work, we plan to investigate
the feasibility of a weakly-supervised system that
trains on only sentence-level fact labels. We be-
lieve that optimal performance may be achieved
by a hybrid system that uses a small number of an-
notated training facts for generating an augmented
retrieval index, and a large number of sentences
with fact-labels but without span information, for
training the classifiers. This would further reduce
the annotation costs substantially.

We implemented a basic system combination
of the shallow coding and the multi-layered mod-
els where the predictions of the multi-layered sys-
tem are re-ranked based on the prediction of the
shallow model for facts that are aligned between
the two systems. However, such combination did
not result in any significant improvement. As part
of future work, we plan to build a meta-classifier
that learns to effectively combine the outputs of
the two systems using more sophisticated features,
hopefully further improving over either system.
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Abstract

The goal of our research is to extract med-
ical concepts from clinical notes contain-
ing patient information. Our research ex-
plores stacked generalization as a meta-
learning technique to exploit a diverse set
of concept extraction models. First, we
create multiple models for concept extrac-
tion using a variety of information ex-
traction techniques, including knowledge-
based, rule-based, and machine learning
models. Next, we train a meta-classifier
using stacked generalization with a fea-
ture set generated from the outputs of the
individual classifiers. The meta-classifier
learns to predict concepts based on in-
formation about the predictions of the
component classifiers. Our results show
that the stacked generalization learner per-
forms better than the individual models
and achieves state-of-the-art performance
on the 2010 i2b2 data set.

1 Introduction

Clinical notes (or electronic medical records) con-
tain important medical information related to pa-
tient care management. Health care profession-
als enter a patient’s medical history and informa-
tion about their care at a health care provider. A
patient’s diseases, symptoms, treatments, and test
results are often encoded in these notes in an un-
structured manner.

In the last two decades, Natural Language
Processing (NLP) techniques have been applied
to clinical notes for medical concept extraction.
Medical concept extraction typically consists of
two main steps: detection of the phrases that re-
fer to medical entities, and classification of the
semantic category for each detected medical en-
tity. Medical domain knowledge and sophisti-
cated information extraction methods are required

to achieve high levels of performance. Medical
concept extraction is a fundamental problem that
can also serve as the stepping stone for higher level
tasks, such as recognizing different types of rela-
tionships between pairs of medical concepts.

The main goal of our research is to explore
the use of stacked generalization learning for the
medical concept extraction task. Stacked learn-
ing (Wolpert, 1992) is a meta-learning ensemble-
based method that regulates the biases of multi-
ple learners and integrates their diversities. An
ensemble of individual classifiers is created and
then another classifier (the meta-classifier) sits on
top of the ensemble and trains on the predictions
of the component classifiers. A key advantage of
stacked generalization is that the meta-classifier
learns how to weight and combine the predic-
tions of the individual classifiers, allowing for a
fully automated ensemble system. New compo-
nent classifiers can be easily added without the
need for manual intervention. Voting-based en-
sembles are another strategy for combing multi-
ple classification models, and they often perform
well. But they can require manual adjustment of
the voting threshold when new components are
added, and they do not automatically learn how to
weight different components. Stacked generaliza-
tion provides a more easily extensible and adapt-
able framework.

In the next sections, we discuss related work,
describe our individual classifiers for medical con-
cept extraction, and present the stacked general-
ization learning framework. Finally, we present
experimental results on the 2010 i2b2 data set and
compare our results with state-of-the-art systems.

2 Related Work

In early natural language processing (NLP) re-
search for clinical notes, most systems used rule-
based approaches. MedLEE (Friedman et al.,
1994) uses a rule-based system that extracts med-
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ical concepts by performing a shallow syntactic
analysis and using semantic lexicons. SymText
was developed by Haug et al. (1995; 1997) and
evolved into MPlus (Christensen et al., 2002).
This system was used to extract medical findings,
diseases, and appliances from chest radiograph re-
ports. HITEx (Zeng et al., 2006) is a pipelined sys-
tem with multiple preprocessing modules and has
been used to extract family history information,
principal diagnosis, comorbidity and smoking sta-
tus from clinical notes. MetaMap (Aronson and
Lang, 2010) was developed to recognize Metathe-
saurus concepts from biomedical texts by utilizing
the UMLS (Unified Medical Language System).

Recently, statistical learning approaches have
received more attention because of the manual ef-
fort typically required to create rule-based sys-
tems. Most current information extraction (IE)
systems in clinical NLP use statistical machine
learning approaches that often achieve better per-
formance than rule-based approaches. Our work is
also closely related to Named Entity Recognition
(NER). For both newswire and biomedical texts,
machine learning models have achieved good re-
sults for extracting specific types of entities (e.g.,
(Collier et al., 2000; Lafferty et al., 2001; Collins,
2002; Zhou and Su, 2002; McDonald and Pereira,
2005)).

Our research focuses on the medical concept de-
tection task that was introduced in 2010 for the
i2b2 Challenge Shared Tasks (Uzuner et al., 2011).
These challenge tasks included: (a) the extrac-
tion of medical problems, tests, and treatments,
(b) classification of assertions made on medical
problems, and (c) relations between medical prob-
lems, tests, and treatments. The best performance
on the 2010 i2b2 concept extraction task (a) was
achieved by de Bruijn et al. (2011) with 83.6% re-
call, 86.9% precision, and 85.2% F1 score. They
integrated many features commonly used in NER
tasks including syntactic, orthographic, lexical,
and semantic information (from various medical
knowledge databases). Jiang et al. (2011) trained
a sequence-tagging model that consisted of three
components in a pipeline: concept taggers with
local features and outputs from different knowl-
edge databases, post-processing programs to de-
termine the correct type of semantically ambigu-
ous concepts, and a voting ensemble module to
combine the results of different taggers. Their sys-
tem achieved an 83.9% F1 score. Subsequent re-

search by Tang et al. (2013) showed that cluster-
ing and distributional word representation features
achieved an higher F1 score of 85.8%.

Ensemble methods that combine multiple clas-
sifiers have been widely used for many NLP tasks
and generally yield better performance than indi-
vidual classifiers. For protein/gene recognition,
Zhou et al. (2005) used majority voting from mul-
tiple classifiers to achieve better performance than
any single classifier. Finkel et al. (2005) combined
the outputs of forward and backward (reversing
the order of the words in a sentence) sequence la-
belling, which improved recall. Similarly, Huang
et al. (2007) integrated the outputs of three models
for gene mention recognition. They applied inter-
section to the outputs of forward and backward la-
beling SVM (support vector machine) models and
then union with the outputs of one CRF (condi-
tional random fields) model. Doan et. al (2012)
showed that a voting ensemble of rule-based and
machine learning systems obtained better perfor-
mance than individual classifiers for medication
detection. For medical concept detection, Kang
et al. (2012) used majority voting between seven
different systems for performance improvement.

Our research explores an ensemble method
called stacked generalization (Wolpert, 1992;
Breiman, 1996), which has been shown to pro-
duce good results for several NLP tasks. Stacking
is an ensemble-based method for combining mul-
tiple classifiers by training a meta-classifier us-
ing the outputs of the individual classifiers. Ting
and Witten (1999) showed that stacked generaliza-
tion using confidence scores from the predictions
of multiple classifiers obtained better results than
the individual systems. Džeroski and Zeno (2004)
showed good performance for stacked learning on
a collection of 21 datasets from the UCI Repos-
itory of machine learning databases (Blake and
Merz, 1998). Nivre and McDonald (2008) applied
stacked learning to dependency parsing by inte-
grating two different models (graph-based models
and transition-based models). Recently, some re-
search has used stacked learning in the bioinfor-
matics domain. Wang et al. (2006) used stacked
learning with two base learners for predicting
membrane protein types. Netzer et al. (2009) ap-
plied stacked generalization to identify breath gas
marker and reported improved classification accu-
racy. For NLP from clinical texts, Kilicoglu et al.
(2009) used stacked learning for document level
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classification to identify rigorous, clinically rele-
vant studies.

Stacked learning is similar to weighted majority
voting (Littlestone and Warmuth, 1994) and Cas-
cading learning (Gama and Brazdil, 2000). How-
ever, weighted majority voting only determines a
voting weight for each individual classifier, while
stacked learning can assign different weights to
different types of predictions. Training in cascad-
ing learning requires multiple rounds of learning,
while stacked learning typically consists of just
two stages. Also, cascading learning does not need
multiple base learners. Tsukamoto et al. (2002)
employed cascaded learning using a single algo-
rithm that improved performance on an NER task.

Our stacked generalization framework is differ-
ent from weighted majority voting or cascading
learning. Our stacked learning architecture trains
a meta-classifier using features derived from the
predictions and confidence scores of a set of di-
verse component classifiers. To the best of our
knowledge, this research is the first to use stacked
generalization with a rich set of meta-features for
medical concept extraction from clinical notes.

3 Stacked Generalization with Multiple
Concept Extraction Models

The goal of our research is to investigate stacked
generalization learning for medical concept ex-
traction with a diverse set of information extrac-
tion models. We will first describe each individ-
ual model and then present the stacked learning
framework.

3.1 Information Extraction Models

Our ensemble consists of four types of individual
component systems, which are described below.

MetaMap: We use a widely-used knowledge-
based system called MetaMap (Aronson and Lang,
2010). MetaMap is a rule-based program that as-
signs UMLS Metathesaurus semantic concepts to
phrases in natural language text. Unlike our other
IE systems, MetaMap is not trained with machine
learning so it is not dependent on training data. In-
stead, MetaMap is a complementary resource that
contains a tremendous amount of external medical
knowledge.

We encountered one issue with using this re-
source for our task. MetaMap can assign a large
set of semantic categories, many of which are not
relevant to the i2b2 concept extraction task. How-

ever it is not obvious how to optimally align the
MetaMap semantic categories with our task’s se-
mantic categories because their coverage can sub-
stantially differ. Therefore we built a statistical
model based on the concepts that MetaMap de-
tected in the training data. We collected all of
MetaMap’s findings in the training data, aligned
them with the gold standard medical concepts,
and calculated the probability of each MetaMap
semantic category mapping to each of our task’s
three concept types (“problem”, “treatment”, and
“test”). We then assigned a MetaMap semantic
type to one of our concept types if the seman-
tic type is ranked among the top 30% of seman-
tic types based on Prob(concept type | sem type).
For example, “sosy” (“Sign or Symptom” in
MetaMap) was mapped to the “problem” concept
type because it had a high probability of being
aligned with labeled problems in the data set. Ta-
ble 1 shows the semantic types that we ultimately
used for concept extraction.1

Category MetaMap semantic types

Problem acab, anab, bact, celf, cgab, chvf,
dsyn, inpo, mobd, neop, nnon,
orgm, patf, sosy

Treatment antb, carb, horm, medd, nsba,
opco, orch, phsu, sbst, strd, topp,
vita

Test biof, bird, cell, chvs, diap, enzy,
euka, lbpr, lbtr, mbrt, moft, phsf,
tisu

Table 1: MetaMap semantic types used for con-
cept extraction.

Rules: We used the training data to automati-
cally create simple rules. The idea is to exploit
the training data to create a simple rule-based sys-
tem without any manual effort. For each phrase
labeled as a medical concept in the training data,
we created a rule that maps the phrase to the con-
cept type that it was most frequently assigned to in
the training data. Similar to the MetaMap model
above, we then computed P(concept type | phrase)
using frequency counts.

To generate phrase matching rules, we applied

1Refer to http://metamap.nlm.nih.gov/
Docs/SemanticTypes_2013AA.txt for the mapping
between abbreviations and the full semantic type names.
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two thresholds to each rule: a minimum proba-
bility threshold (θP ) and a minimum frequency
threshold (θF ). First, we extracted annotated
phrases from the training data. Next, for each
phrase we computed its overall frequency and
P(concept type | phrase) for each of the 3 concept
types. We then selected the phrases that passed
the two thresholds and assigned them to the corre-
sponding concept type. In cases where one phrase
subsumed another phrase, such as “disease” and
“coronary disease”, and both phrases pass the
thresholds, we only chose the longer phrase. We
then created a rule for each phrase that labels all
instances of that phrase as the concept type (e.g.,
“diabetes”→ Problem). A concept was extracted
when the candidate phrase occurs more than two
times (θF ) in the training data and the rule’s prob-
ability is over 60% (θP ).

Contextual Classifier (SVM): We created a su-
pervised learning classifier with contextual fea-
tures. We applied the Stanford CoreNLP tool
(Manning et al., 2014) to our data sets for to-
kenization, lemmatization, part-of-speech (POS)
tagging, and Named Entity Recognition (NER).
We trained a Support Vector Machine (SVM) clas-
sifier with a linear kernel using the LIBLINEAR
(Library for Large Linear Classification) software
package (Fan et al., 2008) for multi-class classifi-
cation.

We reformatted the training data with IOB tags
(B: at the beginning, I: inside, or O: outside of
a concept). We defined features for the targeted
word’s lexical string, lemma, POS tag, affix(es),
orthographic features (e.g. Alphanumeric, Has-
Digit), named entity tag, and pairwise combina-
tions of these features. Also, we used the predic-
tions of MetaMap as additional features. Table 2
shows the complete feature set used to create the
SVM model, as well as the CRF models described
below. We set the cost parameter to be c= 0.1 (one
of LIBLINEAR’s parameters) after experimenting
with different values by performing 10-fold cross
validation on the training set.

Sequential Classifier (CRF): We trained sev-
eral sequential taggers using linear chain Con-
ditional Random Fields (CRF) supervised learn-
ing models. In contrast to the contextual classi-
fier mentioned above, the CRF classifiers use a
structured learning algorithm that explicitly mod-
els transition probabilities from one word to the
next. Our CRF models also use the features in

Feature Description

Word w0 (current word),
w−1 (previous word),
w1 (following word),
w−2 (second previous word),
w2 (second following word)

Bi-grams of
words

[w−2, w−1], [w−1, w0],
[w0, w1], [w1, w2]

Lemmas l−3, l−2, l−1, l1, l2, l3

Affixes prefixes and suffixes,
up to a length of 5

Orthographic 15 features based on regular
expressions for w0, w−1, w1

POS tags p0, p−1, p1, p−2, p2

Bi-grams of
POS tags

[p−2, p−1], [p−1, p0],
[p0, p1], [p1, p2]

Lemma + POS [l0, p0]

NER class n0

MetaMap
semtype

m0, m−1, m1,
[m−1, m0], [m0, m1]

Table 2: Feature set for SVM and CRF models.

Table 2. We used Wapiti (Lavergne et al., 2010),
which is a simple and fast discriminative sequence
labeling toolkit, to train the sequential models. As
with the SVM, 10-fold cross validation was per-
formed on the training set to tune the Wapiti’s CRF
algorithm parameters. We set the size of the in-
terval for the stopping criterion to be e = 0.001.
For regularization, L1 and L2 penalties were set
to 0.005 and 0.4 respectively.

Post processing: The concepts annotated by the
i2b2 annotation guidelines2 include modifying ar-
ticles, pronouns, and prepositional phrases. For
treatments such as medications, the amount, dose,
frequency, and mode are included in the annota-
tion only when they occur as pre-modifiers. How-
ever, when they are part of signatura, which ex-
plains how to use the medication for the patient,
they are excluded from concept boundaries. For
example,

800 mg ibuprofen
Lasix 20 mg b.i.d. by mouth

2https://www.i2b2.org/NLP/Relations/
assets/ConceptAnnotationGuideline.pdf
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“800 mg ibuprofen” is annotated as a treatment
concept, while only “Lasix” is annotated in the
second example.

When applying MetaMap to the training set,
we observed that there is a huge difference be-
tween the i2b2 annotations and MetaMap’s con-
cept boundary definition, especially with respect
to articles and pronouns. MetaMap typically ex-
cludes modifying articles, pronouns, and preposi-
tional phrases. For example, for “a cyst in her kid-
ney”, only “cyst” was extracted by MetaMap.

Therefore we added a post-processing step that
uses three simple heuristics to adjust concept
boundaries to reduce mismatch errors. Although
these rules were originally compiled for use with
MetaMap, we ultimately decided to apply them to
all of the IE models. The three heuristic rules are:

1. We include the preceding word contiguous to
a detected phrase when the word is a quanti-
fier (e.g., “some” ), pronoun (e.g., “her” ), ar-
ticle (e.g., “the’), or quantitative value (e.g.,
“70%”).

2. We include a following word contiguous to
a detected phrase when the word is a closed
parenthesis (“)” ) and the detected phrase
contains an open parenthesis (“(” ).

3. We exclude the last word of a detected phrase
when the word is a punctuation mark (e.g.,
period, comma).

3.2 Ensemble Methods

We explored two types of ensemble architectures
that use the medical concept extraction methods
described above as components of the ensemble.
We created a Voting Ensemble, as a simple but
often effective ensemble method, and a Stacked
Generalization Ensemble, which trains a meta-
classifier with features derived from the outputs
of its component models. Both architectures are
described below.

Voting Ensemble Method: We implemented
the majority voting strategy suggested by Kang
et al. (2012) with a simple modification to avoid
labeling concepts with overlapping text spans.
When two different concepts have overlapping
text spans, the concept that receives more votes is
selected. For overlapping concepts with identical
vote counts, we used the normalized confidence
scores from the individual classifiers and select the
concept with the higher confidence score. Each

confidence score, s ∈ S (the set of all confidence
scores), was normalized by Z-score as:

Nor(s) =
s− E(S)
std(S)

where

E(S) = the mean of the scores

std(S) = the standard deviation of the scores

Stacked Generalization Method: We created
a meta-classifier by training a SVM classifier with
a linear kernel based on the predictions from the
individual classifiers. Figure 1 shows the archi-
tecture of our stacked learning ensemble. First, to
create training instances for a document, all of the
concept predictions from the individual IE models
are collected. We then use a variety of features to
consider the degree of agreement and consistency
between the IE models. Each concept predicted by
an IE model is compared with all other concepts
predicted in the same sentence. For each pair of
concepts, the following eight matching criteria are
applied to create eight features:

• If the text spans match
• If the text spans partially match (any word

overlap)
• If the text spans match and concept types

match
• If the text spans partially match and the con-

cept types match
• If the text spans have the same start position
• If the text spans have same end position
• If one text span subsumes the other
• If one text spans is subsumed by the other

Features are also defined that count how many dif-
ferent models produced a predicted concept, and
features are defined for predictions produced by
just a single model (indicating which model pro-
duced the predicted concept).

In addition, we created a feature for the confi-
dence score of each predicted concept. When mul-
tiple components predicted a concept, the highest
score was used. We also created a feature that
counts how many times the same phrase was pre-
dicted to be a concept in other sentences in the
same document. The number of word tokens in
a prediction, and whether the prediction contains
a conjunction or prepositional phrase, were also
used as features.

We performed 10-fold cross validation on the
training set to obtain predictions for each classi-
fier. These predictions were used to train the meta-
classifier.
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Figure 1: Stacked Learning Ensemble Architecture

4 Experimental Results

We present experimental results for each of our
concept extraction components individually, as
well as for each of the two ensemble methods: vot-
ing and stacked generalization learning.

4.1 Data
The 2010 i2b2 Challenge corpus was used for
evaluation. The corpus consists of discharge sum-
maries from Partners HealthCare (Boston, MA)
and Beth Israel Deaconess Medical Center, as well
as discharge summaries and progress notes from
the University of Pittsburgh Medical Center (Pitts-
burgh, PA). It contains 349 clinical notes as train-
ing data and 477 clinical notes as test data. 18,550
problems, 13,560 treatments and 12,899 tests (for
a total of 45,009 medical concepts) are annotated
as the semantic concepts in the test data.

4.2 Performance of Individual Models
We used the i2b2 Challenge evaluation script to
compute recall, precision, and F1 scores. In this
paper, we present the results of class exact match:
both the text span and semantic category must ex-
actly match the reference annotation.

MetaMap: We used MetaMap 2013v2 with the
2013AB NLM relaxed database.3 As we men-
tioned in Section 3.1, we only used a subset of
MetaMap’s semantic types based on statistics col-
lected by aligning MetaMap’s findings with the
medical concepts in the labeled training data.4 We

3We used the following MetaMap options: -C -V NLM -y
-i -g --composite phrases 3 --sldi

4Using all of MetaMap’s semantic types produces ex-
tremely low precision.

selected the top 30% of its semantic types (shown
in Table 1) based the collected probabilities. The
first row of Table 3 shows the results for MetaMap
using these semantic categories. As explained be-
fore, MetaMap suffers from boundary mismatch
errors due to the difference between the i2b2 an-
notations and MetaMap’s concept boundary defi-
nition. In spite of our added post-processing rules
to address this issue, we could not eliminate this
problem especially for concepts containing many
pre-modifiers or prepositional phrases. We also
observed that MetaMap often did not recognize
acronyms and abbreviations in the clinical notes.

Method Rec Pr F

MetaMap 36.1 47.4 41.0
Rules 18.5 72.6 29.5
SVM 81.2 77.5 79.3

CRF-fwd 81.5 86.2 83.8
CRF-fwd w/ MetaMap 82.5 86.7 84.5
CRF-rev 82.4 86.5 84.4
CRF-rev w/ MetaMap 82.9 87.0 84.9

Voting ensemble 83.5 88.2 85.8
Stacked ensemble 83.5 88.6 86.0

Table 3: Recall (Rec), Precision (Pr), and F1 score
(F) of each method on the 2010 i2b2 Challenge
test data.

Rules: The second row of Table 3 shows the re-
sults of matching with the rules that we extracted
from the training data. This simple approach ob-
tained fairly good precision of 72.6%, but low
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recall. This method relies entirely on common
words found in the training data, so unseen words
in the test data were not recognized. In addition,
pre-modifiers were often missed. For example,
only “embolization” was extracted from text men-
tioning “coil embolization”.

SVM: The SVM context-based classifier
achieved an F1 score of 79.3% (third row in Table
3) with its rich contextual features. A subsequent
analysis revealed that this classifier excels at
recognizing concepts that consist of a single word,
achieving recall of 89.3% for these cases, about
2.3% higher than the sequential classifiers (CRFs)
perform on these cases.

CRF: We implemented four different varia-
tions of sequential classifiers. We trained CRF
classifiers with both forward and backward
tagging (by reversing the sequences of words)
(Kudo and Matsumoto, 2001; Finkel et al.,
2005). As a result, each medical concept had
different IOB representations. For example,
the IOB tags of “positive lymph nodes” by
forward and backward tagging were “positive/B-
problem lymph/I-problem nodes/I-problem” and
“positive/I-problem lymph/I-problem nodes/B-
problem”, respectively. For each of these forward
(CRF-fwd) and backward (CRF-rev) taggers, we
created versions both with and without MetaMap
output as features. Overall, the CRF models
performed better than the other IE methods.
Among the four sequential models, backward
tagging with MetaMap features obtained the best
results, which are shown in row 7 of Table 3,
with an F1 score of 84.9%. A subsequent analysis
revealed that this classifier excels at recognizing
multi-word concepts, achieving a recall of 79.8%
(about 5% higher than the SVM) and a precision
of 82.8% (about 7.4% higher than the SVM) for
medical concepts with multiple words.

4.3 Performance of Ensembles

Finally, we evaluated the performance of the two
ensemble architectures described in Section 3.2.

Voting Ensemble: We created a Voting ensem-
ble consisting of all seven individual IE models:
the rules, MetaMap, the contextual classifier, and
all four sequential tagging models. The 8th row
in Table 3 shows the results with a voting thresh-
old of three (i.e. three votes are needed to label
a concept). This voting ensemble obtained better
performance than any of the individual classifiers,
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Figure 2: Recall (Rec), Precision (Pr), and F1

score (F) of the voting ensemble for varying voting
thresholds.

reaching an F1 score of 85.8%.
The voting threshold is a key parameter for Vot-

ing Ensembles that can dramatically affect perfor-
mance. The voting threshold can serve as a re-
call/precision knob to obtain different trade-offs
between recall and precision. In Figure 2, we show
results for voting thresholds ranging from two to
seven. The curves show that precision increases as
the threshold gets higher, but recall drops simulta-
neously. When the voting threshold exceeds five,
recall drops precipitously.

Stacked Generalization: We evaluated the
Stacked Generalization Ensemble using the same
set of seven individual IE models used in the Vot-
ing Ensemble. The last row of Table 3 shows that
the Stacked Ensemble achieved slightly higher
precision than the Voting Ensemble, overall pro-
ducing 83.5% recall, 88.6% precision, and an
86.0% F1 score. Using a paired t-test across the
F1 scores for all test documents (i.e., each F1 score
was calculated for each document, and then aver-
aged across all test documents), the Stacked En-
semble performed significantly better than all of
the individual IE models (p < 10−4), but not sig-
nificantly better than the Voting Ensemble (p =
0.0849).

We performed ablation tests for both the Voting
and Stacked Generalization Ensembles to evaluate
the impact of each IE model on the ensembles. An
ablated ensemble was tested by removing a sin-
gle model from the ensemble. Table 4 shows the
F1 score for each ablated ensemble and the differ-
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Method Voting Stacked

F1 score Impact F1 score Impact

MetaMap 85.69 -0.10 85.81 -0.20
Rules 85.76 -0.02 85.93 -0.08
SVM 85.51 -0.28 85.70 -0.31
CRF-fwd 85.56 -0.23 85.84 -0.17
CRF-fwd w/ MetaMap 85.56 -0.22 85.83 -0.18
CRF-rev 85.41 -0.37 85.76 -0.25
CRF-rev w/ MetaMap 85.41 -0.37 85.77 -0.24

Table 4: The ablation tests of Voting and Stacked Generalization Ensembles

ence from the F1 score of the original (complete)
ensemble. As shown in Table 4, every IE model
contributed to the performance of both the Vot-
ing and Stacked Ensembles. Removing the Rules
component had a very small impact, presumably
because the machine learning models also acquire
information from the training data. All of the other
IE models appear to have played a valuable role.
For the voting ensemble, the F1 score dropped the
most when the CRF-rev or CRF-rev w/ MetaMap
models were removed. For Stacked Generaliza-
tion, removing the SVM model had the biggest
impact.

Overall, our results confirm that ensemble ar-
chitectures consistently outperform individual IE
models. Although the Stacked Ensemble and
Voting Ensemble produce similar levels of per-
formance, Stacked Generalization has a signifi-
cant practical advantage over Voting Ensembles.
Adding new models to an ensemble is easy, but
Voting Ensembles require a voting threshold that
must be adjusted when the number of component
models changes. Consequently, it can be difficult
to assess the overall impact of adding new models
(e.g., adding twice as many models may require a
higher voting threshold, which may yield higher
precision but substantially lower recall). A simple
count-based voting threshold is coarse, so small
changes can sometimes produce dramatic effects.
In contrast, Stacked Generalization uses a meta-
classifier to automatically learn how to best weight
and use the components in its ensemble. Conse-
quently, adding new models to a Stacked Ensem-
ble only requires re-training of the meta-classifier.

To demonstrate this advantage over voting, we
added a second copy of the MetaMap component
as an additional system in our ensemble. Vot-
ing between the eight systems using our origi-

nal threshold of three dropped the F1 score by -
0.3%. Adding a third copy of the MetaMap com-
ponent (producing nine component systems) de-
creased the F1 score by -6.8% (absolute). In the
same scenarios, the Stacked Learning Ensemble
proved to be much more robust, showing almost
no change in performance (-0.2% and -0.3% with
eight and nine systems respectively).

Table 5 shows the performance of other state-
of-the-art systems for medical concept extraction
alongside the results from our Stacked Learn-
ing Ensemble. The Stacked Ensemble produces
higher precision than all of the other systems.
Overall, the F1 score of the Stacked Ensemble is
comparable to the F1 score of the best previous
system by Tang et al. (2013). Our Stacked En-
semble achieves slightly higher precision, while
the the Tang et al. system produces slightly higher
recall.

System Rec Pr F

de Bruijn et al. (2011) 83.6 86.9 85.2
Kang et al. (2012) 81.2 83.3 82.2
Tang et al. (2013) 84.3 87.4 85.8
Stacked Ensemble 83.5 88.6 86.0

Table 5: Recall (Rec), Precision (Pr), and F1

score (F) of other state-of-the-art systems and our
Stacked Ensemble.

5 Analysis

We did manual error analysis to better under-
stand the nature of the mistakes made by our sys-
tem. Many of the errors revolved around incor-
rect boundaries for extracted concepts. When al-
lowing a ±1 boundary error for the outputs of the
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Stacked Ensemble, the F1 score went up to 87.9%.
Most of these boundary errors on the test set were
due to omitting a premodifier or incorrectly in-
cluding a preceding verb. The first row of Table
6 shows examples of false negatives that fell into
this category. The reference annotations appear in
boldface and the system outputs are surrounded
by brackets.

Boundary Examples

±1 positive [lymph nodes]
[repeat the echocardiogram]

±2 [overdosing] on insulin
[head wound remain dry]
1000 ml [fluid restriction]

Others active source of [bleeding]
[careful monitoring of heart rate]

Table 6: Examples of boundary errors by the
Stacked Ensemble.

When allowing for ±2 boundary word errors,
the F1 score increased to 89.4%. The omission of
a prepositional phrase or a pre-modifying phrase
and the incorrect inclusion of a verb phrase were
frequently observed in these errors. For broader
boundaries, the errors are similar to ±2 cases but
caused by longer pre-modifying phrases.

We also analyzed false negatives that did not
contain any words in common with the outputs of
the Stacked Learning Ensemble. For about 34% of
the false negative concepts that were missed, none
of the words in the concept appeared in the train-
ing data.

6 Conclusion

We demonstrated that a Stacked Generalization
Ensemble achieves high precision and overall per-
formance comparable to the state-of-the-art for the
task of medical concept extraction from clinical
notes. Stacked learning offers the advantage of
being able to easily incorporate any set of indi-
vidual concept extraction components because it
automatically learns how to combine their predic-
tions to achieve the best performance. We be-
lieve that Stacked Generalization offer benefits for
many problems in medical informatics because it
allows for easy, flexible, and robust integration
of multiple component systems, including rule-
based systems, external dictionaries and knowl-

edge bases, and machine learning classifiers.
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Abstract

Disease-symptom relationships are of pri-
mary importance for biomedical informat-
ics, but databases that catalog them are
incomplete in comparison with the state
of the art available in the scientific lit-
erature. We propose in this paper a
novel method for automatically extract-
ing disease-symptom relationships from
text, called SPARE (standing for Syntac-
tic PAttern for Relationship Extraction).
This method is composed of 3 successive
steps: first, we learn patterns from the de-
pendency graphs; second, we select best
patterns based on their respective qual-
ity and specificity (their ability to iden-
tify only disease-symptom relationships);
finally, the patterns are used on new texts
for extracting disease-symptom relation-
ships. We experimented SPARE on a cor-
pus of 121,796 abstracts of PubMed re-
lated to 457 rare diseases. The quality of
the extraction has been evaluated depend-
ing on the pattern quality and specificity.
The best F-measure obtained is 55.65%
(for speci f icity ≥ 0.5 and quality ≥ 0.5).
To provide an insight on the novelty of
disease-symptom relationship extracted,
we compare our results to the content
of phenotype databases (OrphaData and
OMIM). Our results show the feasibility of
automatically extracting disease-symptom
relationships, including true relationships
that were not already referenced in pheno-
type databases and may involve complex
symptom descriptions.

1 Introduction

Disease-Symptom (D-S) relationships are of ma-
jor importance for biomedical informatics since

they provide a fine-grained description of disease
that could be used to guide medical diagnosis
in clinical care. However, biomedical databases
that catalog D-S relationships such as OrphaData
and OMIM are incomplete in comparison with the
state of the art available in the scientific literature
(Köhler et al., 2014). In addition, extracting this
information manually from the literature by ex-
perts requires a lot of time and effort, which moti-
vates the need for developing automatic methods.

Our study focuses on extracting symptoms in
relation with rare diseases (RDs). These are dis-
eases that affect a small percentage of the popula-
tion, ranging from 1/1,000 to 1/200,000. As their
number is relatively important (between 6,000 and
8,000 (Mazzucato et al., 2014)), RDs have re-
ceived a particular attention in the medical do-
main.

In this context, we propose an automatic
method, called SPARE (Syntactic PAttern for Re-
lationship Extraction), for D-S relationship extrac-
tion based on shortest path patterns generated from
the dependency graphs (DGs) of texts. We applied
SPARE to the extraction of D-S relationships asso-
ciated with rare diseases. Because symptoms as-
sociated with rare diseases may be uncommon and
complex (i.e., they can not be expressed with one
word or a simple expression), we particularly fo-
cus on enabling the recognition of symptoms that
are not listed in phenotype databases or ontolo-
gies.

As a result, objectives of this work are three-
fold: (1) learning patterns specific for diseases-
symptom relationships extraction; (2) identifying
symptom description that is pointed by specific
pattern; and (3) extracting D-S relationships.

This article is organized as follow: we intro-
duce D-S relationship relative issues in section 2.
Section 3 presents main methods for relationship
extraction. In section 4, we detail the SPARE
method. Section 5 describes experiments and re-
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sults. Finally, we discuss and conclude about the
results described in the article.

2 Disease-Symptom Relationships

OrphaData and OMIM are two examples of
databases that catalog D-S relationships. Orpha-
Data1 is the database accessible from Orphanet,
the portal for rare diseases and orphan drugs. It
includes description of symptoms (clinical signs)
of rare disease. OMIM2 (Online Mendelian Inher-
itance in Man) is a database for genetic diseases.
It contains disease descriptions that include a list
of symptoms named “clinical synopsis”.

Due to the fact that their content is manually cu-
rated by experts, OrphaData and OMIM are high
quality resources. However, these resources do not
contain a complete list of relationships between
diseases and symptoms that exist in the biomed-
ical literature. As shown in Table 1, among the
8,644 diseases listed by OrphaData only 2,689 dis-
eases (31.11%) are associated with clinical signs
and symptoms. Indeed, one can use cross refer-
ences between OrphaData and OMIM3 to asso-
ciate OrphaData diseases to symptoms described
in OMIM. Nevertheless, even when considering
these additional symptoms, only 4,856 (56.18%)
OrphaData diseases have symptoms. The rest,
3,788 OrphaData diseases, is not related to any
symptom. This motivates us to extract these re-
lations from the literature.

#Diseases
#Diseases associated

with symptoms
#Symptoms #D-S Relations

OrphaData 8,644 2,689 1,273 52,503
OMIM 23,929 23,910 46,369 432,760

Table 1: Information about OrphaData and OMIM
databases

Recognizing diseases and symptoms in texts is
a preliminary step for D-S relationships extraction.
Previous work on disease recognition achieved
good results (Leaman and Lu (2014) obtained
78.25% F-Measure, 76.3% recall and 80.3% pre-
cision). Less works aimed at recognizing symp-
toms. Their performances are low in comparison
with those of disease recognition. For example,
Martin et al. (2014) used HPO4 (Köhler et al.,

1OrphaData website: http://www.orphadata.org/
2OMIM website: http://www.omim.org/
34,162 OrphaData diseases have cross references to

OMIM diseases.
4HPO (The Human Phenotype Ontology) provides a

structured and controlled vocabulary for the phenotypic fea-
tures of diseases.

2014) for symptom extraction and obtained 36.8%
F-Measure, 23.7% recall and 82.2% precision.

Extracting D-S relationships automatically is
a challenging task mainly due to the following
two reasons: first, there is no complete dictionary
of symptoms to guide their recognition; second,
symptoms are complex entities that are hard to
recognize in text. Indeed, HPO, which contains
11,021 phenotypes terms, covers only symptoms
related to genetic diseases. Thus, a simple “exact
match” approach to recognize HPO symptoms in
text would give a low recall: “serositis” in exam-
ple 2.1 is not known as a symptom in HPO.

In addition, Named Entity Recognition (NER)
tools recognize symptoms with low recall. This is
the case of MetaMap (Aronson, 2001), a tool that
annotates texts with concepts from UMLS (Bo-
denreider, 2004). In example 2.2 MetaMap an-
notates “Familial Mediterranean Fever” as disease
but does not annotate “fever” or “attacks of fever”
as a symptom.

Ex 2.1. “<disease>Familial Mediterranean Fever</disease> is

characterized by serositis”

Ex 2.2. “<disease>Familial Mediterranean Fever</disease>

(FMF) is an autosomal recessive disorder characterized by

attacks of fever”

Recognizing the full description of symptoms
is another challenge for symptom recognition, in
particular with rare diseases where symptom de-
scription can be complex phrases. Some cases of
partial annotations occur when HPO or MetaMap
annotates only a part of the entity. For instance,
example 2.3 shows that “pure spasticity of the
lower limbs” is a symptom but MetaMap annotates
only “spasticity”.

Ex 2.3. “One patient with <disease>Krabbe disease</disease>

presented with pure <symptom>spasticity</symptom> of the

lower limbs”

The ambiguity between diseases and symptoms
is another factor of complexity as diseases play,
in some situations, the role of symptoms. For in-
stance, example 2.4 shows that “muscle wasting”
is recognized by MetaMap as a disease. However,
it can be considered as a symptom for “Duchenne
muscular dystrophy”.

Ex 2.4. “<disease>Duchenne muscular dystrophy</disease> is

characterized by <disease>muscle wasting</disease>”
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3 Related Works

Various works have proposed methods to extract
relationships from text. They are based on differ-
ent approaches such as statistics, pattern-based or
rule-based, and machine learning.

A co-occurrence method is a simple method to
identify relationships between two entities that co-
occur in the same sentence (Bunescu et al., 2006).
It is based on the hypothesis that if two entities
are mentioned frequently together, they are likely
to be in a relation. Approaches based on co-
occurrences of entities do not employ NER tech-
niques. The type and the direction of relation-
ships are not captured by these methods. Vari-
ous statistical measures are used to decide whether
the two entities co-cited together are in relation
or not (Lee et al., 2007; Ramani et al., 2005).
Examples of these measures are Pointwise Mu-
tual Information, Chi-Square or Log-Likelihood
Ratio (Manning and Schütze, 1999), which use
the co-occurrence statistics of the two entities to
hypothesize about the existence of a relationship
between them. Ramani et al. (2005) use ran-
dom co-citation model based on the hypergeomet-
ric distribution. Co-occurrence methods have been
successfully applied to the automated construction
of networks of biomolecules such as gene-protein
and gene regulatory networks (Šarić et al., 2006;
Friedman et al., 2001).

Pattern- and rule-based methods generate sym-
bolic patterns or rules to extract relationships, with
advantage that they are easy to interpret (Agichtein
and Gravano, 2000). These patterns or rules can be
generated manually (Divoli and Attwood, 2005)
or automatically by learning from annotated cor-
pus (Hakenberg et al., 2005). They are based on
different levels of linguistic information like lexi-
cal, syntactic or dependency information and dif-
ferent levels of structures like sequences, trees and
graphs. These methods tend to have a high preci-
sion but a low recall (Cellier et al., 2010; Béchet
et al., 2012; Liu et al., 2013; Martin et al., 2014;
Hassan et al., 2014).

Liu et al. (Liu et al., 2013) proposed a graph-
based approach to learn rules for event extraction
(that can be compared to relationship extraction).
The rules are represented by the information on
the shortest path between entities in an undirected
DG. Béchet et al. (2012) and Cellier et al. (2010)
proposed a method based on sequential pattern
mining to extract disease-gene and gene-gene re-

lationships. As the number of their patterns is very
large, they introduced constraints for patterns fil-
tration to reduce them. Close to our objectives,
Martin et al. (2014) used sequential patterns for
recognizing unidentified symptoms. Also, Hassan
et al. (2014) proposed a pattern-based method for
D-S relationship extraction, where diseases and
symptoms are previously recognized and anno-
tated by a NER tool. The patterns are learned from
shortest paths between diseases and symptoms in
directed DGs.

Machine Learning (ML) methods consider a re-
lationship extraction task as a classification prob-
lem. Two ML techniques are mainly employed:
feature-based and kernel-based methods. Feature-
based methods such as support vector machines or
conditional random fields have been employed by
(Krallinger et al., 2008; Bundschus et al., 2008)
for relationship extraction. Kernel methods use a
kernel function to measure the similarity between
a large amount of features e.g., sub-sequences,
trees, graphs (Zelenko et al., 2003; Zhang et al.,
2008; Airola et al., 2008).

Bunescu and Mooney (2005) proposed a short-
est path kernel method that uses the shortest path
between two entities in an undirected DG for re-
lationship extraction. This work is based on the
hypothesis that the relationship between two enti-
ties in the same sentence is typically captured by
the shortest path between them in the DG. Chowd-
hury et al. (2012) proposed a hybrid kernel that
uses different types of information (e.g., syntac-
tic, contextual, semantic) and their different rep-
resentations (i.e., flat features, tree structures and
graphs). This hybrid kernel helps improving the
results of relationship extraction.

4 Method

We describe in this section the SPARE method for
D-S relationship extraction. This method is com-
posed of three steps: first, learning patterns out of
DGs that include both a disease and a symptom;
second, selecting patterns in regard to their quality
(i.e., their capacity to identify true relationships)
and their specificity (i.e., their capacity to identify
only D-S relationships); third, using selected pat-
terns to extract D-S relationships from text.

The originality of the SPARE method relies
on measuring how syntactic patterns between dis-
eases and symptoms are specific to D-S relation-
ships. Using highly specific patterns allow us to
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consider the case where symptoms are not recog-
nized by NER tools, which consequently offers the
opportunity to discover new symptom descriptions
that can be potentially rare and complex.

SPARE is inspired from various previous works
such as using the shortest path between entities of
a DG as described by Bunescu et Mooney (2005),
then applied by Chowdhury et al. (2012) and Liu
et al. (2013). Similarly to Liu et al. (2013), we ex-
tract patterns represented by the whole subgraph
(i.e., all nodes and edges in the shortest path), but
unlike them, we keep edge directions. Hassan et
al. (Hassan et al., 2014) proposed a pattern-based
method for D-S relationship extraction. They as-
sume that diseases and symptoms are initially rec-
ognized by a NER tool. Here we relax patterns,
similarly to Blohm et al. (2011), and use speci-
ficity to consider cases of unrecognized symp-
toms.

The following subsections detail the three steps
of SPARE.

4.1 Learning Syntactic Patterns from DG
For pattern learning, only DGs of sentences that
contain at least one disease and one symptom are
considered as we are interested in extracting D-S
relationships. DGs are explored to find the shortest
paths between diseases and symptoms. Because
one sentence can mention several diseases and
symptoms, several shortest paths may be found.

Ex 4.1. “A 15-month-old girl with <disease>propionic

acidemia</disease> presented <symptom>muscular hypotonia

</symptom>”

Ex 4.2. “A 25-year-old woman with <disease>cystic

fibrosis</disease> developed <symptom>hemoptysis</symptom>”

Figures5 1(a) and 1(c) show the DGs generated
from sentences of examples 4.1 and 4.2 after the
replacement of the annotated entities (i.e., diseases
and symptoms) by generic words (i.e., DISEASE
and SYMPTOM) and other words by their lem-
mas. Figures 1(b) and 1(d) show the shortest paths
extracted from associated DGs. The whole short-
est path is kept, including all nodes, edges and di-
rections.

Next, patterns are generated on the basis of
shortest paths, using a generalization process. In
this process, two shortest paths (or more) can be
merged and represented in one generalized pat-
tern. Different shortest paths are aggregated to a

5DGs are processed by the Stanford Parser and drawn
with the Brat tool at http://nlp.stanford.edu:8080/corenlp/

(a)

(b)

(c)

(d)

Figure 1: (a,c) DGs and (b,d) Shortest paths be-
tween disease and symptom respectively extracted
from sentences of examples 4.1 and 4.2

pattern if those share the same edges and direc-
tions. Figure 2 illustrates this generalization pro-
cess considering the shortest paths obtained from
examples 4.1 and 4.2. If the values of the nodes in
the pattern are different, then they are replaced by
“*” (i.e., matching any token). A list of values ob-
served for each node is kept but for pattern docu-
mentation purpose only. The frequency of patterns
is measured by their support, i.e., how many sen-
tences in our learning corpus match this pattern.

Figure 2: Example of pattern generation from two
shortest paths
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This generalization affects the precision and the
recall of the patterns. Replacing the node value
in the shortest path by using “*” (i.e., any token)
makes the pattern more generic, and has the conse-
quence of increasing the recall of the patterns. On
the other side, we assume that edges (i.e., depen-
dency types of DGs) and directions of the pattern
guarantee its precision.

4.2 Pattern Selection
4.2.1 Quality-Based Selection
We classify patterns into two classes: positive and
negative patterns. This classification relies both
on the frequency and on the quality of patterns.
The quality of patterns requires an evaluation pro-
cedure, on the basis of an annotated corpus, to be
computed. The quality of a pattern is defined as:

quality =
|T |
|A| (1)

where T is the set of all true relationships and
A is the set of all (true and false) relationships
that are identified by the pattern. A relationship
is qualified as true if it is annotated in the cor-
pus, i.e., if the sentence is actually mentioning
the relationship. A pattern is considered positive
if its support is greater than or equal to a mini-
mum support denoted min_support and its quality
is greater than or equal to a minimum quality de-
noted min_quality.

4.2.2 Specificity-Based Selection
In order to measure how much a pattern is specific
to D-S relationships and not to other relationships,
a specificity measure of the pattern is defined. To
measure this specificity, we performed a new eval-
uation task for which we consider: (i) a novel set
of annotated sentences, not including one disease
and one symptom but including one disease and
another entity (e.g., a symptom, a gene, a treat-
ment or a living being); (ii) patterns from which
we removed the constraint on the symptom node
(i.e., SYMPTOM is replaced by “*”). The pattern
specificity is computed by the following formula:

speci f icity =
|DS|
|A| (2)

where DS is the set of true D-S relationships
extracted by the pattern and A is the set of all
(true and false) relationships that are extracted by
the pattern (including D-S, disease-gene, disease-
treatment and disease-living being relationships).

For example, if the pattern extracts 23 true D-
S relationships and 7 disease-any entity relation-
ships, then pattern specificity is 23/30. The speci-
ficity measure is used to select the patterns that are
the most specific to D-S relationships by selecting
those that have a specificity greater than or equal to
a minimum specificity denoted min_speci f icity.

Both quality and specificity are associated with
the precision of patterns (the ratio of true relation-
ships on all extracted relationships, see formula 3)
but are used in different contexts. The quality of
a pattern is calculated based on the extracted rela-
tionships (D-S relationships only) of the training
corpus. In order to keep the patterns that are able
to extract true relationships with high precision,
we restrict the pattern on disease and symptom
constraints. In contrast, the specificity of a pat-
tern is calculated using the relationships (D-S or
disease-any entity relationships) in the whole cor-
pus when the pattern is relaxed on the symptom
constrain. Specificity is used to keep the patterns
that are specific to D-S relationships only.

4.3 Relationship Extraction

4.3.1 Pattern Relaxation for Unknown
Symptoms

Patterns with speci f icity ≥ min_speci f icity are
relaxed on the symptom constraint, meaning that
one entity must be annotated as a disease, but there
is no requirement for the second entity to be anno-
tated as a symptom. This enables us to identify
symptoms that are not recognized by NER tools.
Similarly to the learning phase, DGs are gener-
ated from the text to explore for D-S relationships.
Then, a pattern matching between DGs and the
pattern set is applied to extract D-S relationships.

4.3.2 Extraction of Complex Symptoms

During pattern matching, the word that matches
with the node of the second entity (not con-
strained) is considered to be a symptom. Indeed,
it is considered to be a symptom if this word is
a leaf of the DG, but is considered as the “head”
of a more complex symptom description if it is
not a leaf. To extract the complete description of
the symptom, we explore the subtree that has, as a
head, the node that matched as a symptom. For ex-
ample, if a pattern matching is applied to the sen-
tence provided in example 4.3, we obtain a match
with the pattern presented in Figure 2. In this case,
the word that is considered to extract the symptom
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description is “attack”. Exploring the subtree rep-
resented in Figure 3(b) enables us to reconstruct
the full symptom that is involved in the relation-
ship. This reconstruction uses every word of the
subtree, dependency types plus the initial order
of words to reconstruct the symptom description,
“acute attack of fever” in our example. This exam-
ple illustrates the usefulness of DGs in identifying
and representing complex entities like symptoms.
Ex 4.3. “A patient with <disease>Familial Mediterranean

Fever</disease> suffered acute attacks of fever”

(a) DG of the sentence in example 4.3

(b) The subtree of a complex
symptom description

Figure 3: An example of complex symptom ex-
traction

5 Experiments

5.1 Data Preparation
5.1.1 Rare Disease Corpus
Our rare disease corpus is composed of 121,796
PubMed abstracts obtained by querying PubMed
with 457 rare diseases of OrphaData.6 These
diseases are selected because they fulfill follow-
ing criteria: (1) they are associated with symp-
toms (namely “clinical signs”) in OrphaData; (2)
they can be mapped to an OMIM disease throught
UMLS CUI; (3) their corresponding OMIM refer-
ence is annotated with symptoms (namely “clin-
ical synopsis”) in OMIM. This enables having a
corpus of a reasonable size and guarantees that the
selected diseases are associated with symptoms in
both OrphaData and OMIM. This set of diseases
and associated symptoms are used in subsection
5.5 to compare our relationships with the content
of OrphaData and OMIM.

5.1.2 Preprocessing
The 121,796 abstracts are first split into 907,088
sentences using LingPipe7. These sentences are

6The list of 457 rare diseases is available at
https://sourceforge.net/projects/spare2015/files/457-diseases

7LingPipe website: http://alias-i.com/lingpipe/

then annotated by MetaMap in order to label dis-
eases, symptoms, genes, treatments and living be-
ings with UMLS CUI. Finally, sentences that do
not contain diseases are filtered out. Therefore,
we obtained 301,599 sentences with at least one
disease.

5.2 Pattern Learning

To learn patterns for D-S relationship extraction,
2,341 sentences with at least one disease and one
symptom are kept. These sentences are split into
a learning corpus made of 90% of sentences (ran-
domly selected) and a testing corpus made of 10%
of sentences. Both corpora are manually anno-
tated by only one person to identify true and false
relationships: the annotation task mainly requires
linguistics and NLP skills. A true relationship is
counted when a pair D-S is found and a relation-
ship between them is actually mentioned in the
text; whereas a false relationship is listed when
the pair is found but no relationship is mentioned.
The sentence in example 5.1 shows instances
of both true and false relationships. “Schwartz
Jampel syndrome”-“blepharospasm” is a true re-
lationship, while “rare neuromuscular disorder”-
“blepharospasm” is false. Table 2 shows the size
of the learning and testing corpora in term of num-
ber of sentences, and of true and false relationships
in each corpus. We use the Stanford parser to gen-
erate a DG for each sentence (de Marneffe et al.,
2006). Shortest paths are computed from the 2,107
prepared DGs to generate 1,049 patterns. Figure 4
presents 7 examples of patterns generated.

Ex 5.1. “<disease>Schwartz Jampel syndrome</disease> is a

<disease>rare neuromuscular disorder</disease> characterized

by <symptom>blepharospasm</symptom>”

Corpus #Sentences #True Relations #False Relations
learning 2,107 2,680 2,294
testing 234 330 326

Table 2: Size and content of the learning and test-
ing corpora used for pattern learning and selection.

5.3 Pattern Selection

5.3.1 Quality-based Selection
Increasing the min_support value from 1, to 2,
then to 3, reduces the number of patterns from
1,049, to 257, then to 118. To avoid rare patterns
that can result from parser errors or complex sen-
tences, we fixed min_support = 2.
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Figure 4: 7 examples of patterns from our pattern
set and their support, quality and specificity.

We fixed min_quality = 0.5 to reduce our se-
lected patterns to 235. This choice is guided by
the F-measure that we computed for each quality
threshold, as presented in Figure 5. This optimal
F-measure is 56.97% (precision 87.97%, recall
42.12%) on the testing corpus. If used on the test-
ing corpus, these 235 patterns extract 139 true re-
lationships and 19 false relationships on a total of
330 relationships. Formulas for precision, recall
and F-measure are recalled hereafter:

precision =
all true extracted relations

all extracted relations
(3)

recall =
all true extracted relations

all relevant relations
(4)

F−measure = 2 ∗ precision ∗ recall
precision + recall

(5)

Figure 5: The effect of quality threshold on preci-
sion, recall and F-Measure values

5.3.2 Specificity-based Selection
For computing the pattern specificity, all sen-
tences that contain at least one disease and an-
other UMLS entity are selected. This pro-
duces 9,233 sentences. Then, all the 235 pre-
viously selected patterns are applied to the DGs
of these sentences, resulting in the extraction

of 5,197 D-S relationships and 391 disease-non
symptom relationships (182 disease-gene, 182
disease-treatment, 27 disease-living being rela-
tionships). Finally, the specificity of each pat-
tern is computed (see formula 2). Figure 6
shows that using min_speci f icity = 0.5 achieves
the best F-measure, 55.65% (precision = 89.87%
and recall = 40.3%), on the testing corpus. Fi-
nally we keep 220 patterns with quality≥ 0.5 and

Figure 6: The effect of specificity threshold on
precision, recall and F-Measure values

speci f icity≥ 0.5.8

5.4 Application of Relationships Extraction

We applied selected patterns to the whole cor-
pus9 (301,599 sentences with at least one disease).
The extracted relationships are divided into two
groups. The first group contains 4,886 D-S rela-
tionships where symptoms were previously rec-
ognized by MetaMap. The second group con-
tains 6,572 D-S relationships where symptoms
were not recognized by MetaMap. After man-
ual checking10, these extractions achieved respec-
tively 90.69% and 83.13% precision. The number
of distinct symptoms in the second group is 3,849.

5.5 Comparison with Phenotype Databases

5.5.1 Comparison Approach
The novelty of extracted relationships is evaluated
based on the comparison with D-S relationships
available in OrphaData, and in OMIM. Results
of the comparison are categorized into 3 groups:
matched, partial matched and new relationships.
To realize this comparison, it is required to map

8The list of 220 patterns is available at
http://sourceforge.net/projects/spare2015/files/220Patterns

9The whole corpus is used (including the training and
testing corpus) because the purpose of this task is to extract
as much as possible D-S relationships and then, to compare
them to the content of phenotype databases.

10The manual checking is done by only one person.
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diseases of extracted relationships to OMIM dis-
eases. Indeed, MetaMap provides, for each ex-
tracted disease, a UMLS CUI that may be mapped
to OMIM.

For symptom mapping, we implemented a sim-
ilarity measure to evaluate the similarity between
the extracted symptom and those referenced in
OMIM clinical synopsis and HPO. Our similarity
value is based on the Jaccard index and is com-
puted following formula:

Jaccard Index =
text_words∩ symp_words
text_words∪ symp_words

(6)

where text_words are the words of the extracted
symptom string and symp_words are the words
that are describing a symptom defined either in
OMIM or HPO.

Before computing the Jaccard index, each word
in the extracted symptom and HPO (or OMIM)
symptom is replaced by its lemma, stop words11

are removed and a list of synonyms from Word-
Net (Fellbaum, 1998) is associated with each
word. The synonym list of a word is used in case
of the word does not match with any other word.
The similarity value is then computed by the Jac-
card index. For each symptom, the first three clos-
est symptoms found in OMIM and HPO (six in to-
tal) are manually checked to select the best match
if exists. A label “exact”, “partial” or “new” is as-
signed to express if the match is exact or partial,
or if the symptom is not listed in OMIM and HPO,
thus considered as new.

5.5.2 Comparison Results
The relationships in the first group are compared
automatically to Orphadata and OMIM relation-
ships (because both their disease and symptom are
associated with a UMLS CUI). The number of
true D-S relationships is 4,431, including 803 re-
lationships available in OrphaData and 646 avail-
able in OMIM. The union of these 2 sets counts up
to 1,074 distinct D-S relationships already listed
in OrphaData, OMIM or in both. Consequently,
about 3,357 D-S relationships are potentially new
and must be added to phenotype databases.

Regarding the relationships in the second group,
the extracted symptoms are mapped to symptoms
in HPO and OMIM. In this step, 3,236 symptoms

11We considered stop words listed in http://xpo6.com/list-
of-english-stop-words/

(from 3,849 distinct symptoms in the relation-
ships) are mapped to HPO and OMIM symptoms.
The extracted relationship pairs are then compared
to relationships in HPO and OMIM, which results
in 1,422 matched relationships. As a result, we
identified 613 (3,849−3,236) new symptoms de-
scriptions that may be of interest in rare disease
studies and 4,041 (5,463−1,422) potentially new
D-S relationships1213.

6 Discussion

In SPARE, the choice of min_quality and
min_speci f icity have important consequences on
the results of the relationship extraction. Fig-
ures 5 and 6 show how the quality of the
extraction changes when these two values are
changed. In both cases, we observe relatively
few evolution of the F-Measure. In Figure 5,
min_quality between 0.35 and 0.5 achieve the best
F-measure of 56.97%. They give the same re-
sult because the number of extracted patterns with
min_quality between 0.35 and 0.5 is the same
(235 patterns). Consequently, we chose arbitrar-
ily min_quality = 0.5. As shown in Figure 6, we
chose min_speci f icity = 0.5 because it achieves
the best F-Measure. The result of F-Measure
is constant when min_speci f icity between 0 and
0.45 because the number of patterns in this inter-
val is the same.

We obtain a relatively good precision but a low
recall. We Consider that a larger corpus for learn-
ing patterns could enable us to increase the recall.
Our learning corpus is annotated manually with
true and false relationships and increasing its size
would require annotating additional relationships.

The corpus used in the learning task is relatively
small, subsequently it is not enough to train ML
methods. We propose to increase the size of the
annotated corpus in order to apply ML methods
on this corpus and compare with the results of our
SPARE method.

Studying the novelty of our extracted relation-
ships requires the comparison with the relation-
ships of phenotype databases. For now, this com-
parison is semi-automatic and partial matching re-
lies on a rather naive similarity measure. We

12A list of extracted D-S relationship examples is avail-
able at https://sourceforge.net/projects/spare2015/files/D-
SRelationsExamples.csv

13A list of extracted symptom examples is available
at https://sourceforge.net/projects/spare2015/files/symptom-
examples
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would like to develop a more systematic approach
by enabling a fine-grained comparison of pheno-
type descriptions. This could be achieved by nor-
malizing then, comparing DGs of symptom de-
scriptions.

SPARE method is a supervised classification
process, in which threshold is selected manually.
This selection can be computed automatically by
considering the best F-Measure value.

7 Conclusion

In this paper, we proposed a pattern-based method
that we call SPARE for extracting D-S relation-
ships. The patterns are learned from shortest paths
observed between the entities of interest (diseases
and symptoms) within DGs. Using only the short-
est path is simple and it captures the most impor-
tant features required to describe the relationship
between two entities. For extracting relationships
involving rare or complex symptoms, we selected
a subset of patterns that are specific to D-S rela-
tionships. In turn, a DG is helpful to extract and
define complex symptoms, that are not recognized
by other tools such as MetaMap. The novelty of
relationship extracted has been compared with re-
lationships listed in OrphaData and OMIM. This
shows the ability of the SPARE to discover exist-
ing and potentially new relationships and the abil-
ity to identify new and complex symptom as well.
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Abstract

Temporal information extraction is im-
portant to understanding text in clin-
ical documents. Temporal expression
extraction provides explicit grounding
of events in a narrative. In this work
we provide a direct comparison of vari-
ous ways of extracting temporal expres-
sions, using similar features as much
as possible to explore the advantages
of the methods themselves. We evalu-
ate these systems on both the THYME
(Temporal History of Your Medical
Events) and i2b2 Challenge corpora.
Our main findings are that simple se-
quence taggers outperform conditional
random fields on the new data, and
higher-level syntactic features do not
seem to improve performance.

1 Introduction

Temporal information is ubiquitous in clini-
cal narratives, and accurately extracting tem-
poral information has recently been the fo-
cus of a great deal of work in clinical natural
language processing (NLP) (Raghavan et al.,
2012; Miller et al., 2013; Sun et al., 2013). Rel-
evant temporal information includes events,
time expressions, and temporal relations be-
tween pairs of events and/or times. The
accurate extraction of temporal information
would be enabling technology for sophisticated
downstream processing that requires tempo-
ral awareness of patient status. One promis-
ing application is question answering, where
a physician can directly ask questions about a
patient’s medical record. Many question types
of interest are explicitly temporal (When was
the patient’s last colonoscopy? ), but almost all
are implicitly temporal in the sense that ev-
ery question needs to be understood relative

Time Class Example
Date February 2 2010, Friday morning
Time 5:30 PM, 20 minutes ago
Duration For the next 24 hours, nearly 2 weeks
Quantifier twice, three times
Prepostexp postoperatively, post-surgery
Set twice daily, weekly

Table 1: Time expression classes and two ex-
amples of each class.

to some time frame (What drugs is the pa-
tient on? cannot simply return all drugs in
the record but has to understand the question
itself is anchored in the present).

This work focuses on the automatic iden-
tification of time expressions in clinical text.
Time expressions are words and phrases that
correspond to points or spans on a timeline,
such as dates or times. Other temporal ex-
pression types include Durations, Quantifiers,
Sets, and Prepostexps. Table 1 shows the time
expression classes used in this work, with ex-
amples given of each class. The significant de-
viation from general domain methods is the
Prepostexp type, which is specific to the clini-
cal domain. Exemplified by terms like postop-
eratively, this type represents time spans rela-
tive to some event, often an operation.

Temporal information extraction has been
a topic of a great deal of work both in the
clinical and general NLP domains. In the gen-
eral NLP domain, the TimeBank (Pustejovsky
et al., 2003) spurred much of the early re-
search by providing a manually annotated cor-
pus of events, times and temporal relations.
Shared tasks such as TERN1, which focused
on time expressions, and TempEval (Verhagen
et al., 2007; Verhagen et al., 2010; UzZaman
et al., 2013), which included events and tem-
poral relations as well, helped build a com-

1http://www.itl.nist.gov/iad/mig/tests/ace/2004/
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munity around temporal information extrac-
tion. The community explored a wide variety
of approaches, the best of which used either
manually engineered databases of regular ex-
pression rules (Strötgen et al., 2013) or a su-
pervised learning word classification paradigm
(Bethard, 2013), and achieved precisions and
recalls above 80% in the shared tasks.

In the clinical domain, temporal information
extraction has seen a great deal of recent inter-
est, with the i2b2 (Informatics for Integrating
Biology and the Bedside) shared task on tem-
poral information extraction (Sun et al., 2013)
and the recent release of the THYME (Tem-
poral History of Your Medical Events) corpus
of clinical annotations (Styler IV et al., 2014).
The i2b2 shared task contained a track explic-
itly focusing on extraction of temporal expres-
sions. In that task, a variety of approaches
were used for time expression extraction. The
best performing system (Xu et al., 2013) used
machine learning, with a conditional random
field classifier (CRF) for finding spans and a
support vector machine classifier for classify-
ing attributes. Other top approaches used
adapted regular expressions (Sohn et al., 2013)
on top of the off the shelf Heideltime system (a
general-domain NLP system for parsing time
expressions) (Strötgen and Gertz, 2010). An-
other approach used a hybrid system where
the output from a CRF-based system was com-
bined with the output of a rule-based sys-
tem (Kovačević et al., 2013).

In this work, we develop and evaluate sev-
eral machine learning methods for extracting
time expressions from clinical text. These
methods include simple sequential classifiers,
a sequential model (conditional random field),
a constituency parser-based method, and an
ensemble sequence method that attempts to
leverage the differing performance of all the
other models. The contributions of this work
are the comparison and analysis of a large
number of different machine learning models
for this task, the first use of deep syntactic fea-
tures for this task, and an evaluation on two
different corpora, including the first evaluation
of these methods on the THYME corpus.

THYME (TempEval) i2b2
Date 1271 1639
Time 54 69

Duration 195 406
Quantifier 61 n/a

Set 83 n/a
Prepostexp 149 n/a
Frequency n/a 249

Table 2: Descriptive statistics of THYME and
i2b2 corpora. Frequency in i2b2 is roughly the
union of set and quantifier in THYME.

2 Materials and Methods

2.1 Corpora

We use two corpora for training and evaluating
the methods described above. The first is the
THYME corpus (Styler IV et al., 2014), which
consists of clinical and pathology notes of pa-
tients with colon cancer from Mayo Clinic.
The THYME corpus is split into training,
development, and test sets based on patient
number, with 50% in training and 25% each
in development and test sets. For our experi-
ments we use the same patient set as the up-
coming TempEval 20152, patients 28-127. The
training data contains 1874 time expressions,
the development contains 1119, and the test
set contains 1047. We used the development
set for optimizing learning parameters, then
combined it with the training set to build the
system used for reporting results in Section 3.

The second corpus we use is the i2b2 2012
Challenge dataset (Sun et al., 2013). The
i2b2 dataset contains discharge summaries
from Partners Healthcare and Beth Israel Dea-
coness Medical Center. This data is split into a
training and test set, with no predefined devel-
opment set. We arbitrarily set aside filenames
above 600 from the training set as a develop-
ment set and for tuning parameters. Under
this configuration, the i2b2 dataset contained
1856 training examples, 507 development ex-
amples, and 1820 test examples. Again, train-
ing and development examples were combined
to build the system that is evaluated in Sec-
tion 3.

Table 2 shows the distribution of the dif-
ferent time classes in the THYME and i2b2

2http://alt.qcri.org/semeval2015/task6/
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corpora. While distribution is broadly simi-
lar, i2b2 had a higher percentage of duration
expressions while THYME had many prepost-
exp expressions, which in i2b2 were annotated
as the date category.

2.2 Systems

We implemented a variety of systems in an at-
tempt to empirically evaluate the best way to
model the time span classification task. For all
systems, the temporal expression extractor is
implemented within Apache cTAKES3 (clini-
cal Text Analysis and Knowledge Extraction
System) (Savova et al., 2011), making use of
its components for feature generation as well
as its interface to the source general-domain
NLP system ClearTK (Bethard et al., 2014)
which in turn interfaces with different machine
learning libraries, including LibSVM (Chang
and Lin, 2011) and CRFSuite (Okazaki, 2007).

2.2.1 Sequence Models
We developed three sequence-based models
for this task, each with different perceived
strengths. The first system is perhaps the sim-
plest, a standard BIO (Begin-Inside-Outside)
tagger using an off the shelf support vector
machine (SVM) classifier (Cortes and Vapnik,
1995). BIO taggers work by labeling every
token in a sentence as the beginning (B), in-
side (I), or outside (O) of some subsequence in
the data (in this case a temporal expression).
The tagger progresses left to right through a
sentence, making a classification decision at
each word, with features based on any infor-
mation that would be available to a system at
run time. After processing a sentence, tag se-
quences are converted to time expression spans
and evaluated in the span format. The main
benefit of this system is its efficiency, as it op-
erates in a “greedy” fashion, getting a locally
optimal labeling.

The second sequence system is a backwards
BIO tagger. This system works just like the
BIO tagger described above, except it starts
at the end of the sentence and works its way
forward. As mentioned above, this family of
models is not globally optimal. In preliminary
work, we found that the BIO tagger frequently
left off the first word of a time expression, es-
pecially if it was a common word like ‘the’ or

3http://ctakes.apache.org

‘this.’ Additionally, time expressions are of-
ten noun phrases, which typically carry a lot
of meaning in the right-most word, so start-
ing from the right has that advantage as well.
For evaluation purposes, this model and the
forward BIO tagger can be given exactly the
same features, so there is a very clear eval-
uation of just the single difference in model
strategy, going forwards or backwards.

The third system is a conditional ran-
dom field (CRF) sequence labeler. Condi-
tional random fields (Lafferty et al., 2001) are
discriminatively-trained undirected graphical
models that find the globally optimal label-
ing for a given configuration of random vari-
ables. We use a standard CRF architecture,
the linear-chain CRF, where the random vari-
ables for sequence labels have only dependen-
cies between the previous and next label, and
random variables for arbitrary features of the
observed evidence. Like the sequential taggers
above, the CRF tagger assigns BIO tags to ev-
ery word in a sequence, and time expressions
are deterministically extracted from those as-
signments. The CRF tagger processes one sen-
tence at a time, assigning labels to all tokens
within that sentence simultaneously.

2.2.2 Constituency Model

The other system we developed is based on
a constituency parse representation. Con-
stituency trees represent the phrasal structure
of a sentence, building up structure from the
word level to a single tree which encloses the
whole sentence. Our time expression classifica-
tion model starts at the root of a tree and tra-
verses it depth-first for a given sentence, and
at each node in the tree classifies the enclosed
span of words as a time expression or not a
time expression, using a support vector ma-
chine classifier. During the depth-first traver-
sal, further downward traversal is terminated
with a positive classification (a time expres-
sion is found) or with a constituency spanning
a single word. Figure 1 shows an example con-
stituency tree with a time expression.

During training, the depth-first search will
compare the span of every constituent in the
search path with the spans of the gold stan-
dard, and any matching constituents are pos-
itive instances. Any non-matching spans are
negative training instances. Features for each
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Figure 1: Example constituency tree containing a time expression. This sentence con-
tains a single time-expression (June 17, 2010 ), spanned by the bolded NP in the figure. That
NP is a single positive training instance, while all other constituents will be negative training
instances.

positive or negative instance (described in de-
tail below) can be extracted arbitrarily based
on the position of the instance in the tree,
but this representation obviously lends itself
more to hierarchical, syntax-based features
and makes sequence-based features more diffi-
cult (though not impossible) to represent.

The appeal of this approach is that time ex-
pressions will nearly always be constituents, so
the classifier is constrained to select only con-
stituent sequences. This also seems to combine
advantages of the systems above, as it gets to
consider whole spans at once (like the global
optimization of the CRF), while using a sim-
ple binary classifier (like the SVM-based BIO
taggers). One potential drawback is that it re-
quires high accuracy parsing, at least for con-
stituents composed of temporal expressions.

2.2.3 Ensemble Model

The final model we developed is an ensemble
sequence model that is trained on features en-
capsulating the outputs of the four above sys-
tems and making predictions based on those
features. The rationale for this model is that
our other models differ enough to have vary-
ing strengths and weaknesses, and an ensem-
ble system may be able to learn when to se-

lect which system. The features at each word
in the sequence are the outputs of the compo-
nent systems at a window of width n around
the word. So, for systems i the features at
position j in the document are the following
set:

featsj = ∪i ∪j+n
j′=j−n {outij′} (1)

where outji ∈ {B, I, O}, indicating the output
label of system i at position j.

We use a CRF-based tagger for this model
– with a much smaller (and thus more learn-
able) feature space, our intuition is that a glob-
ally optimal model should have even more of
an advantage over word-by-word discrimina-
tive taggers. In preliminary work we found
that a window of n = 1 gave the best per-
formance on the development set, so the final
model was trained using that value.

2.3 Features

To make the comparison fair, we made an ef-
fort to have feature parity between systems
as much as possible. For the three sequence-
based models this was largely accomplished.
For the constituency parser-based model the
approach is so different that the features do
not align perfectly with the other systems, but
roughly the same information is present.

84



Feature Type Features
Tokens Word=June,Word=17,Word=COMMA,Word=2010
POS tags POS=NNP,POS=CD,POS=COMMA,POS=CD
Character classes Char=LuLlLlLl,CharCollapsed=LuLl,Char=NdNd,CharCollapsed=Nd,

Char=Pc,CharCollapsed=Pc,Char=NdNdNdNd,CharCollapsed=Nd
Gazetteer MonthOfYear,Number,Year
Parse node=NP,parent=PP,prod=NP→NP-COMMA-NP,root=false,leaf=false

Table 3: Table representing features extracted from the time expression in Figure 1, organized
by feature type. The comma character is represented as COMMA so it is not confused with the
commas used to separate features. Character classes are explained in the main text.

2.3.1 Sequence Features

Sequence features include lexical features,
gazetteer features, syntactic parse features,
and section features. Lexical and gazetteer
features are both token-based, and are de-
fined for both the current token under con-
sideration (i.e., the one the classifier is cur-
rently trying to label) and the three tokens on
either side of the token under consideration.
These features include token part of speech
(POS) tags and two character based features.
The part of speech tags are obtained from the
cTAKES POS tagger (a clinical data-trained
wrapper for the Apache OpenNLP4 POS tag-
ger). The character-based features map every
character in the token to a unicode character
category5, for example, uppercase letter (Lu),
lowercase letter (Ll), decimal digit (Nd), etc.
This character-mapped token representation is
then turned into two features, one in the un-
modified format and one where repeats are col-
lapsed. For example, the token “2004” would
map to two features: one where its represented
as four digit characters (NdNdNdNd) and one
where the repeats are collapsed (Nd).

Gazetteer features rely on a lookup table
that contains information about lexical items
that are very likely to generalize. We define
a small set of temporal word classes and cre-
ated a gazetteer that maps lexical items to
those classes. The set of classes with repre-
sentative examples is: {Number (numbers up
to 200), Year (four-digit numbers that could
reasonably appear in current notes), Unit (sec-
ond, minute), PartOfDay (morning), Day-
OfWeek (Monday), WeekendOfWeek (week-

4http://opennlp.apache.org
5http://www.unicode.org/reports/tr44/

#General_Category_Values

end), MonthOfYear (January, jan), SeasonO-
fYear (Summer), DecadeOfCentury (nineties),
Time (noon), Age (teenager), TimeReference
(previously), Frequency (monthly), Adjuster
(next), Modifier (nearly), PrePost (postopera-
tive), TimeSeparator (:)}. The full list of items
is too long to list here but will be part of the
open source release of this system.

Parse features for the sequence model are
not as natural a fit as with a constituency
node-based model, but some features can be
derived based on spans. With the BIO tag-
ger models (forward and backward) we define
a candidate span to consider, defined in terms
of the forward tagger but easily extendable to
the backwards tagger. A candidate span for
the current token we are classifying has as its
rightmost token the current token, and its left-
most token as the start of the sequence that
the current token would be a part of if it is clas-
sified as part of a temporal expression. This
is simple to find in practice: if the previous
token is O (not part of a temporal expression)
then the current candidate span is only the
current token; otherwise the candidate span
starts at the most recent token labeled B (the
start of a temporal expression). For the CRF
sequence tagger, classification decisions have
not yet been made, so the candidate span al-
ways covers only the current token.

Given this definition of a candidate span,
we define several features. We have one fea-
ture for the category of the lowest constituent
that dominates the current span, a feature for
the parent category of the dominating node, a
feature that indicates whether the dominating
node is a leaf (preterminal) node, and a fea-
ture to indicate whether the dominating node
matches the current span exactly.

85



We then have production-rule associated
features. First, we simply represent the pro-
duction rule of the dominating node as a string
(e.g., “NP -> DT NN”). We also use “bag of
children” features which represent each of the
elements of the right hand side of the produc-
tion rule, ignoring ordering.

The next feature type is based on surround-
ing classifications. Here the BIO taggers have
access to the previous classification decision
(B, I, or O). The CRF in the linear chain con-
figuration can use labels on either side of the
current word. While this represents a differ-
ence in features available to the systems, it is
one that is inherent to the methodology (some-
thing that is only possible with CRFs and not
with BIO taggers) so we consider this to not
violate our goal of feature parity.

The last feature type is specific to the
THYME corpus, as it is based on identifiers
in the section headers of Mayo Clinic notes.
These identifiers are easily extracted with reg-
ular expressions and are codes that indicate
the purpose of a section (e.g., medications, al-
lergies, etc.). For this feature we simply use
the string representing the code for the sec-
tion that encloses the token under considera-
tion. These are intended to capture the fact
that some sections may contain condensed nar-
rative, and are likely to contain time expres-
sions, while others have expressions that re-
semble time expressions but are not (5/9 to
mean five out of nine).

2.3.2 Constituency Features

The constituency parse-based system at-
tempts to use similar features where possible –
we will refer to the features above when possi-
ble and point out implementation differences.

First, the features for character class and
part of speech for tokens are replicated, by
applying them to all the tokens within the
span of the current tree node being classified.
Gazetteer features are replicated similarly –
each word covered by the current tree node is
mapped to its time class, if it exists. This is
done without reference to ordering.

From the tree itself, we use several features
similar to those above, but explicitly based on
the tree rather than having to be mapped to
the tree. For the current node and its parent,
we have features for node category (e.g., NP).

For the current node alone we use boolean fea-
tures for whether it is the root node of the
sentence and whether it is a leaf node. We
have string features for the bag of children, as
well as a feature representing the production
rule. Table 3 shows the features that would
be extracted for this classifier for the time ex-
pression in Figure 1.

2.4 Evaluation

Our evaluation looks at three variables – dif-
ferent machine learning methods, the useful-
ness of automatic parses at deriving syntac-
tic features, and the domain of the data. For
scoring the evaluation, we primarily use a sim-
ple scorer built into ClearTK that requires
exact span matching. We also track par-
tially overlapping spans and count them as
correct for overlapping span matching. For
comparability, we also use the 2012 i2b2 Chal-
lenge scoring tool for i2b2 data, which allows
both exact and overlapping matching. We
use exact span matching as our primary scor-
ing method to conservatively estimate perfor-
mance, in part because the output of these
systems will typically be passed to a time nor-
malization system, which may not be able to
handle the variations in input. The metrics
we use are precision

(
#correcttimespans

#predictedtimespans

)
, re-

call
(

#correcttimespans
#goldtimespans

)
, and F1

(
2∗p∗r
p+r

)
.

We look first at multiple methods on two
different corpora. In this experiment we are
looking to see whether there is any method
which is clearly superior to the others, espe-
cially across corpora. This experiment is im-
portant because methods like the CRF and
the CRF-based ensemble have some nice the-
oretical properties (finding the globally opti-
mal sequence), but as a result have slower run
time, and to understand this tradeoff we need
to measure performance differences. For the
first four systems (the non-ensemble systems),
we simply train each method on the combined
training and development sets for each corpus,
and test on the test set for that corpus.

For the ensemble system, we note that since
it is trained on the outputs of other systems,
we must do an internal cross-validation of
the component systems before performing the
tests, to ensure that the labels provided to the
ensemble method are representative of what it
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THYME i2b2 2012 Challenge
Exact Overlapping Exact Overlapping

P R F P R F P R F
BIO 0.784 0.676 0.726 0.948 0.836 0.888 0.775 0.718 0.745 0.921 0.853 0.886
Backwards 0.770 0.687 0.726 0.948 0.846 0.894 0.786 0.740 0.762 0.917 0.862 0.889
CRF 0.788 0.584 0.671 0.961 0.712 0.818 0.814 0.617 0.702 0.960 0.728 0.828
Constituency 0.715 0.563 0.630 0.989 0.799 0.884 0.657 0.545 0.596 0.920 0.762 0.834
Ensemble 0.784 0.669 0.722 0.962 0.841 0.897 0.809 0.706 0.754 0.948 0.828 0.884
Xu et al.(2013) 0.881 0.950 0.914

Table 4: Precision (P), Recall (R), and F1-Score (F) for different systems and corpora. The
highest score in each column is in bold. BIO=Begin-Inside-Outside tagger, Backwards=Reverse
BIO tagger,CRF=Conditional Random Field tagger,Constituency=Constituency parser-based
classifier, Ensemble=CRF-based ensemble classifier. Italicized results from Xu et al. indicated
reported, not replicated, results.

will see on test data. We first perform a 5-fold
cross validation on the training set, for each
fold training the component on four folds and
running the trained component on the fifth.
The output on that fifth fold forms the train-
ing data that the ensemble method will see.
By repeating that for each fold, the ensem-
ble method obtains proper system-generated
labels from the component system for the en-
tire training set to use as its training data.

The second experiment looks at the impor-
tance of accurate syntactic parsing for gener-
ating features. For the syntax-focused experi-
ments, we use only the THYME corpus, since
it has a layer of gold standard treebank an-
notations. The tagger we evaluate is the best
performing system on the first experiment, the
Backwards BIO tagger. In this case we exam-
ine three different conditions: First, using gold
standard treebank for feature extraction; sec-
ond, using automatic parses from a THYME-
trained parser; and finally, without any syn-
tactic features at all.

The final experiment examines the domain-
specificity of the systems and corpora. In this
experiment we train the best performing sys-
tem (Backwards BIO tagger) on THYME data
and then test on i2b2 data, and vice versa.

3 Results

Results are shown in Tables 4-6. Table 4
shows the results of the primary experiment
– performance of the various systems on both
THYME and i2b2 corpora. In most condi-
tions, the Backwards BIO Tagger obtains the
highest or tied for the highest F-score, while
the regular BIO tagger and ensemble method

THYME
Exact

P R F
Gold 0.771 0.699 0.733
Automatic 0.770 0.687 0.726
No Syntax 0.773 0.690 0.729

Table 5: Precision (P), recall (R), and F1-
Score (F) for different syntactic configurations
of the Backwards BIO tagger system. Gold -
Manually annotated trees from Treebank used
for features. Automatic – parser trained on
clinical text from THYME Treebank, itali-
cized to denote that it is copied from Table 4
above. No Syntax – Backwards BIO tagger
system with no syntactic features.

obtain very competitive F-scores. The Back-
wards BIO tagger tends to have the best recall
of all systems, while preserving precision at a
relatively high level. The CRF, despite being
theoretically globally optimal, is not compet-
itive in terms of F-score with the SVM-based
taggers. The ensemble CRF nominally obtains
the best performance in the Overlapping met-
ric on the THYME corpus, but the improve-
ment is marginal.

The backwards BIO tagger achieved an F-
score of 0.889 on the i2b2 Challenge data al-
lowing for partial matches (the Overlapping
column). The best performing system in the
i2b2 Challenge (Xu et al., 2013) is shown in
the last row, with an F1 score of 0.914, with an
advantage on recall. Our best system perfor-
mance would tie for 4th in the span matching
part of that challenge, without tuning for that
dataset. While we incorporated features based
on the best-performing similar system (Xu et
al., 2013), including punctuation information,
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prepositions, and chunk information, these did
not improve performance. Their paper de-
scribed a larger system and did not contain
enough detail on time expression extraction
to replicate exactly (e.g., the Other Keywords
section in the online supplement is not exhaus-
tive and probably is important to their result).

Table 5 shows the results of experiments ex-
amining the role of syntactic features on our
best performing system, the Backwards BIO
tagger. This experiment suggests syntactic
features are not valuable for the test set. Nei-
ther using gold standard trees for extracting
features, nor removing syntactic features alto-
gether, changed performance meaningfully.

Finally, Table 6 shows results of cross-
domain experiments, using the best-
performing Backwards BIO tagger. Per-
formance falls quite a bit relative to the
in-domain trained experiments, even in the
relaxed Overlapping condition. Training
on THYME and testing on i2b2 results in
the worst performance, with an exact span
matching F1 Score of 0.422.

4 Discussion

While the results are competitive with the best
systems at the i2b2 Challenge, they raise many
interesting questions.

First, it is very interesting that the best per-
forming systems are the simplest and fastest.
Despite the theoretical advantages of the con-
ditional random field’s global sequence opti-
mization, the BIO approaches using local clas-
sifiers typically obtain the best performance.
This is also in contrast with results from the
i2b2 Challenge, where the best performing sys-
tem used a CRF approach. We extensively ex-
plored the parameter space for CRFs on devel-
opment data and our sense was that through-
out this entire space performance lagged SVM-
based tagging systems.

Next, it is unfortunate but interesting that
the ensemble method does not improve per-
formance over the component systems. Error
analysis for this system showed both examples
where the first word was missed and examples
where the last word was missed. The forwards
and backwards BIO taggers should be obtain-
ing complementary errors of these types. Thus
it is not clear why the ensemble method is un-

able to take advantage of the information from
multiple systems to improve performance.

The syntax-based system shows the biggest
gain when switching from the scorer that con-
siders exact spans to one that considers over-
lapping spans. In preliminary work using gold
standard parses, the exact span scores were
significantly higher. These two facts suggest
that the primary reason for the low accuracy
of this model on exact spans is parsing errors.
This was, in fact, one motivation for incorpo-
rating parser features – if the parser cannot re-
liably find exact spans, perhaps it is still pos-
sible to use its output at word levels to find
patterns that a sequence-based model could
use.

The lack of improvements with syntac-
tic features in these experiments is therefore
somewhat confusing, as using a totally syntax-
based system is able to obtain decent perfor-
mance. One hypothesis for their lack of impact
is that annotation consistency plays a role. We
noticed that annotations of time expressions
around prepositional phrases are inconsistent.
For example, in the prepositional phrase since
Tuesday, the time expression is only Tuesday,
but in some cases the whole PP is annotated
in the gold standard. This may help explain
the large jump in performance when partially
overlapping spans are included, as there are
many errors that are off by only an added or
dropped preposition at the start of the time
expression. (Note that this explanation may
also apply to the constituency parser model.)

The cross-corpus performance (training on
THYME and testing on i2b2 and vice versa) is
surprisingly low. While the annotation guide-
lines are similar, one major difference is the
addition of the prepostexp class to THYME,
for expressions like postoperative. Meanwhile,
i2b2 challenge data annotates expressions like
postoperative day 5, which do not occur in
THYME data, as the date class. This affects
both recall and precision on the THYME to
i2b2 evaluation as expressions like postopera-
tive day 5 cause both recall errors (not get-
ting the whole expression) and precision errors
(predicting the first word of the expression).
Additional errors in this direction are caused
by unseen abbreviations in THYME that are
common in i2b2 (POD for postoperative day,
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Exact Overlapping
Train Corpus Test Corpus P R F P R F
THYME THYME 0.770 0.687 0.726 0.948 0.846 0.894
i2b2 i2b2 0.786 0.740 0.762 0.917 0.862 0.889
THYME i2b2 0.436 0.410 0.422 0.722 0.679 0.700
i2b2 THYME 0.589 0.432 0.498 0.860 0.629 0.727

Table 6: Precision (P), recall (R), and F1-Score (F) for cross-domain experiments. We use
the best-performing system for each experiment (Backwards BIO), with automatic parse fea-
tures from a THYME-trained parser. Italicized rows are copied from Table 4 above for ease of
comparison.

x 2 for twice a day). In the other direction
(train on i2b2, test on THYME), recall errors
are worst because it does not correctly iden-
tify any of the prepostop expressions. Surpris-
ingly, in both directions there are relatively
simple date formats missed due to slight differ-
ences in convention – THYME data often uses
month names (e.g. Jan 5, 2014) while i2b2
typically does not, while i2b2 uses MM-YY
format (e.g., March 7 represented as 05-07)
while THYME does not. This suggests that a
better system could be obtained by training on
both corpora, although this will require some
reconciliation of the differences in time classes,
primarily what THYME calls prepostexp time
expressions.

Errors on the best-performing system are
primarily those where the start or end of the
time expression is off by one. As above, these
may be partially due to inconsistent prepo-
sitional phrase annotation, and the effect of
fixing this is roughly seen in the overlapping
scoring criterion. The remaining errors proba-
bly represent the most opportunity for system
improvement, so we focus on that briefly.

One common issue occurs with coordination
– phrases like 2003 or 2004. While these are
annotated as a single span, the system will get
the two individual years, resulting in one recall
error but two precision errors. This type of er-
ror might be fixed by a second pass that joins
together time expressions connected by coor-
dinators. A modified syntactic approach that
operates bottom-up instead of top-down might
also correctly recognize such expressions. An-
other source of error is in expressions that are
unusually expressed in a few instances, such
as times three to mean something happened
three times. While this is in the training data,
it is not the primary way of indicating this
meaning, and there are not enough instances

to learn this modification. Similarly, some-
times punctuation is inserted or modified into
an expression that slightly changes its repre-
sentation to the classification algorithm (e.g.,
one-year with a dash rather than one year).
Fixing this issue in a general way is a tricky
problem, as it is related to the larger issue of
there being many ways to instantiate any given
concept (half past 7, half of 8, 7:30, etc.). In
the clinical domain one hopes that usage is a
bit more constrained and that one might be
able to get away with a simpler approach such
as just ignoring punctuation.

In conclusion, we have presented and eval-
uated multiple machine learning methods for
temporal expression extraction. Our results
suggest that simpler and faster BIO sequence
tagger methods are as good as more complex
models or ensemble methods. We also show
that deep syntax does not seem beneficial to
this task. Finally, we show that there is signif-
icance performance degradation when apply-
ing to new corpora, despite similar annotation
guidelines and domains.
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Abstract

In the medical domain, identifying and
expanding abbreviations in clinical texts
is a vital task for both better human and
machine understanding. It is a challeng-
ing task because many abbreviations are
ambiguous especially for intensive care
medicine texts, in which phrase abbrevi-
ations are frequently used. Besides the
fact that there is no universal dictionary
of clinical abbreviations and no universal
rules for abbreviation writing, such texts
are difficult to acquire, expensive to anno-
tate and even sometimes, confusing to do-
main experts. This paper proposes a novel
and effective approach – exploiting task-
oriented resources to learn word embed-
dings for expanding abbreviations in clin-
ical notes. We achieved 82.27% accuracy,
close to expert human performance.

1 Introduction

Abbreviations and acronyms appear frequently in
the medical domain. Based on a popular online
knowledge base, among the 3,096,346 stored ab-
breviations, 197,787 records are medical abbrevi-
ations, ranked first among all ten domains.1 An
abbreviation can have over 100 possible explana-
tions2 even within the medical domain. Medical
record documentation, the authors of which are
mainly physicians, other health professionals, and
domain experts, is usually written under the pres-
sure of time and high workload, requiring nota-
tion to be frequently compressed with shorthand
jargon and acronyms. This is even more evident

1www.allacronyms.com
2www.allacronyms.com/ medical/HD

within intensive care medicine, where it is cru-
cial that information is expressed in the most ef-
ficient manner possible to provide time-sensitive
care to critically ill patients, but can result in code-
like messages with poor readability. For exam-
ple, given a sentence written by a physician with
specialty training in critical care medicine, “STAT
TTE c/w RVS. AKI - no CTA. .. etc”, it is dif-
ficult for non-experts to understand all abbrevia-
tions without specific context and/or knowledge.
But when a doctor reads this, he/she would know
that although “STAT” is widely used as the abbre-
viation of “statistic”, “statistics” and “statistical”
in most domains, in hospital emergency rooms, it
is often used to represent “immediately”. Within
the arena of medical research, abbreviation expan-
sion using a natural language processing system
to automatically analyze clinical notes may enable
knowledge discovery (e.g., relations between dis-
eases) and has potential to improve communica-
tion and quality of care.

In this paper, we study the task of abbreviation
expansion in clinical notes. As shown in Figure 1,
our goal is to normalize all the abbreviations in the
intensive care unit (ICU) documentation to reduce
misinterpretation and to make the texts accessible
to a wider range of readers. For accurately cap-
turing the semantics of an abbreviation in its con-
text, we adopt word embedding, which can be seen
as a distributional semantic representation and has
been proven to be effective (Mikolov et al., 2013)
to compute the semantic similarity between words
based on the context without any labeled data. The
intuition of distributional semantics (Harris, 1954)
is that if two words share similar contexts, they
should have highly similar semantics. For exam-
ple, in Figure 1, “RF” and “respiratory failure”
have very similar contexts so that their semantics
should be similar. If we know “respiratory fail-
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61 y.o. M with a hx of 
COPD, HTN, smoker 
who presents for 
worsening SOB on 
exertion and CP on 
exertion for 2-3 days. Also 
notes … and intubated 
for hypercarbic RF. 

Input Output

61 year old male with a history 
of Chronic obstructive 
pulmonary disease, 
Hypertension, smoker who 
presents for worsening Shortness 
of breath on exertion and chest 
pain on exertion for 2-3 days. 
Also notes … and intubated 
for hypercarbic Respiratory 
Failure. 

Patients with COPD 
requiring admission to an 
intensive care unit (ICU) 
for acute hypercapnic 

respiratory failure (RF) 
usually have a poor 

outcome and consume a 
large amount of resources, 
in the case of a need for 
intubation, in particular. 

Clinical Research Paper

Figure 1: Sample Input and Output of the task and
intuition of distributional similarity

ure” is a possible candidate expansion of “RF” and
its semantics is similar to the “RF” in the inten-
sive care medicine texts, we can determine that
it should be the correct expansion of “RF”. Due
to the limited resource of intensive care medicine
texts where full expansions rarely appear, we ex-
ploit abundant and easily-accessible task-oriented
resources to enrich our dataset for training embed-
dings. To the best of our knowledge, we are the
first to apply word embeddings to this task. Exper-
imental results show that the embeddings trained
on the task-oriented corpus are much more useful
than those trained on other corpora. By combining
the embeddings with domain-specific knowledge,
we achieve 82.27% accuracy, which outperforms
baselines and is close to human’s performance.

2 Related Work

The task of abbreviation disambiguation in
biomedical documents has been studied by various
researchers using supervised machine learning al-
gorithms (Liu et al., 2004; Gaudan et al., 2005; Yu
et al., 2006; Ucgun et al., 2006; Stevenson et al.,
2009). However, the performance of these super-
vised methods mainly depends on a large amount
of labeled data which is extremely difficult to ob-
tain for our task since intensive care medicine texts
are very rare resources in clinical domain due to
the high cost of de-identification and annotation.
Tengstrand et al. (2014) proposed a distributional
semantics-based approach for abbreviation expan-

sion in Swedish but they focused only on expand-
ing single words and cannot handle multi-word
phrases. In contrast, we use word embeddings
combined with task-oriented resources and knowl-
edge, which can handle multiword expressions.

3 Approach

3.1 Overview

The overview of our approach is shown in Figure
2. Within ICU notes (e.g., text example in top-
left box in Figure 2), we first identify all abbre-
viations using regular expressions and then try to
find all possible expansions of these abbreviations
from domain-specific knowledge base3 as candi-
dates. We train word embeddings using the clini-
cal notes data with task-oriented resources such as
Wikipedia articles of candidates and medical sci-
entific papers and compute the semantic similarity
between an abbreviation and its candidate expan-
sions based on their embeddings (vector represen-
tations of words).

"61 y.o. M pt with a 
hx of COPD, HTN 

… etc”

Input

Output

"61 year old Male 
Patient with a history 
of chronic obstructive 

pulmonary disease, 
Hypertension … etc”

Articles 
Journals 
Books

Intensive 
Care  
Texts

Abbreviation 
Identification

Candidate 
List

Word 
Embeddings

Ranking

Abbreviation 
Expansion

Figure 2: Approach overview.

3http://www.allacronyms.com
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3.2 Training embeddings with task oriented
resources

Given an abbreviation as input, we expect the cor-
rect expansion to be the most semantically similar
to the abbreviation, which requires the abbrevia-
tion and the expansion share similar contexts. For
this reason, we exploit rich task-oriented resources
such as the Wikipedia articles of all the possible
candidates, research papers and books written by
the intensive care medicine fellows. Together with
our clinical notes data which functions as a corpus,
we train word embeddings since the expansions of
abbreviations in the clinical notes are likely to ap-
pear in these resources and also share the similar
contexts to the abbreviation’s contexts.

3.3 Handling MultiWord Phrases
In most cases, an abbreviation’s expansion is a
multi-word phrase. Therefore, we need to obtain
the phrase’s embedding so that we can compute its
semantic similarity to the abbreviation.

It is proven that a phrase’s embedding can
be effectively obtained by summing the embed-
dings of words contained in the phrase (Mikolov
et al., 2013; Socher et al., 2013). For com-
puting a phrase’s embedding, we formally define
a candidate ci as a list of the words contained
in the candidate, for example: one of MICU’s
candidate expansions is medical intensive care
unit=[medical,intensive,care,unit]. Then, ci’s em-
bedding can be computed as follows:

x(ci) =
∑
t∈ci

x(t) (1)

where t is a token in the candidate ci and x(·)
denotes the embedding of a word/phrase, which is
a vector of real-value entries.

3.4 Expansion Candidate Ranking
Even though embeddings are very helpful to com-
pute the semantic similarity between an abbrevi-
ation and a candidate expansion, in some cases,
context-independent information is also useful to
identify the correct expansion. For example, CHF
in the clinical notes usually refers to “congestive
heart failure”. By using embedding-based seman-
tic similarity, we can find two possible candidates
– “congestive heart failure” (similarity=0.595) and
“chronic heart failure”(similarity=0.621). These
two candidates have close semantic similarity
score but their popularity scores in the medical do-
main are quite different – the former has a rating

score4 of 50 while the latter only has a rating score
of 7. Therefore, we can see that the rating score,
which can be seen as a kind of domain-specific
knowledge, can also contribute to the candidate
ranking.

We combine semantic similarity with rating in-
formation. Formally, given an abbreviation b’s
candidate list l(b) = {c1, c2, ...., cn}, we rank l(b)
based on the following formula:

score(c) = λ
rating(c)∑

ci∈l(b) rating(ci)
+ (1− λ)

x(b) · x(c)

|x(b)||x(c)|
(2)

where rating(c) denotes the rating of this candi-
date as an expansion of the abbreviation b, which
reflects this candidate’s popularity, x(·) denotes
the embedding of a word. The parameter λ serves
to adjust the weights of similarity and popularity5

4 Experiment Results

4.1 Data and Evaluation Metrics

The clinical notes we used for the experiment
are provided by domain experts, consisting of
1,160 physician logs of Medical ICU admission
requests at a tertiary care center affiliated to Mount
Sanai. Prospectively collected over one year,
these semi-structured logs contain free-text de-
scriptions of patients’ clinical presentations, med-
ical history, and required critical care-level inter-
ventions. We identify 818 abbreviations and find
42,506 candidates using domain-specific knowl-
edge (i.e., www.allacronym.com/ medical). The
enriched corpus contains 42,506 Wikipedia arti-
cles, each of which corresponds to one candidate,
6 research papers and 2 critical care medicine text-
books, besides our raw ICU data.

We use word2vec (Mikolov et al., 2013) to train
the word embeddings. The dimension of embed-
dings is empirically set to 100.

Since the goal of our task is to find the correct
expansion for an abbreviation, we use accuracy as
a metric to evaluate the performance of our ap-
proach. For ground-truth, we have 100 physician
logs which are manually expanded and normalized
by one of the authors Dr. Mathews, a well-trained

4All the rating information in this paper is from
http://www.allacronyms.com. On this website, users are free
to rate expansions of an abbreviation if they like the expan-
sions. In general, a popular expansion has a high rating score.

5In the experiments, λ is empirically tuned to 0.2 on a
separate development set.
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domain expert, and thus we use these 100 physi-
cian logs as the test set to evaluate our approach’s
performance.

4.2 Baseline Models

For our task, it’s difficult to re-implement the su-
pervised methods as in previous works mentioned
since we do not have sufficient training data. And
a direct comparison is also impossible because all
previous work used different data sets which are
not publicly available. Alternatively, we use the
following baselines to compare with our approach.

• Rating: This baseline model chooses the
highest rating candidate expansion in the do-
main specific knowledge base.

• Raw Input embeddings: We trained word em-
beddings only from the 1,160 raw ICU texts
and we choose the most semantically related
candidate as the answer.

• General embeddings: Different from the Raw
Input embeddings baseline, we use the em-
bedding trained from a large biomedical data
collection that includes knowledge bases like
PubMed and PMC and a Wikipedia dump
of biomedical related articles (Pyysalo et al.,
2013) for semantic similarity computation.

4.3 Results

Table 1 shows the performance of abbreviation ex-
pansion. Our approach significantly outperforms
the baseline methods and achieves 82.27% accu-
racy.

Approaches Accuracy
Rating 21.32%
Raw input embeddings 26.45%
General embeddings 28.06%
Our Approach 82.27%

Table 1: Overall performance

Figure 3 shows how our approach improves the
performance of a rating-based approach. By us-
ing embeddings, we can learn that the meaning of
“OD” used in our test cases should be “overdose”
rather than “out-of-date” and this semantic infor-
mation largely benefits the abbreviation expansion
model.

• ‘OD’- rating-based: [‘out-of-date’, ‘other
diseases’, ‘on duty’, ‘once daily’, ‘optometry
degree’, ‘organ donation’, ‘overdose’, ‘optic
disc’ ... etc.]

• ‘OD’- our approach: [‘overdose’, ‘osteo-
chondritis dissecans’, ‘optic disc’ ... ... etc.]

Figure 3: Ranking lists of expansions of “OD” by
the rating-based method, our approach

Compared with our approach, embeddings
trained only from the ICU texts do not signifi-
cantly contribute to the performance over the rat-
ing baseline. The reason is that the size of data for
training the embeddings is so small that many can-
didate expansions of abbreviations do not appear
in the corpus, which results in poor performance.
It is notable that general embeddings trained from
large biomedical data are not effective for this task
because many abbreviations within critical care
medicine appear in the biomedical corpus with dif-
ferent senses.

• Output of general Embeddings on abbre-
viation ‘OD’: [‘O.D.’, ‘optical density’,
‘OD450’, ‘O.D’, ‘OD570’, ‘absorbance’,
‘OD490’, ‘600nm’ ... etc.]

Figure 4: The output of general embeddings
trained on large biomedical texts

For example, “OD” in intensive care medicine
texts refers to “overdose” while in the PubMed
corpus it usually refers to “optical density”, as
shown in Figure 4. Therefore, the embeddings
trained from the PubMed corpus do not benefit the
expansion of abbreviations in the ICU texts.

Moreover, we estimated human performance
for this task, shown in Table 2. Note that the
performance is estimated by one of the authors
Dr. Mathews who is a board-certified pulmo-
nologist and critical care medicine specialist based
on her experience and the human’s performance
estimated in Table 2 is under the condition that
the participants can not use any other external re-
sources. We can see that our approach can achieve
a performance close to domain experts and thus it
is promising to tackle this challenge.
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Groups Accuracy
General readers <40%
Nurses 40%
Mid-level provider (nurse practi-
tioner or physician associate)

70%

General practicing physician 80%
Domain experts with additional
training in Emergency Medicine
or Critical Care Medicine

>90%

Table 2: Estimated human performance for abbre-
viation expansion

4.4 Error Analysis

The distribution of errors is shown in Table 3.
There are mainly three reasons that cause the in-
correct expansion. In some cases, some certain
abbreviations do not exist in the knowledge base.
In this case we would not be able to populate the
corresponding candidate list. Secondly, in many
cases although we have the correct expansion in
the candidate list, it’s not ranked as the top one due
to the lower semantic similarity because there are
not enough samples in the training data. Among
all the incorrect expansions in our test set, such
kind of errors accounted for about 54%. One pos-
sible solution may be adding more effective data
to the embedding training, which means discover-
ing more task-oriented resources. In a few cases,
we failed to identify some abbreviations because
of their complicated representations. For exam-
ple, we have the following sentence in the pa-
tient’s notes: “ No n/v/f/c.” and the correct expan-
sion should be “No nausea/vomiting/fever/chills.”
Such abbreviations are by far the most difficult to
expand in our task because they do not exist in any
knowledge base and usually only occur once in the
training data.

Type of error Percentage
Out of Vocabulary 27%
Lack of training samples 54%
Unidentified representation 19%

Table 3: Error distribution

5 Conclusions and Future Work

This paper proposes a simple but novel approach
for automatic expansion of abbreviations. It
achieves very good performance without any man-

ually labeled data. Experiments demonstrate that
using task-oriented resources to train word embed-
dings is much more effective than using general or
arbitrary corpus.

In the future, we plan to collectively expand se-
mantically related abbreviations co-occurring in a
sentence. In addition, we expect to integrate our
work into a natural language processing system
for processing the clinical notes for discovering
knowledge, which will largely benefit the medical
research.
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Abstract

Complex noun phrases are pervasive in
biomedical texts, but are largely under-
explored in entity discovery and informa-
tion extraction. Such expressions often
contain a mix of highly specific names
(diseases, drugs, etc.) and common words
such as “condition”, “degree”, “process”,
etc. These words can have different se-
mantic types depending on their context
in noun phrases. In this paper, we ad-
dress the task of classifying these common
words onto fine-grained semantic types:
for instance, “condition” can be typed as
“symptom and finding” or “configuration
and setting”. For information extraction
tasks, it is crucial to consider common
nouns only when they really carry biomed-
ical meaning; hence the classifier must
also detect the negative case when nouns
are merely used in a generic, uninforma-
tive sense. Our solution harnesses a small
number of labeled seeds and employs la-
bel propagation, a semisupervised learn-
ing method on graphs. Experiments on
50 frequent nouns show that our method
computes semantic labels with a micro-
averaged accuracy of 91.34%.

1 Introduction

1.1 Motivation
In biomedical texts, entities are written as natu-
ral language expressions – often complex noun
phrases. Previous works on information extrac-
tion in this domain have focused on short phrases
that work well, for instance, with dictionary-based
approaches. The most notable method is the
MetaMap tool by Aronson and Lang (2010). Of-
ten, however, expressions are long and complex,
mixing domain-specific names (of diseases, symp-

toms, drugs, etc.) with common nouns such as
“condition”, “degree” or “process”. Examples for
such complex phrases are:
1) monitoring of the carcinogenic process
2) development of processes for the prognosis of
malaria.

In the first example, “process” is a vital part
of the phrase and carries biomedical meaning,
namely, denoting a body function. In the second
example, “process” is used in the generic sense
of the common noun and is relatively uninforma-
tive for the purpose of detecting biomedical enti-
ties in text. For information extraction tasks like
entity discovery, relation mining and knowledge
base population, it is crucial to distinguish these
two situations. Moreover, in the first case, we
would like to further annotate the common noun
with a semantic type that captures the role of the
word within the surrounding noun phrase.

This kind of semantic typing could be based
on WordNet senses (Fellbaum, 1998), using tech-
niques for word sense disambiguation (Navigli,
2009), or on UMLS entries. However, Word-
Net has limited coverage of the biomedical do-
main, and UMLS has rather coarse-grained and
sometimes fuzzy types. Therefore, we devised
a small collection of fine-grained semantic types
ourselves. The novelty of our proposed seman-
tic types lies in the explicit provision for non-
biomedical types, as well as the uninformative
type where applicable; Table 1 shows both of these
elements in play for the target words culture and
degree.

Our goal then is to automatically label common
words in complex noun phrases with the most ap-
propriate semantic type or inferring that the word
is merely used in a generic sense without specific
biomedical meaning. We focus on a judiciously
chosen list of common nouns, referred to as tar-
get words, that frequently appear within long noun
phrases in biomedical texts. The resulting annota-
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Target word Semantic types

culture medical sample
social construct

degree metric for temperature
metric for bending
stage in progression (e.g. second degree burn)
academic degree
degree of freedom in statistics
edges out of a node in a graph
generic, uninformative

Table 1: Semantic types for the target words cul-
ture and degree.

tions – for example, labeling “process” in “moni-
toring of the carcinogenic process” as body func-
tion – can in turn enhance the coverage and quality
of information extraction tasks.

1.2 Approach and contribution
We develop a semisupervised method for labeling
a target word, within a given noun phrase, with
its most suitable semantic type or tagging it as
biomedically unspecific and uninformative. Our
method is based on label propagation over a graph
that connects noun phrases and has a small num-
ber of manually labeled seed nodes. Each distinct
noun phrase becomes a node, and an edge con-
nects two nodes that share a target word with a
weight reflecting the similarity between the con-
texts of the respective phrase occurrences. We
then apply the MAD label propagation algorithm
(Talukdar and Crammer, 2009) to infer the best
type labels for the target words in the graph’s
nodes.

Experiments show that our method achieves
91.34% micro-averaged and 83.57% macro-
averaged accuracy over 50 frequently appearing
target words. Moreover, our method is capable of
classifying both target words with and without an
uninformative semantic type.

2 Related work

In general, the semantic interpretation of complex
phrases is a long-studied problem in computa-
tional linguistics, and widely viewed as a very de-
manding task (see, e.g., Sag et al. (2002); Nakov
and Hearst (2013)). For biomedical texts, how-
ever, complex phrases are an infrequently studied
problem. Golik et al. (2013) propose to handcraft
rules based on linguistic cues to identify longer
noun phrases beyond dictionary entries. Similar to
this paper, they are also motivated by the needs of

a knowledge acquisition application. Their work
makes a point in analyzing “semantically poor”
terms, some of which essentially entail the unin-
formative semantic type we propose.

The problem setting closest to word usage de-
tection is undoubtedly word sense disambiguation
(WSD) of free text. For the general domain, the
vast body of work has been surveyed by Navigli
(2009), and mature software tools such as It Makes
Sense (Zhong and Ng, 2010) covers most words.
For the biomedical domain, the majority of previ-
ous works center around two WSD datasets (Wee-
ber et al., 2001; Jimeno-Yepes et al., 2011) that to-
gether contain 253 ambiguous words, multi-word
terms, and abbreviations. In addition, Stevenson
et al. (2008), Fan et al. (2009), and Cheng et
al. (2012) propose methods to generate labeled
data. As for methodologies, vector space mod-
els (McInnes, 2008; Savova et al., 2008) are a
common choice. Another common approach is to
exploit the rich knowledge embedded in UMLS.
Agirre et al. (2010) and Humphrey et al. (2006)
leverage entity-entity relations and semantic type
information in UMLS, respectively.

Entity disambiguation is another highly relevant
research area. For the general domain, most ef-
forts focus on named entities, and software sys-
tems such as AIDA (Hoffart et al., 2011) and Wik-
ifier (Ratinov et al., 2011) are both robust and scal-
able. In contrast, for the biomedical domain, exist-
ing works target restricted scopes such as species
(Wang et al., 2010) and acronyms (Harmston et al.,
2012). Although MetaMap (Aronson and Lang,
2010) covers all the diverse entities in UMLS, its
entity disambiguation functionality remains lim-
ited.

3 Methodology

3.1 Outline of methodology

Our method operates on one target word at a time.
We collect noun phrases in our text corpus that
contain the selected target word. On the one hand
comes the manual preparation of the target seman-
tic types and their seed phrases. On the other hand
comes the automatic computation of similarities
of noun phrase pairs. This similarity is based on
context – a window of k words before and after
the target word in a noun phrase (for clarity pur-
poses, we denote by context words those words in
the window surrounding the target). This context,
in turn, is captured by three features, namely word
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occurrences, part-of-speech tags, and entity types
(again for clarity purposes, we distinguish context
entity types that are precomputed, from target se-
mantic types that we want to classify). Using the
seed phrases and context similarities, we cast the
the noun phrases into a graph and apply the MAD
label propagation algorithm.

In the following subsections, we describe how
we construct each component.

3.2 Target semantic types
In our corpus, we observe that 90% of all noun oc-
currences come from 5000+ distinct nouns. Since
it is infeasible to study so many of them, we pick
50 highly common but semantically ambiguous
ones to be our target words. For each target word,
we manually specify its applicable target semantic
types based on two criteria. First, a target seman-
tic type should have a discernible presence in the
corpus. Second, the contexts of target semantic
types should be amenable to a learning algorithm,
i.e. they should be sufficiently distinct from each
other. Recall that we would also like to identify the
case when the target word is used in a generic, un-
informative way. We facilitate this by adding a un-
informative semantic type. We observe, however,
that not all target words require this uninformative
type. For instance, culture has two overwhelm-
ingly dominant types (medical sample and social
construct) such that the rest are negligible and do
not need an explicit representation. This specifi-
cation of target semantic types is based on man-
ual observation, over both the corpus noun phrases
and UMLS entries relevant to the target word.

Once the semantic types are set, we nomi-
nate a few representative phrases as seed phrases.
This process is again manual, where we aim
for phrases which are sufficiently prevalent, and
which convey the target semantic type with
high certainty. Table 2 shows all semantic
types and all the seed phrases for the target
word activity, and the complete list is available
at http://mpi-inf.mpg.de/~siu/bionlp2015/.
In our compilation, one target word has on aver-
age 3.78 target semantic types, which in turn has
on average 2.68 seed phrases.

3.3 Context entity type estimation
We would like to assign an entity type to each con-
text word. However, since a comprehensive en-
tity disambiguation tool is not available, we es-
timate the entity types by a popularity-based ap-

proach that exploits the repetitiveness of thesauri
entries and semantic assets in UMLS. First, take
note of UMLS entity names that contain a single
word. Next, for each distinct entity name, take
note of the entities (distinct CUIs), as well as the
number of occurrences (MRCONSO entries) rep-
resented. A few heuristics determine which entity
is the most popular, and the corresponding CUI’s
UMLS semantic type1 becomes the word’s entity
type. Taking cat as an example, it appears 16 times
as a mammal, 3 times as the abbreviation for CAT
scan, and 1 time as an enzyme. Therefore cat’s
entity type is Mammal, the UMLS semantic type
for CUI 0007450. In essence, this approach ap-
proximates the entity type with the largest prior
distribution probability. Since biomedical word
senses are often highly skewed (Jimeno-Yepes et
al., 2011), we believe this approach is a reason-
able interim substitute to a full-fledged entity dis-
ambiguation tool.

In addition to the 133 UMLS semantic types, we
introduce an extra type to represent measurement
units such as mg/kg and µmol.

We investigate two variants of entity type simi-
larity. Under the hard variant, only the same entity
type occurrences contribute towards context simi-
larity (e.g. Cell and Cell Component would there-
fore be considered completely dissimilar). Under
the soft variant, similar entity types also contribute
(Cell and Cell Component now have a similarity of
0.9375). The similarity between two entity types
A and B is:

0.5× group(A,B) + 0.5× lch(A,B)
where group() returns 1 if A and B belong to
the same UMLS semantic group, and 0 otherwise.
lch(A,B) is the similarity score between A, B in
the UMLS semantic type hierarchy according to
Leacock and Chodorow’s method (1998), normal-
ized to range between 0 and 1. The use of group()
is necessary because some semantic type pairs are
highly similar but far apart in the hierarchy (e.g.
Body System and Tissue).

3.4 Context similarity

We model the similarity between two phrases by
calculating a similarity score between their con-
texts. Specifically, the similarity score is a lin-
ear combination of the contributions from the con-
texts’ words, part-of-speech (POS) tags, and entity

1Not to be confused with the custom target semantic types
in Section 3.2. They are used independently in this work.
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Semantic type Seed phrases Sample classified noun phrases

physical activity fetal activity instruction in self-directed exercises and activity diaries
physical activity day-to-day household activities that create the backbone of healthy environments

body & protein catalytic activity histochemically demonstrable esterase activity in the hypothalamus of the developing rat
process disease activity lower insulin-stimulated GS activity in PCOS patients compared with controls

inflammatory activity plasma anti-pneumococcal polysaccharide antibody activity (serotypes 3, 6a and 23)
kinase activity polymerase activity relative to the wild-type protein

generic, of activity of dual activity of exploring karanjin isolation for medicinal purposes
uninformative of activity in the orchestration of a set of activities that should be executed in order to deliver an output

Table 2: Semantic types, seed phrases, and sample classified noun phrases for the target word activity.

types (either the hard or the soft variant):
sim(context1, context2) =
α1 × Jw(words1, words2)

+ α2 × Jw(POS tags1, POS tags2)
+ α3 × Jw(entity types1, entity types2)

where α1 +α2 +α3 = 1, and Jw() is the weighted
Jaccard similarity function. Intuitively, Jw() cap-
tures not only the overlap between two sets of
items, but also the significance or weight of the
items. In our setting, an item is a word, a POS tag,
or a context entity type, and the weight depends
on the item’s distance to the target word – the
smaller the distance, the higher the weight. Based
on preliminary experiments, 1/d is found to be the
best weighting scheme, where d is the distance be-
tween target and context words. For word, POS,
and the hard variant of context entity type, only ex-
act matches count towards Jw() item overlap (sin-
gular/plural and American/British spellings of the
same word qualify as exact matches). For the soft
variant of context entity type, the 1/d weight is
further scaled by the entity type-entity type simi-
larity score.

3.5 MAD label propagation

Now we have all the ingredients to build a graph
out of a collection of noun phrases. Take a phrase
as a node. Compute the similarity score between
two phrases’ contexts, and make it the weight of
the edge between the two corresponding nodes. A
small number of nodes containing seed phrases be-
come the seed nodes, and the seed phrase’s seman-
tic type is the label. Apply the MAD label prop-
agation algorithm (Talukdar and Crammer, 2009)
to label all the nodes, effectively classifying each
node with the best target semantic type. Recall
that each target word requires its own graph and
hence separate application of MAD.

Label propagation, also known as belief prop-
agation, is a semisupervised, iterative learning

method on graphs. Some nodes, i.e. the seed
nodes, in the graph are initially labeled. Infor-
mally, over the iterations, the seed nodes exert in-
fluence on their neighbors, whom in turn influence
their neighbors, such that eventually all nodes be-
come labeled. MAD is a state-of-the-art variant of
the standard label propagation algorithm (Baluja
et al., 2009), and it guarantees convergence. Based
on preliminary experiments, µ1 = 10 × µ2 =
100× µ3 were found to be the best hyperparame-
ters for MAD. Since a graph with n nodes contains
O(n2) edges, we prune low-weight edges to avoid
excessively time consuming computations.

4 Results and discussion

4.1 The dataset
Our corpus consists of documents from a diverse
set of biomedical free texts: PubMed abstracts
and full-length articles, encyclopedic webpages
from health portals, and online discussion forums.
As a pre-processing step, each document is seg-
mented into sentences by the LingPipe tool, and
further tagged with POS and parsed into depen-
dency graphs by the Stanford CoreNLP tool. We
then extract the longest compound noun phrases
from the sentences. Finally, for each target word,
we make one collection by randomly selecting
noun phrases containing that word. The aver-
age noun phrase length across collections are rela-
tively uniform from 13 to 17 words.

4.2 Results
We tuned the method’s parameters using a devel-
opment dataset of 1,000 randomly selected nodes
for each target word. Keeping the proportion of
seed nodes at 5%, we obtained the best parameter
setting (the α’s in context similarity and window
size k) for each individual word.

In the test dataset, each target word has a graph
of 10,000 random nodes with also 5% seeds. On
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Target
word

#Types Micro Macro Best
context

Target
word

#Types Micro Macro Best
context

Target
word

#Types Micro Macro Best
context

activity 3 0.91 0.91 WPH function 3 0.94 0.94 WPS reaction 5 0.97 0.94 WP
administration 2 0.93 0.84 WPS group 3 0.92 0.74 WPS reduction 3 0.72 0.75 WPS
area 6 0.92 0.89 WP information 4 0.95 0.95 WPH region 4 0.90 0.50 WPS
body 4 0.96 0.94 WPH line 5 0.89 0.85 WPS report 2 0.99 0.97 WPH
case 5 0.83 0.88 WPS measure 2 0.90 0.80 WPS resistance 3 0.98 0.66 WPS
concentration 4 0.95 0.98 WPH mechanism 2 0.85 0.76 WPS response 5 0.89 0.73 WPS
condition 2 0.95 0.96 WPH model 3 0.96 0.63 WPS result 4 0.91 0.89 WPH
control 4 0.98 0.97 WPS pattern 6 0.77 0.81 WP role 3 0.98 0.99 WPH
culture 2 0.99 0.79 WP period 3 0.91 0.92 WPS sequence 2 0.97 0.95 WPS
degree 7 0.76 0.72 WP point 8 0.92 0.76 WP set 2 0.98 0.97 WPS
development 5 0.88 0.86 WP pressure 6 0.79 0.89 WP site 4 0.96 0.85 WPH
distribution 2 0.96 0.96 WPS problem 4 0.89 0.67 WP solution 2 0.99 0.94 WPS
effect 2 0.93 0.75 WPS process 4 0.85 0.91 WPH state 4 0.98 0.82 WP
expression 4 0.96 0.81 WPH product 6 0.95 0.91 WP strain 3 0.66 0.59 WPS
factor 6 0.96 0.72 WP profile 3 0.98 0.84 WP system 4 0.92 0.85 WPS
flow 5 0.83 0.90 WPH program 5 0.92 0.85 WPH technique 2 0.91 0.92 WPS
form 4 0.92 0.63 WPS rate 3 0.95 0.78 WP

Table 3: Number of semantic types, micro- and macro-averaged accuracy, and the best context setting of
50 target words. W, P, H, S denote word, POS, hard and soft context entity types, respectively.

average, 1428 and 437 nodes were evaluated for
each target word and for each target semantic type,
respectively. Two annotators evaluated the labels
suggested by the MAD algorithm, and the value
of Fleiss’ Kappa was 0.76, which indicates sub-
stantial inter-annotator agreement. Table 3 lists
the micro- and macro-averaged accuracy, as well
as the best context setting.

4.3 Discussion

Overall, micro-averaged accuracy is very encour-
aging at 80% or above for 45 target words. A
few target words (degree, pattern, and pressure)
have higher numbers (6 or 7) of target semantic
types. As the number of target semantic types in-
creases for one target word, it becomes harder for
the types’ contexts to be sufficiently distinct from
each other. This phenomenon leads to noisy edge
weights in the graph, which in turn leads to poorer
classification results. Other target words (reduc-
tion and strain) also have week micro-averaged
accuracy despite having fewer (3) target seman-
tic types. In both cases here, the dominant target
semantic type is used in such a broad way that a
few seed phrases are not sufficient to describe the
context. Specifically, a reduction of quantity can
be about just anything; and an organism strain can
be described at the population, experiment, organ-
ism, gene, or molecular level, or can be described
via the characteristic effect the strain causes.

Macro-averaged accuracy performs less consis-
tently and varies across target words. The over-
riding contributing factor here is the skew of the
target semantic types’ distribution. In our an-
notations, the most frequent label of one target

word constitutes from 23% to 91% of occurrences.
When a sparse type is represented by few labeled
examples in the graph, naturally there is less gen-
eralization power to classify correctly.

In terms of how much context words, POS, and
context entity types contribute towards the solu-
tion, we are surprised that the use of words and
POS alone are sufficient for 28% of the target
words to achieve the best experimental setting.
While the rest of the target words benefit to vary-
ing degrees the hard and soft variants of context
entity types, it is worth noting that even a rudimen-
tary estimation of context entity types empowers
better context comparisons for the other 72% of
target words.

Errors in the classification stem from two main
sources. In some cases, the critical cue, be it a
word or a context entity type, lies outside of the
context window. In other cases, significant expert
knowledge is needed to put the puzzle together.

5 Conclusion

In this work, we present a semisupervised method
that classifies a word’s semantic type in com-
plex noun phrases. With 50 common words, we
demonstrate that a small number of labeled seeds
can enable a label propagation algorithm to assign
both conventional semantic type labels as well as
the negative case of uninformative label. We envi-
sion that the semantic types of words in a noun
phrase make one building block towards more
fully utilizing that phrase. In the future, we plan to
apply our method to other information extraction
modules, and enrich their capability in handling
longer phrases that go beyond dictionary entries.
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Abstract 

Clinical depression is a mental disorder 

involving genetics and environmental 

factors. Although much work studied its 

genetic causes and numerous candidate 

genes have consequently been looked into 

and reported in the biomedical literature, 

no gene expression changes or mutations 

regarding depression have yet been 

adequately collected and analyzed for its 

full pathophysiology. In this paper, we 

present a depression-specific annotated 

corpus for text mining systems that target 

at providing a concise review of 

depression-gene relations, as well as 

capturing complex biological events such 

as gene expression changes. We describe 

the annotation scheme and the conducted 

annotation procedure in detail. We discuss 

issues regarding proper recognition of 

depression terms and entity interactions 

for future approaches to the task. The 

corpus is available at 

http://www.biopathway.org/CoMAGD.  

1 Introduction 

Clinical depression, or major depressive disorder, 

is a mental disorder of the central nervous system 

with a pathophysiology involving the neocortex. 

Genetics and environmental factors are known to 

contribute to the development of mood disorders 

(Nestler et al., 2002). Many biomedical research 

efforts studied the causative factors of genetics in 

                                                 
* Corresponding author 

depression, with consequent rapid accumulation 

of candidate genes (Kao et al., 2011; Piñero et al., 

2015). However, the accumulated information is 

not yet comprehensive enough to explain the role 

of genes involved in depression.  

DisGeNET (Piñero et al., 2015) is a platform 

for discovering associations of genes and complex 

diseases including depression, defining gene-de-

pression relations as simple binary relations that 

consist of geneId, geneSymbol, geneName, dis-

easeId, diseaseName, and score, where the score 

is a measure of relevancy based on the supporting 

evidence. DEPgenes (Kao et al., 2011) gives a pri-

oritizing system that uses combined score to rank 

candidate genes for depression. Although 

DEPgenes is a nearly comprehensive candidate 

gene resource for depression in terms of its vol-

ume (5,055 candidate genes), its representation 

concepts are even simpler than DisGeNET and 

thus not quite adequate for the full understanding 

of depression-related phenomena.  

In order to fully understand how a particular 

gene acts in depression, we need detailed infor-

mation about gene expression changes or muta-

tions and also how the depression level is changed 

along with the change in the gene. In this regard, 

we anticipate that text mining systems, which can 

identify and analyze both genes and depression 

changes comprehensively from text, would facili-

tate research on depression much further. Further-

more, if the mined information is annotated and 

then made available for reuse, key resources 

would be identified and constructed more effec-

tively (McDonald and Kelly, 2012; Winnenburg 
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et al., 2008). Such effort of making relevant cor-

pora has already been made in the studies of genes 

(Kim et al., 2008; Poux et al., 2014) and of com-

plex diseases such as cancers (Lee et al., 2013; 

Lee et al., 2014; Pyysalo et al., 2013), but has not 

yet been applied to depression. 

In this paper, we present a depression-specific 

annotated corpus, CoMAGD, for future text min-

ing systems that target specifically at providing 

comprehensive information of depression-gene 

relations as well as capturing complex infor-

mation such as gene changes and biological 

events. For this purpose, we follow a multi-fac-

eted annotation scheme for cancers (Lee et al., 

2013) while tuning it extensively to depression. In 

this revised scheme, a piece of annotation is com-

posed of four concepts that together express two 

events, gene expression changes and depression 

level or antidepressant effect changes, and the re-

lationship between these two events. We antici-

pate that the present corpus and text mined results 

based on this corpus would contribute meaning-

fully to the successful exploration of the underly-

ing functional correlation between genes and clin-

ical depression.  

The rest of the paper is organized as follows. 

Section 2 shows the corpus annotation. Section 3 

gives details of inter-annotator agreement. 

Section 4 discusses issues about proper 

recognition of depression terms and entity 

interactions for future approaches to the task, 

before closing the paper in Section 5. 

2 Corpus Annotation  

2.1 Data collection and pre-processing 

We collected PubMed IDs (PMIDs) that contain 

depression related terms in any of the three fields 

title, abstract, and keyword, using the query “de-

press* OR dysthymia OR cyclothymia”, and ran-

domly selected 500 abstracts among them. The 

500 abstracts were then segmented into sentences. 

We extracted only the sentences that contain at 

least one pair of gene and depression/antidepres-

sant related terms. BANNER (Leaman and Gon-

zalez, 2008) and Moara (Neves et al., 2010) were 

used to identify and normalize gene names. For 

depression and antidepressant terms, the system 

used dictionary-based longest matching. The dic-

tionary consists of 303 entries of depression and 

antidepressant related terms collected from NCI 

Thesaurus and other relevant articles. The entries 

were then edited by a domain expert in mental 

health.  

For the sentences that contain more than one 

pair, we made their copies, matching the number 

of depression-gene pairs. We call each of these 

copies a co-occurrence. For example, if there are 

three gene names and two depression related 

terms in a sentence, the system makes six co-oc-

currences for this sentence. 

We then tokenized, part-of-speech tagged, and 

parsed the co-occurrences, using the Charniak-

Johnson parser (Charniak and Johnson, 2005) 

with a biomedical parsing model (McClosky, 

2010). The resulting phrase structures were then 

converted into dependency structures with the 

Stanford conversion tool (Marneffe et al., 2006). 

We identified mentions of gene expression 

changes, using the Turku event extraction system 

(Björne et al., 2009). Most of the processes above 

are included in a preprocessed dataset, or EVEX 

(Landeghem et al., 2012); however, we modified 

the system and utilized some part of the system 

separately where necessary. 

Finally, we performed manual work to validate 

automatically identified co-occurrences in order 

to produce confirmed annotation units, such as 

manually constructing predicates (i.e., ‘depres-

sion of [non-human subjects]’) to filter out false 

positives from the dictionary matching outputs of 

depression-related terms and manually eliminat-

ing false relations (hypothesis sentences). 

2.2 A multi-faceted annotation scheme 

We modify a multi-faceted annotation scheme of 

(Lee et al., 2013), originally designed to represent 

ternary relations among genes, cancers and gene 

changes, in order to address relations not only be-

tween depression and genes, but also between an-

tidepressants and genes, so as to provide more de-

tails and enable further insights for follow-up 

studies such as prioritizing depression candidate 

genes and designing effective treatments and ther-

apy. For example, one may assign a lower weight 

to a gene if the gene shows expression changes 

only in antidepressant studies. We also introduce 

directed causal relations between genes and de-

pression/antidepressants. Identification of the 

cause and effect not only reflects the methodolo-

gies of individual studies, but also provides the 

facts. While the undirected causality claim usually 

is interpreted as a necessary and sufficient clause, 

we find that it could result in false conclusions, 
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especially in the studies of depression. For exam-

ple, depression may decrease the expression level 

of a particular gene; however, increasing the ex-

pression level of that gene may not necessarily re-

duce the symptom. One reason is that the genetic 

factor is not the only cause of depression. It is also 

believed that, compared to oncogenesis, much 

more genes act together and render a person to be-

come vulnerable to depression (Belmaker and 

Agam, 2008). As such, a more fine-grained anno-

tation of causal directions will be essential for 

more complex diseases such as depression. In an 

answer to these needs, we use a flexible schema 

for annotating concepts and ever-changing met-

rics and facts in genetic studies of depression. The 

flexibility would allow the schema to exploit the 

location information as well, as studies show that 

genes may respond differently to the same antide-

pressant if they are in different parts of a body. 

More details will be discussed in Section 4.  

2.3 Annotation concept  

The proposed corpus contains four core annota-

tion concepts: Change in Gene Expression (CGE), 

Change in Depression Level (CDL), Change in 

Antidepressant Effect (CAE), and Causality 

Claim (CC). CGE captures whether the expres-

sion level of a gene is ‘increased’ or ‘decreased’. 

CDL/CAE captures the way how the depression 

level/antidepressant effect changes together with 

a gene expression level change. If information 

about such changes is not provided in the sentence, 

Concept Value Definition 

Change in Gene Expression 

(CGE) 

increased Expression level of the gene is increased 

decreased Expression level of the gene is decreased 

Change in Depression Level 

(CDL) 

or 

Change in Antidepressant 

Effect 

(CAE) 

increased 
The depression level/antidepressant effect is increased as 

CGE 

decreased 
The depression level/antidepressant effect is decreased as 

CGE 

unidentifiable 

The information about whether or not CGE accompanies 

the depression level/antidepressant effect change is not 

provided 

Causality Claim 

(CC) 

none 
CGE accompanied by CDL/CAE is reported but the cau-

sality between the two is not claimed 

g2x The causality is claimed as CGE causes CDL/CAE 

x2g The causality is claimed as CDL/CAE causes CGE 

Table 1: Annotation concept values and their definitions 

 

Sentence CGE CDL CC 

Example 1. In particular, we found decreased NF-L, PSD95, and SAP102 tran-

scripts in bipolar disorder, and [decreased]e [SAP102]g levels in [major 

depression]d. [PMID: 15054476] 

dec. uni. non. 

Example 2. In conclusion, chronic forced swim stress was a good animal model 

of [depression]d, and it induced depressive-like behavior and [de-

creased]e [P-Erk2]g in the hippocampus and prefrontal cortex in rats. 

[PMID: 17050000] 

dec. inc. x2g 

Sentence CGE CAE CC 

Example 3. [Fluoxetine]a substantially [inhibits]e [CYP2D6]g and probably 

CYP2C9/10, moderately inhibits CYP2C19 and mildly inhibits 

CYP3A3/4. [PMID: 9068931] 

dec. uni. x2g 

Example 4. [Inhibition]e of [neuronal nitric oxide synthase]g in the rat hippo-

campus induces [antidepressant-like]a  effects. [PMID: 9068931] 
dec. inc. g2x 

Gene names, depression related terms, antidepressant related terms, and the keywords for gene expression change are noted 

in matching square brackets and marked with subscripts ‘g’, ‘d’, ‘a’, and ‘e’, respectively. 

Table 2: Examples of annotated co-occurrences 
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we assign ‘unidentifiable’. CC captures whether 

the causality between the gene expression change 

and the CDL/CAE is claimed in the sentence or 

not, with values ‘none’, ‘x2g’, and ‘g2x’. Each 

concept is assigned with one of the pre-specified 

values to complete a facet of annotation. Table 1 

shows the pre-specified values and the definitions 

of the respective values. Three of the four con-

cepts together complete a piece of annotation that 

express information about a gene’s expression 

level change with a change in depression level or 

antidepressant effect.  

Table 2 shows examples of the annotated sen-

tences and Table 3 shows the DTD schema of the 

corpus. As mentioned earlier, we collected sen-

tences from PubMed that describe gene expres-

sion changes in depression/antidepressants. Each 

sentence was presented to the annotators as one or 

more copies with markings for a gene term, key-

words for gene expression change, and a depres-

sion/antidepressant-related term. The annotators 

read the sentence with such markings and selected 

proper values for the annotation concepts. Note 

that the four annotation concepts are semantically 

orthogonal, in that the value of a concept can be 

identified without knowing the values of the other 

concepts. 

2.4 Corpus statistics  

The corpus consists of 210 annotation units, 

where an annotation unit is simply a mention of 

gene expression change that co-occurs with at 

least one depression or antidepressant related term 

in a sentence. These annotation units are derived 

from 106 different sentences, which in turn are ex-

tracted from 73 PubMed abstracts. The corpus 

contains 82 gene types, 5 depression terms, and 20 

antidepressant terms (cf. Table 4). 

Tables 5 and 6 show the distribution of annota-

tion concept values and the distribution of the an-

notated genes, respectively. The values of CGE 

show a uniform distribution, whereas the others 

show skewed distributions. In particular, for val-

ues of CDL/CAE, ‘unidentifiable’ is frequently 

chosen (89% for CDL, 87% for CAE). The value 

distribution of the concept CC associated with 

<?xml version="1.0" ?> 

<!DOCTYPE gene_depression_corpus [ 

 <!ELEMENT gene_depression_corpus (annotation_unit+)>  

 <!ELEMENT annotation_unit (sentence, annotation+)> 

 <!ATTLIST annotation_unit type (depression | antidepressant) #REQUIRED > 

 <!ELEMENT sentence (#PCDATA)> 

 <!ATTLIST sentence pmid CDATA #REQUIRED > 

 <!ELEMENT annotation (gene, expression_change_keyword_1,  

    expression_change_keyword_2, depression_term+, CGE, CDL, CC)> 

 <!ATTLIST annotation id CDATA #REQUIRED> 

 <!ELEMENT gene (#PCDATA)> 

 <!ATTLIST gene offset CDATA #REQUIRED > 

 <!ELEMENT expression_change_keyword_1 (#PCDATA)> 

 <!ATTLIST expression_change_keyword_1 offset CDATA #REQUIRED  

    type (Negative_regulation | Positive_regulation) #REQUIRED> 

 <!ELEMENT expression_change_keyword_2 (#PCDATA)> 

 <!ATTLIST expression_change_keyword_2 offset CDATA #REQUIRED  

    type (None | Gene_expression) #REQUIRED> 

 <!ELEMENT depression_term (#PCDATA)> 

 <!ATTLIST depression_term offset CDATA #REQUIRED> 

 <!ELEMENT CGE EMPTY> 

 <!ATTLIST CGE value (increased | decreased) #REQUIRED> 

 <!ELEMENT CDL EMPTY> 

 <!ATTLIST CDL value (increased | decreased | unidentifiable) #REQUIRED> 

 <!ELEMENT CC EMPTY> 

 <!ATTLIST CC value (x2g | g2x | none) #REQUIRED> 

]> 

 

Table 3: The XML DTD of the corpus 
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CAE also exhibits dominance of a single value, or 

‘x2g’. We compared the genes in our corpus with 

previous studies: 58% (48) and 95% (79) of our 

annotated genes (83) are included in DisGeNET 

and DEPgenes, respectively. Note that DEPgenes 

only published 169 core genes that exhibit a high 

chance to be associated with depression from 

5,055 candidate genes. 

3 Inter-annotator agreement 

We annotated the sentence units through two 

main annotation phases (cf. Table 7) and revised 

annotation guidelines after each annotation phase. 

Table 8 shows the IAA values obtained from each 

annotation phase as well as from the whole cor-

pus. We measured IAAs in three different ways, 

using simple IAA (the proportion of annotations 

in common between two annotators over the total 

number of annotations provided by either annota-

tor), Cohen’s kappa, and G-index. IAA values 

from the final phase show that adequate agree-

ment among the annotators is achieved. The over-

all IAA values, obtained from the whole corpus, 

also suggest internal consistency. We resolved all 

disagreements in the published corpus.  

3.1 Disagreements  

We identify the following as the major sources for 

conflicts between the annotators: simple mistakes, 

subjective readings, the use of reasoning, and the 

judgements by using prior knowledge. Disagree-

ment rate is greatly reduced in the second annota-

tion phase, as we revised the guidelines after the 

completion of the first phase. 

Simple mistakes are inevitable in manual anno-

tations, contributing a small number of conflicts 

to all the four annotation concepts. In detail, sim-

ple mistakes take up 1% (1 out of 142), 8% (11 

out of 142), and 24% (34 out of 142) of the disa-

greements on CGE, CDL/CAE, and CC values, 

respectively, in Phase 1, and  9% (6 out of 67), 0% 

(0 out of 67), and 3% (2 out of 67) in Phase 2. 

Disagreements also arise from subjective read-

ings, contributing to most of the disagreements on 

CC values.  

Example 5. [CRF]g is [increased]e during anxi-

ety, [depression]d and pain as well as functional 

disorders of the pelvic viscera. [PMID: 

15538210] 

For the annotation unit above, one annotator 

subjectively interpreted the preposition ‘during’ 

as implying a causal relation and assigned ‘x2g’ 

to CC, but the other interpreted the word as having 

its literal meaning and assigned ‘none’ to CC. Af-

ter annotator meeting, the annotators agreed to in-

clude instructions on such subjectivity issues in 

the annotation guidelines, and the IAA values on 

CC show significant improvement in the second 

annotation phase. Subjective readings induce dis-

agreements on CAE values as well.  

Example 6. BACKGROUND: Indirect evi-

dence suggests that loss of brain-derived neu-

rotrophic factor (BDNF) from forebrain regions 

contributes to an individual's vulnerability for 

depression, whereas [upregulation]e of [BDNF]g 

in these regions is suggested to mediate the ther-

apeutic effect of [antidepressants]a. [PMID: 

16697351] 

For the annotation unit in Example 6, one an-

notator interpreted the verb ‘mediate’ as convey-

ing the meaning of ‘positive regulation’ and as-

 Type Count 

Depress. 

Depression 48 

Major depression 17 

Bipolar disorder 14 

Dysthymia 14 

Mood disorder 4 

Antidep. 

Antidepressant 47 

Fluoxetine 31 

Electroconvulsive therapy 4 

Imipramine 4 

Mirtazapine 4 

Citalopram 3 

Escitalopram 3 

Trazodone 3 

Lithium 2 

SSRI 2 

Carbamazepine 1 

Chlorpromazine 1 

Fluvoxamine 1 

Haloperidol 1 

Papaverine 1 

Perphenazine 1 

Quetiapine 1 

Reboxetine 1 

Sertraline 1 

Venlafaxine 1 

Table 4: Statistics of depression/antidepressant re-

lated terms 
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signed ‘increase’ to CAE. However, the other an-

notator interpreted the word as conveying only the 

meaning of ‘regulation’ with no directionality and 

assigned ‘unidentifiable’ to CAE. After annotator 

meeting, the CAE value of the annotation unit 

above was set to ‘increase’.  

 Example 7. Repeated treatment with antide-

pressant drugs, [imipramine]a (Imi) and fluoxe-

tine (Flu), significantly reduced the plasma cor-

ticosterone concentration and [enhanced]e the 

[BDNF]g and CREB levels. [PMID: 16519925] 

For the annotation unit above, one annotator in-

terpreted the phrase ‘repeated treatment’ as con-

veying the meaning of ‘enhance’ and assigned ‘in-

crease’ to CAE. However, the other annotator ar-

gued that the nature of the antidepressant drugs 

did not change and assigned ‘unchanged’ to CAE. 

Another cause of disagreements was the use of 

reasoning and prior knowledge during annotation. 

Example 8. In the current paper, we propose 

that the rapid [decrease]e in [insulin]g level dur-

ing the postpartum period may be one of the 

causes of [postpartum mood disorders]d. [PMID: 

16321476] 

For the annotation unit in Example 8, one an-

notator claimed that there is no association be-

tween the gene insulin and the depression mood 

disorders, as he did not find any explicitly stated 

piece of information. The other annotator, how-

ever, assigned ‘decreased’ to CGE, as he inferred 

that the mood disorders co-occurs with insulin in 

postpartum period. After annotator meeting, the 

annotators agreed on ‘decreased’, and added an 

instruction that allows the inference using logical 

reasoning to the annotation guidelines. 

 
CGE CDL/CAE CC 

Inc. Dec. Inc. Dec. Uni. Non. g2x x2g 

Depress. 54(56%)  43(44%) 4(4%) 7(7%) 86(89%) 56(58%) 8(8%) 33(34%) 

Antidep. 61(54%) 52(46%) 15(13%) 1(1%) 97(86%) 1(1%) 9(8%) 103(91%) 

Total 115(55%) 95(45%) 19(9%) 8(4%) 183(87%) 57(27%) 17(8%) 138(65%) 

Table 5: Distribution of the annotation concept values 

 

 
Gene 

inc. dec. 

Depress. 

inc. PRKCAd, MAPK3d, MAPK1d ALB, TNFd,p, IL2d, IL1Bd,p, MAPK1d 

dec. MAPK1d, BDNFd,p, LEPd, SLC6A4d,p  

uni. 

DLG4, NEFLd, DLG3, GFAPd,p, AVPd, 

ESR1d,p, NR3C1d,p, TRP, CRHR1d, 

S100A10d,p, INSd, BDNFd,p, GRM2d, 

GRIA3d, SV2A, IGFBP2d, PENK, 

HTR1Ad,p, CD19, CD8d, GRIN2Ap, GRIN1p 

PDLIM5d,p, CRHd,p, IL6d,p, CAMK2Ap, 

CAMK2B, IL1Bd,p, TNFd,p, IFNA1d, 

IL2d, AVPd, PDYNp, FCGR3A, CD4d, 

CD8d, DRD4d,p, PCNTd 

Antidep. 

inc.  TNFd,p 

dec. CHRM1, NOS1d,p, CYP2D6dp 
HTR1Ad,p, NR3C1d,p, BDNFd,p, 

PLCG1d 

uni. 

HTR3Ap, IL1Bd,p, HTR2Ad, TNFd,p, 

HTR1Ad,p, FOSd, FZD3d, ABCB1d,p, 

PLA2G4Ap, IL6d,p, CACNA1G, CACNA1I, 

CACNA1H, GSK3Ad, SLC6A3d,p, 

SLC6A4d,p, KCNK2d, Defa5, VIM, TRA, 

BRCA1d, CKB, ACTB, GFAPd,p, PDE4Ad, 

CREB1d,p, CCNA2, CKS1B, BAX 

FOSd, IL6d,p, HTR2Ad, ALBd, 

ADRA2Ad,p, HTR1Ad,p, BDNFd,p, 

PDE4Ad, ABCB1d,p, IGF1d, 

S100A10d,p, HTR1Bd,p, CREB1d,p, 

PRLd, PLA2G4Ap, SYPd, NCAM1d, 

NTRK2d,p, PLCG1d, SPRd, Hspa9, 

RASEF, PDIA3, SLC6A4d,p, 

CDKN1A, CDKN1B, BCL2d, 

MAPK1d 

Genes marked with superscripts d and p are validated with DisGeNET (Piñero et al., 2015) and DEPgenes (Kao et al., 

2011), respectively. The reader is referred to the published corpus for more details. 

Table 6: Distribution of the annotated genes 
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Example 9. All [antidepressants]a [increased]e 

[c-fos mRNA]g in the central amygdala, as previ-

ously shown, while c-fos was also increased in 

the anterior insular cortex and significantly de-

creased within the septum. [PMID: 15812568] 

One annotator considered the phrase “All anti-

depressants increased c-fos mRNA” a universal 

affirmative, and just modified the antidepressant 

term as the universal quantifier, “All antidepres-

sants”. However, the other annotator anchored on 

the pre-annotated keyword “antidepressants”. Af-

ter annotator meeting, the annotators agreed to 

specify the quantification type of a term and check 

the scope of that quantifier.  

As we refined annotation guidelines after Phase 

1, the disagreements among the annotators were 

greatly reduced. In Phase 2, almost all the disa-

greements were found due to simple errors. Com-

pared to the values from Phase 1, IAA values on 

CDL/CAE and CC from Phase 2 show 13.6% and 

50.0% increases in terms of G index, respectively.  

3.2  Annotation guidelines  

The initial annotation guidelines were taken from 

Lee et al. (2013). After each annotation phase in 

this work, the annotators held meetings to resolve 

the disagreements and to revise the guidelines. Ta-

ble 9 shows the final version of guidelines. 

4 Discussion 

In this section, we show suggestions to further au-

tomating some of the processes described in the 

 

#  Instruction 

1 
Annotators should annotate the sentences only if the gene exhibits changes in its expression level 

and this has relations with the depression or anti-depressant related term  

2 
Annotators can annotate the relations between CGE and CDL/CAE utilizing linguistic clues and 

textual evidence 

3 Annotators can infer omitted fact utilizing reasoning 

4 Annotators should interpret the sentences from an ‘objective point of view’  

5 
Annotators need not consider gene expression level changes in healthy people and people with a 

past history of clinical depression 

6 
Annotators should not infer information using their prior experience or knowledge about proper-

ties of various kinds of depression 

7 
Annotators should not infer information (i.e., the effects of antidepressants) using their prior 

knowledge about the functions of genes 

8 Annotators should not infer information by using inductive reasoning 

9 Annotators need not consider the certainty level of propositions. 

10 Annotators need consider universal propositions and particular propositions 

11 Annotators should not annotate relations between genes and mania in bipolar disorder 

Table 9: Annotation guidelines 

 # Phase # Units #Depression #Antidepressant #Genes Data source 

Phase 1 142 75 67 47 PubMed abstracts 

Phase 2 68 22 46 42 PubMed abstracts 

Total/Unique 210/106 97/5 113/20 89/82 PubMed abstracts 

Table 7: The annotation phases 

 

 CGE  CDL/CAE CC 

Simple Kappa G Simple Kappa G Simple Kappa G 

Phase 1  1 1 1 0.92 0.69 0.88 0.76 0.47 0.64 

Phase 2  0.91 0.81 0.82 1 1 1 0.97 0.93 0.96 

Total  0.95 0.91 0.91 0.96 0.85 0.94 0.87 0.7 0.8 

Table 8: IAA values 
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previous section, especially those of extracting 

depression-gene relations. 

 ML-based event relation recognition 

Example 10. OBJECTIVE: To examine 

whether the pathogenesis of [depression]d is as-

sociated with altered [activation]e and expres-

sion of [Rap-1]g, as well as expression of Epac, 

in depressed suicide victims. [PMID: 16754837] 

Example 10 shows that there are co-occur-

rences whose depression and gene name pairs 

were identified as correct but whose relation was 

nonetheless incorrect. The present co-occurrence 

has a relation of study description rather than that 

of gene expression change event. Besides training 

to come up with the event relation classifier, we 

can also build a system that automatically filters 

out false relations (i.e., hypothesis sentences) 

based on the previous work such as topic-classi-

fied relation recognition (Chun et al., 2006; Kili-

coglu and Bergler, 2008) and deep-syntactic par-

ser (Ballesteros et al., 2014; Hara et al., 2005; 

Masseroli et al., 2006; Skounakis et al., 2008). 

 Location and contrasting information 

Example 11. Animal studies demonstrate that 

some antipsychotics and [antidepressants]a [in-

crease]e neurogenesis and [BDNF]g expression 

in the hippocampus, which is reduced in volume 

in patients with depression or schizophrenia. 

[PMID: 16652337] 

Example 11, and Example 9 too, show that lo-

cation information turn out to be important in 

studies of depression and genes may respond dif-

ferently to the same antidepressant in different 

parts of a body. Many annotation units do not ex-

plicitly provide such location information. How-

ever, missing such information will lead to con-

flicts and even paradoxes among annotated or 

mined results.  

Although the annotation concepts of the pre-

sented corpus are originally designed to represent 

relations between gene changes and depres-

sion/antidepressant changes, they must be made to 

accept other concepts and constantly changing 

metrics in genetic studies of depression. In this re-

gard, we should extend the annotation scheme to 

include parts of a body as the location and their 

hierarchical relationship information. 

 Pronouns, acronyms, and appositions 

Other difficulties we faced during recognition 

were in dealing with grammatical constructions 

such as pronouns, acronyms, and appositions. 

They may have coped better by using the full re-

solved forms of pronouns and acronyms for anno-

tation, which in turn require the access of preced-

ing sentences or the whole abstract in the worst 

case. We also found that text mining tools we used 

extract both the appositive phrase and the phrase 

in apposition, but it would be better to utilize only 

appositives. For example, for the following phrase, 

we should not annotate the word “Tricyclic anti-

depressants” an antidepressant related term, or 

annotate “serotonin reuptake” a gene.  

“Tricyclic antidepressants, selective serotonin 

reuptake inhibitors, and serotonin-noradrenaline 

reuptake inhibitors, as well as the immediate 

precursor of serotonin” 

Instead, we should identify the three apposi-

tives as antidepressant related terms, even if they 

were not included in the dictionary. 

 Sense ambiguity of ‘depression’ 

We also see that using simple dictionary-based 

matching for detecting depression-related terms 

produces many ambiguous terms, some of which 

are not related to the mental disorder at all. In par-

ticular, the term ‘depression’ could also be used in 

a situation where a certain amount, value, or func-

tion is lowered or decreased, among others. We 

notice that such cases are frequently observed in 

biomedical texts as exemplified below: 

Example 12. Lack of enteral stimulation with 

PN impairs mucosal immunity and [reduces]e 

[IgA]g levels through [depression]d of GALT cy-

tokines (IL-4 and IL-10) and GALT specific ad-

hesion molecules. [PMID: 16926565] 

Example 13. LTA causes cardiac [depression]d 

by [activating]e myocardial TNF-alpha synthe-

sis via [CD14]g and induces coronary vascular 

disturbances by activating Cox-2-dependent 

TXA2 synthesis. [PMID: 16043646] 

In our initial dataset that has 1,251 occurrences 

of depression-related terms obtained via the sim-

ple dictionary-based matching, the term ‘depres-

sion’ is found 730 times, which amounts to more 

than half of the entire occurrences. Our corpus sta-

tistics in Table 4 also show that ‘depression’ is the 

most frequent depression-related term. This 

means that not a few of such terms still have po-

tential sense ambiguities. Although we manually 

filtered out false positive examples in our corpus, 

this issue is still important since it could hinder the 

performance of extracting depression-related 
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terms in a fully pipelined system. Although a few 

named entity recognizers for biomedical text have 

been developed (Leaman and Gonzalez, 2008; 

Campos et al., 2013), none of these tools are ca-

pable of recognizing terms referring to depression, 

especially identifying ‘depression’ as the mental 

disorder, to the best of our knowledge. 

It is anticipated that the disambiguation of the 

term ‘depression’ can be addressed with the con-

ventional methods of word sense disambiguation 

with various features such as context information 

or external knowledge resources. Our data analy-

sis suggests that local semantic features would be 

effective in many cases, among others. In particu-

lar, the following three types of syntactic con-

struction could act as strong indicators for false 

positives: (1) prepositional phrases, (2) prenomi-

nal modifiers, and (3) coordinate constructions. 

First, prenominal modifiers often signal the con-

text where some activity or amount is decreased, 

such as the physical malfunction (“cardiac depres-

sion”), the object or cause of inhibition (“Orx-B-

induced depression”, “AMPAR depression”), and 

the degree of decrease (“significant depression”, 

“moderate depression”). Second, prepositional 

phrases provide information about the location or 

inhibition of a biological process (“depression in 

synapses”, “depression of synaptic transmission”, 

“depression of gamma interferon”). Last, coordi-

nate constructions allow for exploiting the seman-

tic similarity (“depression and anxiety” vs. “long-

term potentiation and depression”). All of these 

features are highly local; syntactic dependencies 

do not cross the boundary of noun phrases. 

Another possible approach would be to employ 

the document topic features by assuming that if 

the abstract of a document discusses the mental 

disorder, the term ‘depression’ in the abstract is 

also likely to refer to the mental disorder. In order 

to figure out what kind of terms are best indicative 

of documents that discuss the depressive disorder, 

we collected a set of 5,000 Medline abstracts that 

contain unambiguous domain-specific terms in 

our depression term dictionary such as ‘depres-

sive disorder’, ‘bipolar disorder’, and ‘antidepres-

sant’, and also collected another set of 10,000 ab-

stracts that do not contain any of those terms in-

cluding ‘depression’. The chi-square statistics are 

employed to measure the discriminative power of 

terms found in each set of abstracts. Table 10 

shows the 10 top-ranked terms for each of two 

types of term: terms that partially match one of the 

terms in our depression term dictionary (on the 

left column) and terms that are not found in the 

dictionary (on the right column). It is shown that 

many of the terms in the latter set are used in the 

context of diagnosis or treatment of depression. 

One of the possible methods is to use terms of this 

kind as features for training a binary classifier that 

determines whether a given document containing 

‘depression’ discusses the mental disorder or not. 

5 Conclusion 

In this paper, we presented a depression-specific 

corpus in support of the development of advanced 

text mining systems that target specifically at 

providing a comprehensive information of depres-

sion-gene relations. The annotation scheme of 

current version can express two events, gene ex-

pression changes and depression level or antide-

pressant effect changes, and the relationship be-

tween these two events. The presented corpus 

shows a high inter-annotator agreement. We also 

discussed several issues in the domain of depres-

sion and made suggestions to extend the annota-

tion scheme further to resolve conflicts and some-

times paradoxes in the acquired knowledge for de-

pression. 
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Terms in our  

dictionary 

Terms not in our 

dictionary 

Term Score Term Score 

major 3414 treatment 807 

antidepressant 2533 reuptake 504 

disorder 1957 serotonin 475 

depressive 1615 MDD 464 

bipolar 986 psychiatric 450 

mood 874 rating 356 

disorders 695 diagnostic 340 

unipolar 523 DSM-IV 312 

tricyclic 441 criteria 301 

depressed 409 patients 296 

Table 10: Discriminative terms for documents  

related to the depressive disorder 
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Abstract 

Understanding lexical characteristics of 

clinical documents is the foundation of 

sublanguage based Medical Language 

Processing (MLP) approach. However, 

there are limited studies focused on the 

lexical characters of Chinese clinical 

documents. In this study, a lexical 

characteristics analysis on both syntactic 

and semantic levels was conducted in a 

clinical corpus which contains 3,500 

clinical documents generated during daily 

practices. The analysis was based on the 

automatic tagging results of a lexicon-

based part-of-speech (POS) and semantic 

tagging method. The medical lexicon 

contains 237,291 entries annotated with 

both semantic and syntactic classes. The 

normalized frequency of different terms, 

syntactic and semantic classes was 

calculated and visualized.  Major 

contribution of this paper is providing a 

wide-coverage Chinese medical semantic 

lexicon and presenting the lexical 

characteristics of Chinese clinical 

documents. Both of these will lay a good 

foundation for sublanguage based MLP 

studies in China. 

1 Introduction 

Clinical documents which contain a tremendous 

amount of patient information to facilitate inter-

provider communication, also the most important 

part of clinical data for secondary use such as 

clinical research and administration. Recent 

advance in MLP technologies (Sager et al., 

1987;Sager et al., 1994; Friedman and Hripcsak, 

1999; Liu et al., 2012; Irina P. Temnikova et 

al ,2013; Irina P. Temnikova et al ,2014; Pham et 

al., 2014), such as de-identification (Meystre et al., 

2014; Kayaalp et al., 2014), text classification 

(Pestian et al., 2007; Vijay, 2012), information 

retrieval ( Uzuner et, al., 2010; Zhu et al., 2013), 

etc., affords an opportunity to study and analyze 

clinical documents at an unprecedented scale. 

In recent years, Chinese MLP topics have 

drawn increasing public attention as there are 

more and more electronic clinical data that major 

exist in free text format such as clinical documents 

and reports were accumulated in many hospitals. 

Some Chinese MLP studies have been reported 

such as information extraction (Wang et al., 2014), 

NER(Named Entity Recognition) (Lei et al., 

2014). However, systematic studies of lexical 

characters of Chinese clinical documents, that is 

the foundation of sublanguage based MLP 

approach and have been widely studied in other 

language (Foltz, 1996; Wu and Liu, 2011; 

Patterson and Hurdle, 2011; Patterson et al., 2010; 

Friedman et al., 2002), are seldom reported. Lack 

of accessibility of clinical documents corpus and 

comprehensive lexical resources for the research 

community is the major obstacle. 

Both syntactic and semantic lexical features are 

important to understand the medical language 

structure and grammar (Harris 1968;1991). 

However, studying lexical features in both 

syntactic and semantic levels in large scale corpus 

requires a comprehensive medical lexicon to 

support the automatic lexical tagging process 

(Meystre et al., 2008). Unfortunately, such lexical 

resources in Chinese are not available. In this 

study, we constructed a 237,291 entries Chinese 

medical lexicon using computer aided methods at 

first. Then a lexical analysis which aims to present 

syntactic and semantic features of Chinese clinical 
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documents was conducted in a corpus contains 

3,500 clinical documents. The lexical features of 

clinical documents from different departments 

were reported. The annotated corpus was ready 

for further utilization such as collection of the co-

occurrence patterns (Grishman et al., 1986) and 

sublanguage grammar. 

2 Methods 

To understand the lexical characters of language 

used in a subdomain, a large-scale corpus contains 

typical language samples from the real word need 

to be constructed at first.  Then this corpus should 

be annotated manually or automatically with  part-

of-speech (POS) tags and semantic tags. Then the 

statistical analysis based on these tagging results 

will help researchers to understand the features of 

this type of sublanguage. 

2.1 Corpus Collection 

The corpus was collected from an EMR system 

which implemented in a 2000-beded hospital in 

China. More than 60,000 clinical documents were 

generated from 2009 to 2011 in total 35 clinical 

departments. Randomly selected 100 clinical 

documents from each department were used to 

construct a corpus for this study. Total 5 

document types were included in the 3,500 

clinical documents which contain 152,393 

sentences and 2,375,909 Chinese characters. In 

addition, 15 clinical documents were randomly 

selected and manually annotated as the test set to 

evaluate  the coverage of the lexicon as well as the 

performance of lexcial tagging methods. 

2.2 Lexicon Construction 

A general purpose dictionary which used in an 

open-source Chinese word segmenter Pangu 

(http://pangusegment.codeplex.com) constituted 

the basic of this lexicon. While most of the total 

146,259 lexemes from this general purpose 

dictionary are irrelevant to medical concepts. 

ICD-10, a medication lexicon which was acquired 

from (http://yao.dxy.com/) using web crawler 

technology, and a home-grown lexicon were also 

compiled into this lexicon. Total 237,291 lexemes 

were included in this lexicon. Learning from the 

classical Linguistics String Project (LSP) 

(Grishman et al., 1973), total 24 semantic 

categories were designed (Listed in Table 1). POS 

tags were directly inherited from the Pangu 

systems.  Semantic attribute annotations of 

lexcion were achieved using both statistical 

method and syntactic rule based method. Medical 

domain specialty terms such as ICD-10, 

medication dictionary that with known semantic 

class will be annotated in batch during their 

enrollemnts. Some semantic class with obvious 

morphology was assigned through matching key 

character of the lexeme. For example, if a 

character  ends with "病" ("disease") with POS 

attribute "noun", its semantic class will be 

annotated as "Diagnosis" for further manual 

review. The ambiguity of semantic classes of 

many lexemes was resolved based on the most 

frequently usage in the corpus.  
Semantic class Example Count 

Basic 

Information 
年龄"age" 127 

Body Part 脖颈 "neck" 7,411 

Nursing Care 常规护理 "nursing 

routine" 

2,212 

Chemical 硫酸 "sulfuric acid" 114 

Description 交通事故 "traffic 

accidents" 

1,282 

Device 呼叫设备 "calling 

device" 

1,618 

Diagnosis 肺癌 "lung cancer" 30,209 

Document 

Type 
入院记录 "admission 

notes" 

213 

Examination X射线检查"X-ray 

examination" 

2,066 

Expense 

Name 
诊疗费"medical fee" 587 

Department 急诊科"emergency 

department" 

155 

Irrelevant 法案"law" 146,280 

Lab Test 血清总胆固醇测定

"serum total choles-

terol determination" 

4,544 

Medical Entity 医生"doctor" 93 

Medication 阿司匹林"aspirin" 20,818 

Number 多"more" 55 

Organism 血吸虫"schistosome" 959 

Phy Function 呼吸"breath" 281 

Surgery 骨髓穿刺术"bone 

marrow puncture" 

8,345 

Symbol $,& 303 

Symptom 眩晕"dizziness" 4,681 

Time 早上"morning" 1,976 

Treatment 治疗方案

"therapeutic regimen" 

1,340 

Unit pmol/L 236 

Table 1: Semantic classes defined in the lexicon. 

In addition, semantic class of lexemes with 

irrelevant POSes such as "Chinese idiom" was 

tagged as "Irrelevant". Furthermore, lexemes  
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which are not processed with the mentioned 

approaches were annotated manually. 

2.3 Tokenization and Annotation 

Supported by the constructed lexicon, the 

tokenization and annotation of the corpus were 

conducted in the following steps. Firstly, each 

clinical document in the corpus with extra space 

was automatically trimmed in the pre-process. 

Then a punctuation-driven sentence boundary 

detection algorithm was applied to obtain 

sentences and clauses. After that, all clauses were 

segmented into words or phrases using a Chinese 

lexical analyzer ICTCLAS (Zhang et al., 2003). 

Both the semantic and syntactic classes were 

annotated for each word or phrase based on the 

lexicon during this process. For words or phrases 

without semantic attributes in the lexicon will be 

annotated as "Unknown". To make it simple, all 

the symbols, Arab numbers and punctuations that 

without specific meanings were all removed. 

2.4 Lexical Characteristics Analysis 

A statistical frequencies of different lexical 

categories in different condition were calculated. 

As shown in Formula 1, a NF (Normalized 

Frequency) value was normalized as the count of 

this type of lexemes in every 10,000 lexemes used 

in the background. As different categories with 

significant difference NF values, the logarithm of 

NF (LoF) will be calculated to plot the diverse 

values easier (Shown in Formula 2). 

𝑁𝐹 =
𝑁𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦   ∗ 10000

𝑁𝑇𝑜𝑡𝑎𝑙 

                   (1) 

𝐿𝑜𝐹 = {
log(𝑁𝐹)        , NF ≥ 1
0                       , NF < 1

             (2) 

In Formula 1, the 𝑁𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 indicated the count 

of lexemes with specific semantic or syntactic cat-

egory attribute in corpus or subset of corpus. The 

N𝑇𝑜𝑡𝑎𝑙  represented the total number of lexemes 

in the same corpus. The LoF value will be set to 0, 

when there are seldom observation of some cate-

gory in some subset of corpus. 

3 Results 

3.1 Evaluation of the Lexicon Coverage and 

Lexical Tagging Methods 

The quality of the lexical characters generated 

from statistical analysis depends on the coverage 

and completeness of the lexicon constructed. 

Comparing with the typical comprehensive 

medical lexical resources such as UMLS which 

contains millions of terms, our lexicon scale is 

relatively small. So we calculate the coverage and 

completeness of the lexicon during the tokenizing 

and annotation. Total 13,660 lexemes were 

unrecognized among all 2,375,909 lexemes in the 

corpus. The coverage of our lexicon in the corpus 

was 99.43% calculated by Formula 3. Similarly, 

the distinct lexemes among the unrecognized 

lexemes and lexemes in the corpus were 577 and 

19,847 respectively. Thus, the completeness of 

the lexicon was 91.11% calculated by Formula 4. 

𝐶𝑜𝑣𝑒𝑟𝑔𝑒 =
𝑁𝑈𝑛𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑙𝑒𝑥𝑒𝑚𝑒𝑠 

𝑁𝑇𝑜𝑡𝑎𝑙 

∗ 100%   (3) 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =                                        

𝑁𝑈𝑛𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡  𝑙𝑒𝑥𝑒𝑚𝑒𝑠 

𝑁𝑇𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑙𝑒𝑥𝑒𝑚𝑒𝑠 

∗ 100%           (4) 

Based on the manually annotated test set, we 

evaluated the accuracy of word segmenter 

performance and syntax and semantics 

classification. Word segmentation and annotation 

regarding POS and semantics were conducted on 

the test set with the ICTCLAS. As a result, 4,006 

lexemes were obtained excluding punctuations 

and Arabics by the automatic tagging process. 

Manually checking by one of the authors, the 

number of error segments caused by ICTCLAS 

was counted. Meanwhile, the number of lexemes 

with error POS tag or semantic tag was picked out. 

The accuracy of word segmentation, POS and 

semantics was calculated separately by Formula 5 

and demonstrated in Table 2. 
Evaluate item  Accuracy 

Word Segmentation(ICTCLAS) 96.03% 

POS  88.09% 

Semantics  90.86% 

Table 2: The evaluation result of the lexicon. 

3.2 Lexical Characters in Chinese Clinical 

Documents 

The semantic class of lexemes usage frequency 

(NF value) in different clinical departments was 

plotted in Fig. 1 using heatmap.2 function gplots 

package in R. It is apparent from the heat map that 

"body part", "time", "symptom" and "diagnosis" 

were the top four semantic classes. We can easily 

distinguish the mental health department from 

other departments as the "body part" was used in 

a relatively lower frequency. Some internal 

medicine department such as rheumatology, 

hematology and nephrology more interested in the 

lab test result discussion. 

The fluctuation of 22 POS categories in 5 typical 

document types in Fig. 2.A is basically consistent 

in general. However, there are observable 
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differences between semantic categories as 

showed in Fig. 2.B. For example, document type 

of informed consents has great differences 

compared with other types of clinical documents.  

 

Fig.1.  Heat map of original NF value. 

Fig. 2. Sublanguage (A) and POS (B) features of 5 document types in corpus.
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Fig. 3. The POS proportion of Chinese clinical 

documents. 

Fig. 4. The sublanguage proportion of Chinese 

clinical document. 

 

We can also notice that large number of phrases 

related to "time" were used in discharge summar-

ies, implying that these retrospective documents 

record many temporal information. Fig. 3 and Fig. 

4 show the overall LoF proportion of semantic and 

POS types in the corpus. All the figures lead us to 

the conclusion that body part, symptom and diag-

nosis sublanguages account for the largest portion 

of Chinese clinical documents. 

3.3 Co-occurrence patterns in Chinese Clin-

ical Documents 

Furthermore, more than 168,823 nonrepeating 

clauses were obtained in the corpus including total 

565,630 clauses. To count the sematic patterns 

among these clauses, some frequently used co-

occurrence patterns were summarized in Table 3. 

For each pattern, the example clause was 

highlighted with different font colors and styles to 

show corresponding semantic component.  

These co-occurrence patterns will lay a 

foundation to create sublanguage grammars for 

the Chinese medical language. 

Co-occurrence pattern  Sample  Count 

Body Part +Irrelevant +Symptom 心前区无隆起"no uplift in precordium"， 12,740 

Irrelevant +Symptom 为白色粘痰" is white sticky sputum"， 8,588 

Body Part +Description 颈部对称"the neck is symmetrical"， 7,679 

Irrelevant +Diagnosis 考虑脑瘤"possibly suffer brain tumor"， 4,877 

Body Part +Diagnosis 颈椎肿瘤"Cervical Cancer"： 4,278 

Number +Body Part+Description +Symptom 双下肢轻度水肿"two lower extremities mild 

edema"； 

3,161 

 

Table 3: Top co-occurrence patterns in the corpus.

4 Discussion and Future Work 

In this paper, through constructing a comprehen-

sive medical semantic lexicon, the lexical charac-

teristics of clinical documents both in semantics 

and syntactic level were analyzed separately.  In 

addition, a number of the most frequent sub-

language co-occurrence patterns of Chinese clini-

cal documents were discovered. 

The quality of the lexicon constructed in this 

study is the major challenge of current analysis. 

As a mature and high-quality lexical resource 

such as UMLS will take years and cost millions of 

dollars to maintain. A Chinese counterpart is 

urgently needed and its value should be well 

recognized by governments and funding agencies. 

Our future work includes improving the 

coverage and quality of the lexicon based on the 

corpus using more computer aided approaches. 

The accuracy of the automatic tagging process 

still has plenty of room to improve. Currently 

most of the errors were caused by ambiguous of 

semantic type or POS.  But the results of this 

lexical analysis still provide much useful 

information to Chinese medical language 

researchers. 

Lack accessibility of corpus is one of the 

obstacles for current Chinese medical language 

processing studies due to current regulation and 

privacy concerns. As the automatic de-

identification methods already widely accepted in 

many countries, we will evaluate it in our corpus 

in the future. After that this annotated corpus will 

open to the community. 

 

Quantifier

Adjective

Conjunction

Adverb

Noun

Preposition

Temporal Term Verb

Body Part

Nursing Care 

Description

Diagnosis

Examination

Lab Test 

Physiological 

Function

Symptom

Time

Unit
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Abstract

Bio-event extraction is an important phase
towards the goal of extracting biological
networks from the scientific literature. Re-
cent advances in word embedding make
computation of word distribution more ef-
ficient and possible. In this study, we in-
vestigate methods bringing distributional
characteristics of words in the text into
event extraction by using the latest word
embedding methods. By using bag-of-
words (BOW) features as the baseline, the
result has been improved by the introduc-
tion of word-embedding features, and is
comparable to the state-of-the-art solution.

1 Introduction

Automated extraction of bio-events from the sci-
entific literature is an important research stage to-
wards extraction of bio-networks, and is the main
focus of bio-text-mining [1].

An event represents a biochemical process,
e.g. a protein-protein interaction or chemical-
protein interaction, within a signalling pathway or
a metabolic pathway. An event in text is usually
anchored by a word indicating the occurrence of
the event, named a trigger, and the other words,
which are arguments involved in the reaction. So-
lutions of extracting events usually begin with de-
tecting trigger words first, and then assemble other
detected argument words to a trigger. Some so-
lutions consider event extraction as a structured
prediction problem and extract triggers with cor-
responding arguments at once [2], [3].

BOW is common features of representing to-
kens when lexcial information is need for predic-
tion, e.g. trigger prediction. However, it has draw-
backs of being high dimensional, sparse and dis-
crete. While word embedding is a collective name
for a set of language modelling and feature learn-
ing techniques, by which words in a vocabulary

could by mapped to vectors in a lower dimen-
sional space, which is continuous in and relative
to the vocabulary size. It is capable of represent-
ing a words distributional characteristics [4]. In
this way, word embedding model may capture se-
mantic and sequential information of a word in
text. Meanwhile, a word-embedding feature is
continuous, since continuous space language mod-
els maps integer vector into continuous space via
learned parameters. By training a neural network
language model, one obtains not just the model it-
self, but also the learned word embedding.

Due to the size of a dictionary word embedding
might involve, computation of word distribution
could be expensive. Mikolov et al. proposed two
model architectures called CBOW and skip-gram
for maing computation of word embedding feasi-
ble and efficient [5].

The skip-gram model tries to maximize classi-
fication of a word based on another word in the
same sentence. Each current word as an input to
a log-linear classifier with continuous projection
layer, and predict words within a certain range be-
fore and after the current word (Figure 2).

Nie et al. utilized word embedding for detecting
trigger words [6]. In this paper, we present the ex-
periments using word embedding as token features
to extract complete events including triggers and
their arguments. The skip-gram model is used to
obtain word-embedding features and is compared
with a baseline model of using BOW features. The
result demonstrates that the introduction of word
embedding improves the result, and is comparable
to the state-of-the-art solution.

2 Methods and results

2.1 BioNLP GENIA task

A series of efforts has been initiated to evaluate
the available solutions and investigate potentials
in event extraction technologies. Among them, the
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BioNLP Shared Tasks (BioNLP-ST) [7] have been
consistently conducted since 2009 and attracted
community-wide support. BioNLP-ST GENIA
task is a core task and had the third edition in
2013. The task gradually increased its difficulties
and complexities, for example, by upgrading from
abstract-only text to full-text articles and subsum-
ing co-reference tasks.

In the latest GENIA 2013 task, EVEX achieves
the best performance (F-score: 50.97; recall:
45.44; precision: 58.03) [8]. Our system achieves
a comparable result with a higher precision (F-
score 47.33; recall: 37.14; precision: 65.21).

2.2 Event extraction model

Except binding events, the event extraction pro-
cess consists of two steps in our system. First,
triggers are predicted for each token in a sentence.
Then, arguments including themes and causes are
predicted to be associated with the triggers. The
arguments could be either proteins or other events.
The events, which may have other events as ar-
guments, are called recursive events in this paper.
During the prediction, this might lead to cyclic ref-
erencing. For example, event A is predicted as
event Bs argument, while B is also predicted as
As. In our model, the candidate events are tested,
and the one has lower confidence score given by
SVM classifier would be deleted. This method is
also extended to bigger number of events, which
are referencing each other in a cyclic manner.

For example, in Figure 1, four trigger words in-
dicate four events. After detecting the triggers,
the system check proteins one by one to seek the
right arguments. The system will start with simple
events, the methylation and the gene expression
in the example. Then it will check arguments for
the triggers of recursive events. This example has
two recursive events, a positive regulation and a
negative regulation. In the case when a new event
is created, the new event has to be tested to see
whether it could be an argument of one of the re-
cursive events.

A binding event may have more than one theme.
The extraction of binding event consists of three
steps. The first two steps are similar to the other
event extractions. At the third step, the candidate
arguments are constructed with argument in pos-
sible combinations. Then, the combinations are
tested by an SVM classifier, and the one with the
highest confidence score will be kept. In the ex-

periments, we use LibSVM as the implementation
of SVM.

2.3 Word embedding for trigger and
argument detection

Representing a token in right features is crucial
in trigger prediction. BOW is a popular solu-
tion. However, it is very high dimensional, sparse
and discrete. While word embedding features,
which are learnt by a neural-network-based lan-
guage model called continuous space language
model, can represent a words distributional char-
acteristics [4]. This, in a way, may capture seman-
tic and sequential information of a word in text.

One problem of a word embedding model is that
the model only represents the distributional char-
acteristics of a word in entire text rather than in a
specific context. In another word, the character-
istics of an individual word in a sentence cannot
be brought into a later prediction model. The lexi-
cally same tokens have the same word embedding.
This word may indicate different event types in
different sentences according to the BioNLP task.
Therefore, we also experiment to join word em-
bedding features with BOW features.

Events may have multi-token triggers. For ex-
ample, mRNA expression is a transcription events
trigger in many instances. Meanwhile, expres-
sion appears as a gene-expression events trigger
in many instances. Biologically, transcription is a
more specific process of gene expression. There-
fore, for such cases, the system predicts event type
as transcription since it is more informative.

In the experiment, training and development
data-sets provided in the BioNLP13 are used to
obtain word-embedding features in an unsuper-
vised manner. A problem of word embedding
method is that it represents a words distributional
characteristics in the entire text, however loses the
words contextual information in a specific sen-
tence. Thus, during the training, we also consider
n-gram features of a token.

After detecting triggers, assembling correct ar-
guments to the triggers is another key link on the
chain. As the model described in the section 2.1,
the system starts with proteins and then the gen-
erated events. If a new event is created, it will
be tested against the triggers, which indicate re-
cursive events but have not been constructed as an
event yet. The Stanford dependency path is the
main feature for argument detection.
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Figure 1: The model of even extraction. The words in orange are the proteins. The underlined words are
the triggers.

Figure 2: The skip-gram model architecture.

2.4 Results
We evaluate three models on the BioNLP 2013
GENIA test dataset. At the moment, only events
described within the boundaries of a sentence are
considered.

• BOW + n-gram

• Word embedding

• Word embedding + n-gram

The first model uses BOW and n-gram to rep-
resent each token. Then, the model is replaced
by another using word embedding only while uti-
lizing the exactly same extraction infrastructure,
which is a pipeline converging tokenization, pars-
ing and other pre-processing upon Apache UIMA.
At last, we jointly use word embedding with n-
gram. In Table 1, it could be observed that the joint
model achieves the best performance with 47.33 in
F-score. The model only using word embedding
achieved the lowest, however, still gets 46.33 in
F-score. This is because word embedding loses a
word’s distributional information in a specific con-
text although the distributional characteristics of
words are obtained for the entire text.

Table 2 shows that the detail result of the model
performing the best, the joint model. Extraction

of simple events achieves an average F-score of
71.98, which is expected, since each simple event
contains only one theme and is not recursive. The
system achieves 64.00 in F-score for protein mod-
ification event. The events are more complicated
than simple events since they contain causes be-
sides themes in arguments. The F-score for ex-
tracting binding events is 39.85. Regulatory events
are the most complex ones because each of them
has two arguments and is recursive. Extraction of
this type of events achieved 33.97 in F-score.

Since binding is a special event type, which
may have unknown number of arguments, we have
analysed the extraction of binding events with dif-
ferent extraction strategy. Table 3 is the result with
different models of assigning arguments to bind-
ing triggers. Single prediction uses one binary
classifier to determine the assignment of a candi-
date argument. Two step prediction firstly check
all arguments about whether they could be candi-
date arguments, then, delete the combinations cov-
ered by others. For example, if protein A and pro-
tein B are both assigned to a trigger to construct
a binding event. Then, the two candidate events
with A and B as argument respectively will not
be considered. Two steps-confidence scores repre-
sents the results that we prune binding events ac-
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Event Class BOW + n-gram Word embedding Word embedding + n-gram
Gene expression 76.32 75.91 77.37
Transcription 59.30 46.39 60.24
Protein catabolism 64.00 42.55 64.00
Localization 51.03 58.39 45.33
=[SIMPLE ALL]= 71.66 68.78 71.98
Binding 36.36 35.13 39.85
Protein modification 0.00 0.00 0.00
Phosphorylation 72.66 73.68 70.18
Ubiquitination 12.12 12.12 12.12
Acetylation 0.00 0.00 0.00
Deacetylation 0.00 0.00 0.00
=[PROT-MOD ALL]= 66.25 67.46 64.00
Regulation 16.32 19.78 18.62
Positive regulation 36.01 36.74 35.71
Negative regulation 35.09 38.67 37.50
=[REGULATION ALL]= 33.07 34.45 33.97
==[EVENT TOTAL]== 46.65 46.33 47.33

Table 1: The comparison between the BOW model, the word embedding model and the joint model on
the test set of BioNLP 2013. The results are represented in F-scores.

Event Class Gold (match) Answer (match) Recall Precision F-score
Gene expression 619 (441) 521 (468) 71.24 84.64 77.37
Transcription 101 (50) 65 (50) 49.50 76.92 60.24
Protein catabolism 14 (8) 11 (8) 57.14 72.73 64.00
Localization 99 (34) 51 (34) 34.34 66.67 45.33
=[SIMPLE ALL]= 833 (533) 648 (533) 63.99 82.25 71.98
Binding 333 (107) 204 (107) 32.13 52.45 39.85
Protein modification 1 (0) 0 (0) 0.00 0.00 0.00
Phosphorylation 160 (102) 131 (102) 63.75 77.86 70.10
Ubiquitination 30 (2) 3 (2) 6.67 66.67 12.12
Acetylation 0 (0) 0 (0) 0.00 0.00 0.00
Deacetylation 0 (0) 0 (0) 0.00 0.00 0.00
=[PROT-MOD ALL]= 191 (104) 134 (104) 54.45 77.61 64.00
Regulation 288 (35) 88 (35) 12.15 39.77 18.62
Positive regulation 1130 (291) 500 (291) 25.75 58.20 35.71
Negative regulation 526 (156) 306 (156) 29.66 50.98 37.50
=[REGULATION ALL]= 1944 (482) 894 (482) 24.79 53.91 33.97
==[EVENT TOTAL]== 3301 (1226) 1880 (1226) 37.14 65.21 47.33

Table 2: The detail result on the BioNLP 2013 GENIA test dataset by using the word-embedding model.
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cording to confidence scores (see the section 2.1).
Table 3 shows that the performance of dividing
Binding events themes extraction in two step is
better. Using confidence scores to prune Binding
events can improve the performance of Binding
events significantly.

3 Conclusion

The paper explores the methods of exploiting dis-
tributional characteristics of words in a continuous
space into bio-event extraction by using the latest
word embedding methods. It is the first system
using word embedding to extract complete events
from text, and has achieve the result comparable
to the state-of-the-art system’s.

The system uses the BOW model as the base-
line. When the model only using word embedding
to represent tokens, the system achieves slightly
lower performance than the BOW model’s. The
model jointly using word-embedding achieves the
best performance. This is because n-gram effec-
tively complements the loss of contextual informa-
tion of words, at the same time when the words’
distributional characteristics are introduced by
word embedding.

There are various ways we plan to further im-
prove the system. The current experiment uses
BioNLP dataset, which is relatively small for
achieving word vectors in a continuous space.
In the following experiments, we would like to
train and obtain the word vectors on a bigger cor-
pus, e.g. a subset containing related articles from
Wikipedia. Furthermore, we would like to create
a joint model combining the prediction of trigger
and arguments [3].
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Binding event Gold (match) Answer (match) Recall Precision F-score
Single prediction 333 (84) 310 (84) 25.23 27.10 26.13
Two-step prediction 333 (64) 148 (64) 19.22 43.24 26.61
Two-step prediction with
confidence scores

333 (101) 242 (101) 30.33 41.74 35.13

Table 3: The results of binding event extraction on the test set of BioNLP 2013.
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Abstract 

This study examines whether the readability 
of medical research journal abstracts changed 
from 1960 to 2010. Abstracts from medical 
journals were downloaded from PubMed.org 
in ten-year batches (1960s, 1970s, etc.). Ab-
stracts in each decade underwent processing 
via a custom Python script to determine their 
Coleman-Liau Index (CLI) readability score. 
Analysis using one-way ANOVA found statis-
tically significant differences between the 
mean CLI readability scores of each decade 
(F(4, 6689135) = 12936.91,p<0.0001). Post-
hoc analysis using Tukey’s method also found 
all pairwise comparisons between decades’ 
mean CLI readability scores to be statistically 
significant (p<0.001). Readability scores in-
creased from decade to decade beginning with 
a mean CLI score of 16.0813 in the 1960s and 
ending with a mean CLI score of 16.8617 in 
the 2000s. These results indicate a 0.7804 
grade level increase in the difficulty of read-
ing medical research journal abstracts over 
time and raises questions about the accessibil-
ity of medical research for broader audiences.  

1 Introduction 

A persistent issue in academic research centers on 
whether the knowledge published by researchers 
reaches and is understood by those it could benefit. 
The medical field takes up this issue in its efforts 
to translate research into practice, or the idea of 
“translational research” (Woolf, 2008). Ideally, 

practitioners can access and thoroughly compre-
hend research to better ensure new treatments and 
knowledge reaches patients and that patient care 
revolves around evidence-based practices (Pra-
vikoff, Tanner, & Pierce, 2005; Woolf, 2008). Be-
yond seeking to leverage new research among 
medical practitioners, translational research also 
focuses on supporting patients in becoming more 
active and involved in their healthcare (Woolf, 
2008). With the advent of the information age, pa-
tients and patients’ family members have substan-
tial opportunities to research their own medical 
conditions and their treatment options. Navigating 
and understanding medical research requires that it 
proves accessible in terms of its readability. 

This study is a diachronic analysis of the read-
ability of medical research. Specifically, this study 
seeks to answer whether the readability of medical 
research journal abstracts has changed from the 
1960s to the 2000s. Results from this study may 
have implications for how researchers could com-
municate their findings to patients and how to ad-
dress discrepancies between the reading level of 
medical journals and lay audiences’ reading abili-
ties. 

2 Relevant Literature 

2.1 Readability of health materials in relation 
to patients  

Research on the readability of health materials 
in relation to patients has a strong presence in the 
literature. Health literacy researchers have found 
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that the vast majority of textual information pa-
tients typically encounter—from informed con-
sents to patient education materials—surpass the 
reading ability of patients (Rudd, Moeykens, & 
Colton, 1999). Such discrepancies may have pro-
found negative influences on patient health out-
comes (Paasche-Orlow & Wolf, 2010). Indeed, 
Baker et al. (1998) found an independent associa-
tion between low health literacy and increased 
hospital admission rates where patients with low 
literacy became hospitalized twice as often as more 
literate patients. Additionally, patients with high 
functional health literacy become more involved in 
their care, including exploring options beyond 
those presented by a doctor, whereas patients with 
low functional health literacy tend to limit deci-
sions regarding their care to only those presented 
to them by doctors (Smith et al. 2009). With impli-
cations for personal and community health, a study 
by Navarra et al. (2014) found that HIV-infected 
youth with below-grade-level reading skills did not 
completely adhere to their antiretroviral therapy. 

Despite growing evidence of the role of health 
literacy in patient outcomes, the readability of 
medical information for patients has not improved 
over time, even for items intended for patients. The 
lack of readability of informed consents, in particu-
lar, has garnered attention in the literature (Mead 
& Howser, 1992; Rudd et al., 1999). An examina-
tion of the readability of informed consents from 
1975 to 1982 at the Veterans Administration Med-
ical Center found them to have a college reading 
level and that their reading difficulty may have 
actually increased over the time period examined 
(Baker & Taub, 1983). Fifteen years later, a study 
of surgical consents from across the US also 
showed similarly difficult reading levels with a 
given consent requiring an average reading level of 
12.6 (Hopper et al., 1998). Beyond informed con-
sents, other materials directly aimed at laymen also 
show readability issues. In an analysis of emergen-
cy first-aid instructions, Temnikova (2012a, 
2012b) found ten separate categories of readabil-
ity/complexity problems. Alamoudi and Hong 
(2015) found the readability of websites related to 
microtia and aural atresia lacking in terms of facili-
tating comprehension.  

2.2 Identifying and addressing readability 
issues 

A significant body of work focuses on addressing 
readability issues in health contexts. It makes the 
significance of the corpus-based study reported 
here clear: it shows that we can address readability 
problems, but first we must know what the reada-
bility issues are.  

Elhadad (2006), for instance, shows which 
terms in a medical journal article a lay reader 
would likely not understood and presents an appli-
cation that finds these terms and mines an appro-
priate definition from the Web.  Achieving usable 
results with a small corpus, Elhadad and Sutaria 
(2007) presented a parallel-corpus-driven method 
for finding technical/lay equivalents of medical 
terms using measures of association. Leroy et al. 
(2010) pointed out that perceived and the actual 
difficulty of text influenced the willingness and 
ability to learn from health information. The re-
searchers manipulated characteristics of health 
texts and measured perceived and actual difficulty, 
and found they could improve the perceived diffi-
culty of text. Their technique also uncovered some 
problems with standard readability formulas. Using 
lexical and grammatical analysis of a medical cor-
pus to develop a new metric to estimate text diffi-
culty called “term familiarity,” Leroy et al. (2012) 
performed an experiment where individuals 
showed slightly improved understanding for sim-
plified documents. An evaluation of a writing as-
sistance tool that assists with automated 
simplification related to term familiarity found that 
simplified text had strong beneficial effects on 
both perceived and actual difficulty, with better 
understanding and more learning after reading 
simplified text than after reading un-simplified text 
(Leroy, Kauchak & Mouradi, 2013). In another 
study, Leroy et al. (2013) examined the effects of 
lexical simplification and coherence enhancement 
on readability and showed that they interact in 
complex ways with both perceived and actual dif-
ficulty. Investigating linguistic features, specifical-
ly discourse features that correlate with the 
readability of texts for adults with intellectual dis-
abilities, Fung et al. (2009) presented a tool for 
rating the readability of texts for these readers. 
Huenefaurth et al. (2009) compared different 
methods for evaluating text readability software for 
adults with intellectual disabilities, finding that 
multiple-choice questions with illustrations proved 
more useful than yes/no questions or Likert scales 
for evaluating simplification programs.  
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2.3 Work presented in context of relevant 
literature 

Specific research utilizing a diachronic, corpus-
based approach to examining the readability of 
medical journals did not turn up in a review of the 
literature. However, previous studies taking a dia-
chronic approach to the readability of corpus data 
do have precedence. Indeed, the inspiration for this 
study comes from work by Štajner (2011). Štajner 
performed a diachronic analysis of the Brown 
“family” of corpora to examine changes in the 
readability of the English language over time. Sim-
ilar to this study, Štajner utilized the Coleman-Liau 
Index as a measure of the readability of the Brown 
“family” of corpora. 

3 Methodology 

This study occurred in three main phases in order 
to answer the research question: How has the read-
ability of medical journal abstracts changed be-
tween the 1960s and 2000s? 

3.1 Obtaining a medical research corpus 

The first phase of this study involved compiling a 
machine-readable corpus of medical research jour-
nal abstracts. PubMed.org contains a large volume 
of medical research journal abstracts and these 
provided the basis of a corpus. Abstracts were 
downloaded in groups by decade (see Table 1). 

 
This study focused solely on journal abstracts deal-
ing with research on human subjects with the as-
sumption that a human-centered research corpus 
has more meaningful parallels to the potential in-
terests of most patients.  

3.2 Measure the readability of abstracts 

The Coleman-Liau Index measure of readabil-
ity (Coleman & Liau, 1975) formula is as follows:  

𝐶𝐿𝐼 = 5.89
𝑐
𝑤 − 29.5

𝑠
𝑤 − 15.8 

 
In this formula, c is equal to the total number of 
characters in a given text, w is equal to the total 
number of words in a given text, and s is equal to 
the total number of sentences in a given text. The 
CLI outcome measure is given as a grade-level 
readability score. For example, a grade of 10.5 
would correspond to a text at a reading level of 
halfway through 10th grade.  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 1: Distribution of CLI Scores by decade.  

3.3 Statistical analyses 

The next phase of the study involved creating a 
database and running analyses to determine the 
mean CLI scores for abstracts in each decade and 
whether the differences between these mean scores 
were statistically significant. A statistically signifi-
cant difference in the mean CLI scores for each 
decade would indicate changes in the readability of 
medical journal abstracts over time. 

In order to avoid type 1 errors, the analysis did 
not engage in a series of t-tests to compare the 
mean CLI scores for each decade. Rather a one-
way ANOVA was deemed more appropriate after 
checking that the data met certain assumptions. 
Specifically, ANOVA requires that the data have 
an approximately normal distribution. Evidence for 
normality includes histograms of each decade’s 
CLI scores with each distribution closely following 
a normal curve (see Figure 1 above). A Shapiro-
Wilk test for normality could not be done because 
it has an upper limit of 2,000 to 5000 observations 
(Razali & Wah, 2011), and the data sets in this pa-
per surpass that (see Table 1 above). However, 

Table 1. Number of abstracts by decade. 
Decade range Number of abstracts 
1960-1969 5324 
1970-1979 313053 
1980-1989 1049637 
1990-1999 2017482 
2000-2009 3327954 
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examination of the quantile-quantile plots (Figure 
2 below) is consistent with the data being approx-
imately normally distributed in each decade with 
only a small fraction of overall observations dis-
playing deviations in the tails of some plots.  

 
Figure 2: Quantile-quantile plots, by decade. 
 

ANOVA also requires very similar variances 
for each group. Levene’s test for homogeneity of 
variance, run on subsets created through random 
sampling of each decade, gave statistically signifi-
cant values, which means the null hypothesis that 
the variances were the same could not be rejected. 
Another assumption for running ANOVA is that 
the data are independent. Although it is possible 
that some research articles may have been repub-
lished or had text cited in different decades, such 
instances likely were rare and not significant given 
the size of the corpus. 

With the above assumptions addressed, the one-
way ANOVA was carried out. Examination of the 
output indicated that a statistically significant dif-
ference did exist between the mean CLI scores for 
each decade. A one-way ANOVA, however, is an 
omnibus test and does not indicate between which 
groups the statistically significant difference exists, 
just that a statistically significant difference exists 

somewhere in the data. To determine between 
which decades there exists a statistically significant 
difference in mean CLI scores, a post hoc analysis 
using Tukey’s method was carried out. 

4 Results  

The mean CLI scores for each decade were calcu-
lated (see Table 2.) The 1960s had a mean CLI 
score of 16.0813 with a 95% confidence interval 
(CI) of 16.00567 to 16.1569. The 1970s had a 
mean CLI score of 16.3123 with a 95% CI of 
16.3024 to 16.32212. The 1980s had a mean CLI 
score of 16.3867 with a 95% CI of 16.38137 to 
16.39194. The 1990s had a mean CLI score of 
16.4302 with a 95% CI of 16.42657 to 16.43385. 
The 2000s had a mean CLI score of 16.8617 with a 
95% CI of 16.85901 to 16.86446. Note that none 
of the 95% CIs overlap between decades. 

A one-way ANOVA indicated a statistically 
significant difference between the mean CLI scores 
for each decade (F(4, 6689135) = 12936.91, 
p<0.0001; see table 3). In determining which pairs 
of mean CLI Scores for each decade had a statisti-
cally significant difference, a pairwise comparison 
of means post hoc analysis using Tukey’s method 
indicated that all possible combinations of CLI 
Scores for each decade had statistically significant 
differences (p<0.001). 

5 Analysis 

Having confirmed the statistical significance of the 
differences between all pairings of the mean CLI 
scores for each decade, we can consider the mean 
CLI scores for each decade statistically distinct 

Table 3. One-way ANOVA results comparing mean CLI scores by decade. 
Source SS df MS F-statistic p-value 
Between groups 353331.527 4 88332.8818   12936.91 <0.0001 
Within groups 45673229.4 6689135 6.82797244   
Total 46026560.9  6689139 6.88079003   

Table 2. Mean CLI scores by decade. 
Decade Mean CLI 

Score 
Number of  
Abstracts 

1960s 16.0813 5324 
1970s 16.3123 313053 
1980s 16.3867 1049637 
1990s 16.4302 2017482 
2000s 16.8617 3327954 
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from one another. Given this, we can make higher-
level observations based on what patterns the indi-
vidual means reveal as part of a group. More im-
portantly, we can make assertions that allow us to 
answer our research question: How has the reada-
bility of medical journal abstracts changed between 
the 1960s and 2000s?  

According to the results of this study, the aver-
age difficulty in readability of medical research 
journal abstracts increased over time. Specifically, 
readability scores increased from decade to decade 
beginning with a mean CLI score of 16.0813 in the 
1960s and ending with a mean CLI score of 
16.8617 in the 2000s. The mean CLI score, there-
fore, increased 0.7804 grade level units within the 
timespan examined. We should also note the high 
mean CLI scores for each decade. All scores fell 
within the level of readability expected for a grade 
level of 16 or a senior in college. 

6 Future work 

The work reported here discusses only one reada-
bility metric. Fleshing out the data with additional 
readability metrics would prove useful.  Experi-
mental assessment of comprehension by lay read-
ers would be a useful addition to the metrics; for 
example, by asking them to read abstracts and an-
swer questions. Specific subdomains of the bio-
medical literature may have their own readability 
issues, such as formulae and gene names, and iden-
tifying these might have implications for ap-
proaches to addressing specific readability issues. 

7 Conclusion 

This study sought to determine whether the reada-
bility of medical research journal abstracts changed 
between the 1960s and 2000s. The results here in-
dicate an increase in difficulty of 0.7804 grade lev-
els during this time period. Medical journal 
abstracts, we can conclude, have become more and 
more difficult to read.   

For patients attempting to learn more about 
medical conditions or their treatment options 
through the reading primary literature, this task has 
become more difficult to achieve. Importantly, 
however, the high overall mean CLI scores for 
each decade indicate that this task likely has al-
ways proven difficult for patients. Medical journal 
abstracts have had readability scores equivalent to 

grade levels of 16 since the 1960s, well above the 
average American who reads between a 7th and 8th 
grade level (NCES, 2003) and certainly above the 
9th-grade level considered “difficult” (USDHHS, 
2000). This consistent difficulty mirrors other re-
search showing a lack of progress in the readability 
of medical-related text (Rudd et al., 1999). 

From this study’s results and the US Depart-
ment of Health and Human Services recommenda-
tions for the reading levels of medical information 
text, the readability gap between published medical 
research and the average American patient’s read-
ing ability appears equal to 7 grade levels. Bridg-
ing this chasm in accessibility will likely require 
interventions for both the researcher and patient. 
Shoring up the “health literacy” of Americans 
would involve a concerted effort to increase the 
average reading ability of patients. Purposefully 
addressing health literacy in K-12 education set-
tings and Adult Basic Education settings may 
prove beneficial (Nielsen-Bohlman et al., 2004; 
Rudd et al., 1999). Such efforts, however, will 
likely not bridge the 7 grade level gap entirely. 
Instead, the medical research community should 
consider taking steps—for example, developing 
reading guides or parallel publications aimed at lay 
readers—to increase the readability of their re-
search given patients’ information needs and to 
support patient self-advocacy.  

Despite a desire by patients to access and 
comprehend research that would increase their in-
volvement in their own care, members of the med-
ical research and publishing community continue 
to place a premium on complex writing skills put-
ting such research out of the reach of most patients. 
Lakoff (1992) makes a strong case for academics 
in general being rewarded for difficult writing, and 
perhaps even being published for incomprehensi-
ble writing. With typical reading levels of almost 
17, most scientific writing is now beyond the read-
ing level of not only the average patient but also 
most health professionals who typically have a 
bachelor’s degree equivalent to a grade level of 16. 
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Abstract 

The Centers for Medicare & Medicaid Services 
Incentive Programs promote meaningful use of 
electronic health records (EHRs), which, among 
many benefits, allow patients to receive 
electronic copies of their EHRs and thereby 
empower them to take a more active role in their 
health. In the United States, however, 17% 
population is Hispanic, of which 50% has 
limited English language skills. To help this 
population take advantage of their EHRs, we are 
developing English-Spanish machine translation 
(MT) systems for EHRs. In this study, we first 
built an English-Spanish parallel corpus and 
trained NoteAidSpanish, a statistical MT (SMT) 
system. Google Translator and Microsoft Bing 
Translator are two baseline MT systems. In 
addition, we evaluated hybrid MT systems that 
first replace medical jargon in EHR notes with 
lay terms and then translate the notes with SMT 
systems. Evaluation on a small set of EHR notes, 
our results show that Google Translator 
outperformed NoteAidSpanish. The hybrid SMT 
systems first map medical jargon to lay 
language. This step improved the translation. A 
fully implemented hybrid MT system is 
available at http://www.clinicalnotesaid.org. The 
English-Spanish parallel-aligned MedlinePlus 
corpus is available upon request.   

1 Introduction 

The Centers for Medicare & Medicaid Services 
Incentive Programs promote meaningful use of 
electronic health records (EHRs), which, among 
many benefits, allow patients to receive 
electronic copies of their health records and 

thereby empower them to take a more active role 
in their health. EHRs present a new and 
personalized communication channel that has 
the potential to increase patient involvement in 
care and improve communication between 
physicians and patients and their caregivers. In 
particular, allowing patients access to their 
physicians’ notes has the potential to enhance 
patients’ understanding of their conditions and 
disease and improve medication adherence and 
self-managed care. 

    However, most EHRs are written in English. 
In the United States, 17% population is 
Hispanic, of which 50% has limited English 
language skills. Many general-purpose MT 
systems are available. For example, Google 
Translate is a free service that has been used by 
health professions. Like most general-purpose 
MT systems, it is based on SMT, looking for 
patterns in hundreds of millions of WWW 
documents. In contrast, EHRs contain medical 
terms, shortened forms, complex disease and 
medication names, and other domain-specific 
jargon that do not typically appear in WWW 
documents, and therefore Google Translate may 
not perform well for EHRs, as was found in a 
prior study that evaluated general-purpose MT 
systems (Zeng-Treitler et al., 2010). 
Furthermore, the Health Insurance Portability 
and Accountability Act of 1996 protects the 
privacy and security of individually identifiable 
health information, so a secure MT system may 
be needed for US hospitals. 

    Therefore we are developing an EHR domain–
specific English-Spanish MT system called 
NoteAidSpanish, which may help over 37 million 
Spanish speaking US residents to meaningfully 
use their EHRs. 134



 

2 Background 

MT has been an active research field for the past 
60–70 years. Early systems mainly applied 
bilingual dictionaries and manually crafted rules. 
However, since the 1990s, research has turned to 
SMT (Brown et al., 1990). The best SMT 
systems are built from translation patterns that 
are learned automatically from parallel, human-
translated text corpora (Koehn, 
2010). Translation patterns include phrase 
translations that translate input text by 
translating sequences of words at a time (Koehn 
et al., 2003; Och, 2002), re-ordering tendencies 
allowing swapping of words or phrases 
(Tillmann, 2004), hierarchical phrase 
translations with variables (Chiang, 2007), and 
syntax-based transformations (Galley et al., 
2004). Automatic learning enables systems to 
imitate human translation behavior and adapt to 
particular domains. The bulk of current MT 
research is tested on domains such as news and 
politics. The BLEU (Papineni et al., 2002) score 
is a standard evaluation metric for MT. It 
measures n-gram overlap with human 
translations and has shown correlation with 
human judgment. 

    Comparatively few MT systems have been 
developed in the medical domain. Early work 
focused on knowledge-based approaches for 
phrase translation (Eck et al., 2004; Humphrey et 
al., 1998; Liu et al., 2006; Merabti et al., 2011). 
Several research groups built parallel corpora, 
then trained SMT systems (Wu et al., 2011; 
Yepes et al., 2013). The Shared Task of Medical 
Translation provided both parallel aligned and 
monolingual corpora (Bojar et al., 2014). Eight 
teams participated the shared task and most of 
the systems were based on the Mose phrase-
based toolkit with in-domain and out-of-domain 
language models. 
    Zeng-Treitler et al (Zeng-Treitler et al., 2010) 
evaluated a general-purpose MT tool called 
Babel Fish to translate 213 EHR note sentences 
from English into Spanish, Chinese, Russian, 
and Korean and then evaluated the 
comprehensibility and accuracy of the 
translation. They found, however, the majority 
of the translations were incomprehensible and/or 
incorrect. 

3 Methods 

We first built a domain-specific English-Spanish 
parallel aligned corpus and then developed and 
evaluated SMT and hybrid machine translation 
(HMT) systems for translating EHR notes from 
English to Spanish. This study was approved by 
the Institutional Review Board of University of 
Massachusetts Medical School. All EHR notes 
have been deidentified.  

3.1 English-Spanish Parallel Aligned Bio-
medical Corpora 

The MedlinePlus (ESPACMedlinePlus) 

Source: The NIH’s MedlinePlus ((U.S.),  ) web 
site hosts web pages of medical articles of 
different health topics. Most of the articles in 
English have a corresponding Spanish version 
translated by human. 2,999 articles have Spanish 
translations, which we crawled to build the 
parallel aligned corpus. We conducted data 
cleaning and sentence alignment. We split 
ESPACMedlinePlus into a training set (60%), a 
tuning set (20%) and a testing set (20%) by 
interleaving sentence by sentence. Table 1 shows 
the statistics of the data. Unknown words or 
word types on the English side are 4,580 and 
3,308 for tuning and 4,558 and 3,309 for testing. 
 Sentence 

Pairs 
Word 
tokens 

(English) 

Sent. Length 
(English) 

Word tokens 
(Spanish) 

Sent. 
Length 

(Spanish) 
Training 85,540 1,005,342 11.7 1,135,080 13.27 
Tuning 29,299 341,821 11.7 386,754 13.20 
Testing 29,258 338,431 11.6 382,239 13.06 

Table 1. Statistics of ESPACMedlinePlus 

The EHR Corpus (ESPACEHR) 

The UMass Amherst Translation Center translated 
three de-identified EHR notes (108 sentences, 13.4 
word tokens per sentence, and a total of 1,445 words) 
from English to Spanish.  

3.2 MT Systems 

Phrase-Based SMT 

Using ESPACMedlinePlus, we trained an initial 
phrase-based Moses (Koehn et al., 2007) system. 
The training aligns the words in sentence pairs 
and extracts phrase pairs consistent with those 
alignments. We set the maximum phrase pair 
length to 7 words. We trained a 3-gram language 
model on the Spanish side using SRILM 
(Stolcke, 2002; Stolcke et al., 2011). We first 
used the default feature weights in Moses, then 
adjusted these feature weights using MERT 
(Och, 2003). 
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HMT Systems 

EHR notes contain medical jargon that differs 
significantly from the consumer-oriented 
medical corpora most MT systems are trained 
on. We therefore speculate that if we replace 
medical jargon with lay terms and then feed the 
transformed EHR note to a SMT system, we 
may improve the MT performance. In our HMT 
system, we first applied the Metemap (Aronson, 
2001) to map free text to UMLS concepts. For 
those mapped concepts, we replace the medical 
jargon with lay terms. A concept is clinically 
relevant if it belongs to one of the 18 UMLS 
semantic types, as described in the NoteAid 
system (Ramesh et al., 2013). A term is a lay 
term if it appears in the Consumer Health 
Vocabulary of the UMLS. A term is also a lay 
term if it appears in MedlinePlus. We also 
identify abbreviations and replace them with 
their expanded full terms. The second 
component of the HMT systems is an SMT 
system. We explored two state-of-the-art SMT 
systems, Google Translate and Microsoft Bing 
Translator, resulting in two HMT systems, 
NoteAid-GoogleSpanish and NoteAid-BingSpanish. 

Baseline MT Systems 

The baseline systems are the state-of-the-art 
general purpose Google and Bing MT systems in 
which EHR notes are directly fed into the 
systems without any medical jargon 
replacement. 

3.3 Evaluation Metrics and Procedure 

All the MT systems were evaluated by single-
reference, case-insensitive BLEU score using the 
Moses package. We also asked a bilingual 
domain expert to manually evaluate the five MT 
system outputs of the three EHR notes.  

4 Results 

4.1 Automatic Evaluation 

The BLEU score of NoteAid-MosesSpanish on the 
tuning and testing medical parallel data are 41.8 
(1.097) and 41.2 (1.104) before MERT and 50.4 
(0.99) and 49.8 (0.99) after MERT. The BLEU 
score of Google Translate, which was 49.9 
(0.99). Table 2 shows the performance (macro-
average) of the translation systems on the three 
de-identified EHR notes. We found that 17.9% 
of all terms in EHR notes do not appear in the 
MedlinePlus corpus,  

 
 BLEU score 

(ave. ±  SD) 
Sentence length ratio 

(ave. ±  SD) 
Bing 21.33 ± 7.38 1.02 ± 0.07 

NoteAid-BingSpanish 18.17 ± 7.38 1.03 ± 0.07 
Google 14.05 ± 6.30 1.24 ± 0.04 

NoteAid-GoogleSpanish 11.05 ± 5.63 1.23 ± 0.04 
NoteAid-MosesSpanish 5.82 ± 1.95 1.10 ± 0.02 

Table 2. MT systems on ESPACEHR 

4.2 Evaluation by a Domain Expert 

A bilingual human expert performed a blind 
review of the outputs of all five MT systems on 
the three EHR notes (a total of 15 Spanish 
outputs). He ranked all five MT systems. In 
addition, he marked up the errors by each MT 
system.  

    The expert judged that each MT system had a 
few translation omissions. For example, 
“symptomatically,” was omitted by all the MT 
systems. Of the three EHR notes, Google 
Translate performed the best for two. NoteAid-
GoogleSpanish and NoteAid-BingSpanish were second 
on three. Bing Translator was the best for one.  
NoteAid-MosesSpanish was the last.  

    The expert also performed a blind comparison 
of Google Translate versus NoteAid-
GoogleSpanish. He found that the hybrid system 
simplified the medical jargon and translated 
well. However, it introduced inconsistencies a 
few times. Therefore, the rating for Google 
translation is slightly better on two out of the 
three EHR notes.  

5 Discussion 

There are a number of challenges for translating 
EHR notes from English to Spanish. Spanish 
translation frequently increases token length. In 
addition, rhetoric styles differ, which can 
considerably affect text length in cases where the 
medical note is more of a narrative than a 
sequence of facts and isolated sentences (Valero-
Garces, 1996). Finally, it is expensive to create 
English-Spanish parallel aligned EHR corpora.  

Both NoteAid-MosesSpanish and Google Translate 
achieved a competitive performance for 
ESPACMedlinePlus. Several factors could have 
contributed to the excellent MT performance. 
Since 25% of our data is redundant, during the 
training process the decoder memorized those 
sentences. This combined with the fact that the 
total percentage of unknown words and 
sentences were small (~16%) may have 
contributed to the good results. In addition, we 
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found that 37% of the sentences in the tuning 
and testing sets had less than seven words, and 
about half of those sentences overlapped with 
the training set. These sentences were 
memorized as phrases during training, although 
their contribution to the overall performance was 
less significant than longer sentences. Finally, 
translating sentences with one word is easier 
than translating sentences with multiple words 
because one-word sentences do not have a re-
ordering problem, which is one of the challenges 
in MT.  

    The evaluation of MT systems on EHR notes 
(Table 2) showed much reduced performance. 
The results are not surprising since 17.9% terms 
in EHR notes do not appear in the MedlinePlus.   

    In addition, all HMT systems performed 
worse than their SMT counterparts. The lower 
performance of HMT systems can be attributed 
to the lack of gold standards that exactly match 
the source text of hybrid systems. The gold 
standard consists of original English notes 
translated to Spanish by human translators. But, 
the HMT systems modify the original notes by 
replacing the medical jargon with lay terms and 
then translate the notes to Spanish. Since, the 
BLEU score calculates what percentage of the n-
grams or phrases from the translations also 
appear in the gold standard and the HMT 
systems modify the original text before 
translation, it is expected to yield a lower 
performance. 

    We also found that sentences in EHR notes 
were not always grammatically well formed. 
Whereas, when humans translated the text, they 
inferred the context from the note and formed 
coherent and logical sentences by inserting the 
missing verb or conjunction. The translation 
systems translated the original ill-formed 
sentences into Spanish word for word. This 
resulted in a lower BLEU score performance for 
MT systems. 

    Our manual analyses show that the baseline 
and the HMT systems perform well and make 
very few mistakes on EHR notes. The mistakes 
include: 

• Translation omission when they encounter 
typos in the source language. For example, 
the MT systems failed to translate typos like 
“possily” and “phychological.” 

• Failure to take context into consideration 
when translating the text. For example, in 

“we are redrawing blood cultures,” the MT 
systems failed to recognize that “redraw” 
refers to removing blood cultures, and 
translated it as “redibujando” or 
“rediseñando,” meaning redrawing or 
redesigning something. 

• Incorrect grammatical gender assignment 
although the translation is correct. For 
example, “Skin: Warm and dry” is translated 
as “Piel: Cálido y seco” ignoring the fact 
that the grammatical gender context of 
“Piel”/Skin is feminine. 

• Errors in verb conjugation. For example, “to 
drain” is translated as “para drenar” instead 
of “á drenar.” 

    We select and describe three examples of 
errors by MT systems, as shown below.  

    In the example below, all the five MT systems 
fail to accurately translate the sentence and 
change the meaning when translated back to 
English. We also observed that human 
translators often translate the text using different 
words while maintaining the semantic sense of 
the sentence.  
Source: Acute renal failure with neutropenia likely 
medication induced 
Human Translation: fallo renal grave con neutropenia 
probablemente debido a medicamento. 
Human Back Translation: severe renal failure with 
neutropenia probably due to medication 
Google Translate: La insuficiencia renal aguda con 
neutropenia probable medicación inducida 
Human Back Translation: acute renal failure with 
neutropenia probably induced medication 
Bing Translate: Insuficiencia renal aguda con 
medicación probable neutropenia inducida 
Human Back Translation: acute renal failure with 
medication, probably induced neutropenia 
NoteAid-MosesSpanish: insuficiencia renal aguda con la 
neutropenia probable Medicines induced  
Human Back Translation: Probable medication induced 
acute renal failure with neutropenia 
NoteAid-GoogleSpanish: insuficiencia renal aguda con 
neutropenia probables Medicamentos inducidos 
Human Back Translation: acute renal failure with 
neutropenia, probable induced medications 
NoteAid-BingSpanish: la insuficiencia renal aguda con 
neutropenia indujeron probables medicamentos 
Human Back Translation: acute renal failure with 
neutropenia induced probable medications 

    In this example, NoteAid-MosesSpanish 
conserves only some of the source text’s context 
and format but omits translation of several 
words, including medical jargon. The NoteAid-
BingSpanish omits only one word but the remaining 
MT systems do not omit any word. The Google 
translate and both the hybrid systems make a 
grammatical mistake by assigning incorrect 
gender to the patient in Spanish. 
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Source: ASSESSMENT AND PLAN: The patient was 
scheduled for a kidney biopsy today, but she was 
informed by the Renal Transplant Service that they 
were going to delay this since there was some 
improvement in her creatinine (today's creatinine 
is not yet available). 
Human Translation: EVALUACION Y PLAN: Se proyectaba 
que la paciente tuviese una biopsia del riñón hoy, 
pero el Servicio de Trasplante Renal le informó que 
iban a retrasarla pues ha habido una mejoría en su 
creatinina (la creatinina de hoy todavía no está 
disponible). 

Google Translate: EVALUACIÓN Y PLAN: El paciente fue 
programado para una biopsia de riñón hoy, pero fue 
informado por el Servicio de Trasplante Renal de 
que iban a demorar esto, ya hubo alguna mejora en 
su creatinina (creatinina de hoy todavía no está 
disponible).  
Bing Translate: EVALUACIÓN y PLAN: La paciente estaba 
programada para una biopsia de riñón hoy, pero fue 
informada por el servicio de Trasplante Renal que 
iban a retrasar esto ya que hubo cierta mejoría en 
la creatinina sérica (creatinina de hoy aún no está 
disponible). 

NoteAid-MosesSpanish: ASSESSMENT AND PLAN:  The paciente 
se programado para  una  biopsia del riñón  today,  
pero  que ella estaba  informado  por  la  Renal  
Transplant  Service  que  fueron  de irse a  
retrasar  este  dado que  no hubo  alguna mejoría 
en  su  creatinina  (today's  creatinina  aún no se  
available).   

NoteAid-GoogleSpanish: EVALUACIÓN Y PLAN: El paciente 
fue programado para una biopsia de riñón hoy, pero 
fue informado por el Servicio de Trasplante Renal 
de que iban a demorar esto, ya hubo alguna mejora 
en sus creatininas (hoy creatininas aún no está 
disponible). 

NoteAid-BingSpanish: EVALUACIÓN y PLAN: El paciente fue 
programado para una biopsia de riñón hoy, pero fue 
informada por el servicio de trasplante de riñón 
que iban a retrasar esto ya que hubo cierta mejoría 
en sus creatinines (hoy creatinines aún no está 
disponible). 

     Unlike the narrative in the previous examples, 
the non-narrative context consists of a list of 
medical jargon, the format of which is quite 
common in clinical notes. While the baseline and 
hybrid MT translation systems perform well, 
NoteAid-MosesSpanish omits many of the terms.  

 

Source: Lungs: bilateral: reduced breath sounds, 
expiratory wheezes present (in the upper lobe, in 
the lower lobe), at or near baseline? , no rhonchi 
present, . Skin: lesion, . b/l venous stasis 
changes on distal anterior tibias trace tibial 
edema  
Human Translation: Pulmones: bilateral: sonidos 
respiratorios reducidos, presencia de resoplido 
espiratorio (en el lóbulo superior, en el lóbulo 
inferior), ¿en o cerca de la línea de base? , no 
hay presencia de estertor roncus, . Piel: lesión, . 
cambios bilaterales de estasis venosa en tibias 
anteriores distales indicio edema tribial  
Google Translate: Pulmones: bilateral : ruidos 
respiratorios reducida , sibilancias espiratorias 
presentes ( en el lóbulo superior , en el lóbulo 
inferior ) , en o cerca de la línea de base ? , No 
hay roncus presentes , . Piel: lesión , . b / l 
estasis venosa cambios en la tibia distal tibial 
anterior traza edema 
Bing Translate: Pulmones: bilateral: sonidos 
respiratorios reducida, resuellos espiratorios 
presentes (en el lóbulo superior, en el lóbulo 
inferior), en o cerca de línea de base. , 
presentes, no roncus. Piel: lesión. b/l estasis 
venosa cambios en tibias anteriores distales 
rastrear el edema tibial 
NoteAid-MosesSpanish: Lungs:  bilateral:  reducción de 
aliento sounds, wheezes presente  (in  dispositivos 
de  la parte superior del  lobe,  en  la parte 
inferior de  lobe),  ,  en o  cerca de  baseline?  

, no  present,  estertores  .  Skin:  lesion,  .  
b/l  de estasis  venosa  cambios  en  el edema  
tibial  anterior  distal  tibias  trace 
NoteAid-GoogleSpanish: Pulmones: bilateral: reducción de 
sonidos pulmonares espiratorio sibilancias 
presentes ( en el lóbulo superior , en el lóbulo 
inferior) , en o cerca de la línea de base la 
visión ? , No hay rhonchis presentes , . Piel: 
lesión . cambios b / l venostasis en distal rastro 
tibias anterior tibial Edema 
NoteAid-BingSpanish: Pulmones: bilateral: reducido 
sibilancias espiratorio de sonidos pulmonares 
presentes (en el lóbulo superior, en el lóbulo 
inferior),, en o cerca de base de la visión? , no 
rhonchis presente,. Piel: lesión. cambios b/l lindo 
tibias anteriores distales rastrear el Edema tibial 

    NoteAid-MosesSpanish performed poorly on the 
EHR notes, suggesting that the system needs to 
be trained on bigger data sets, or be trained 
directly on the EHR notes. We found that some 
errors by NoteAid-GoogleSpanish were due to 
engineering errors, which can be fixed.  

6 Limitations, Conclusion and Future 
Work 

This pilot study has limitations. The SMT 
system was built on the limited MedlinePlus 
data. We plan to incorporate other biomedical 
corpora (e.g., Medline and ClinicalTrial.gov). 
The corpus size of EHR notes for evaluation is 
small and we plan to build such a corpus.  

    The BLEU score does not provide a 
measurement in terms of whether the semantic 
content is correctly translated. In the future work 
we may explore other domain-specific 
evaluation metrics (Castilla et al., 2005).  

   In this application, we have experimented with 
simple MT approaches. In the future we may 
explore other MT approaches, including 
incorporating biomedical knowledge resources 
(e.g., the UMLS), domain adaptation, semantic 
role labelling and abstract meaning 
represenation.   

Acknowledgement: The authors thank the 
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Abstract

Given a set of abstracts retrieved from a
search engine such as Pubmed, we aim to
automatically identify the claim zone in
each abstract and then select the best sen-
tence(s) from that zone that can serve as
an answer to a given query. The system
can provide a fast access mechanism to the
most informative sentence(s) in abstracts
with respect to the given query.

1 Introduction

The large amount of medical literature hinders
professionals from analyzing all the relevant
knowledge to particular medical questions. Search
engines are increasingly used to access such in-
formation. However, such systems retrieve docu-
ments based on the appearance of the query terms
in the text despite the fact that they may describe
another problem.

The search engine Pubmed R© for example is a
well known IR system to access more than 24 mil-
lion abstracts for the biomedical literature includ-
ing Medline R© (Wheeler et al., 2008). The engine
takes a query from user and returns a list of ab-
stracts that can be relevant or partially irrelevant
to the query, which requires from the user to go
through each abstract for further analysis and eval-
uation.

Researchers who conduct a systematic review
(Gough et al., 2012) tend to use the same approach
to collect the studies of interest; however, they
are found to spend significant effort identifying
the studies that are relevant to the research ques-
tion. Relevancy is usually measured by scanning
the result and conclusion sections to identify au-
thors claim and then comparing the claim with the
review question; where a claim can be defined as
the summary of the main points presented in a re-
search argument.

Incorporating a middle tier system between the
search engine and the user will be useful to min-
imize the effort required to filter the results. This
research presents a system that aids those search-
ing for studies that discuss a particular research
question. The system acts as a mediator between
the search engine and the user. It interprets the
search engine results and returns the most infor-
mative sentence(s) from the claim zone of each
abstract that are potential answers to the research
question. The system reduces the cognitive loads
on the user by assisting their identification of rele-
vant claims within abstracts

The system comprises two components. The
first component identifies the claim zone in
each abstract using the rhetorical moves principle
(Teufel and Moens, 2002), and the second compo-
nent uses the sentences in the claim zone to pre-
dict the most informative sentence(s) from each
abstract to the given query.

This paper makes three contributions: present-
ing a new set of features to build a classifier to
identify the structure role of sentences in an ab-
stract that is at least shows similar performance to
the current systems; building a classifier to detect
the best sentence(s) (lexically) that can be an an-
swer to a given query; and introducing a new fea-
ture (Z-score) for this task.

2 Related Work

We are not aware of any work that has explicitly
discussed the detection of claim sentence most re-
lated to a predefined question, however, studies
have discussed related research.

Ruch et al. (2007) for example used the rhetori-
cal moves approach to identify the conclusion sen-
tences in abstracts. Their system was based on a
Bayesian classifier, and normalized n-grams and
relative position features. The main objective of
that research was to identify sentences that belong
to the conclusion sections of abstracts; they re-
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garded such information as key information to de-
termine the research topic. Our research is similar
to that work since we use the conclusion section
to identify the key information in an abstract with
respect to a query, but we also include the result
sections.

Hirohata et al. (2008) showed a similar sys-
tem using CRFs to classify the abstract sentences
into four categories: objective, methods, results,
and conclusions. That classifier takes into account
the neighbouring features in sentence Sn such as
the n-grams of the previous sentence Sn−1 and the
next sentence Sn+1.

Agarwal et al. (2009) described a system that
automatically classifies sentences appear in full
biomedical articles into one of four rhetorical cat-
egories: introduction, methods, results and discus-
sions. The best system was achieved using Multi-
nominal Naive Bayes. They reported that their
system outperformed their baseline system which
was a rule-based.

Recently, Yepes et al. (2013) described a system
to index Gene Reference Into Function (GeneRIF)
sentences that show novel functionality of genes
mentioned in Medline. The goal of that work
was to choose the most likely sentences to be se-
lected for GeneRIF indexing. The best system was
achieved using Naive Bayes classifier and various
features including the discourse annotations (the
NLM category labels) for the abstracts sentences.

Our research is close to Hirohata et al. (2008)
system since we use the same algorithm, but use a
different set of features to build the model. More-
over, it similar to Yepes et al.(2013) system since
we use the value of the nlmCategory attribute
rather than the labels provided by the authors to
learn the role of sentences.

3 Method

3.1 Claim Zoning Component

This component is based on the hypothesis that the
contribution of a research paper tend to be found
within the result or conclusion sections of its ab-
stract (Lin et al., 2009). Identifying these sections
manually especially in unstructured abstracts is a
tedious task. Medical abstracts tend to have logi-
cal structure (Orasan, 2001) in which each section
represent a different role.

Unfortunately, about 70% of Medline abstracts
are unstructured (have no section labels). Struc-
tured abstracts use a variety of these labels. The

National Library of Medicine (NLM) have re-
ported that 2,779 headings have been used to label
abstracts sections in Medline (Ripple et al., 2012).

Relying on the labels provided by the abstracts
authors to identify the roles of the sentences could
be useful for research purpose; but in practice
this means all Medline abstracts need to be re-
annotated even the structured abstracts to guaran-
tee that they are labelled with the same set of an-
notations to understand their roles. This is not ef-
ficient especially when we consider the huge vol-
ume of the Medline repository.

To accommodate that problem, we use the NLM
category value assigned to each section in the
XML abstract (nlmCategory attribute). The NLM
assigns five possible values (categories): Objec-
tive, Background, Methods, Results and Conclu-
sions. This research uses these categories as an
alternative way to learn the roles of abstracts sen-
tences. This resolves two problems: first, the roles
of sentences in structured abstracts can be auto-
matically learned from the the value of the nlm-
Category attribute without any further processing,
consequently, the roles of sentences in 30% of
the Medline abstracts can be accurately identified;
second, those labels can be used to build a machine
learning classifier to predict the role sentences of
the unstructured abstracts in Medline.

The claim zoning component regards identify-
ing the roles of sentences as a sequence labelling
problem. This requires an algorithm that takes
into account the neighbouring observations rather
than only current observation as in other ordinary
classifiers e.g. SVM and Naive bayes. Condi-
tional Random Fields (CRF) algorithm have been
used successfully for such task (Hirohata et al.,
2008; Lin et al., 2009). Therefore, we use the
CRF algorithm along with lexical, structural and
sequential features to build a classifier model to
identify the claim zones in abstracts. The clas-
sifier is implemented using the CRFsuite library
(Okazaki, 2007) using L-BFGS method. Note that
we modify the NLM five categories to become
four where the Background and Objective cate-
gories are merged into a new category called Intro-
duction. That is because the background and ob-
jectives sections in Medline tend to overlap with
each other (Lin et al., 2009). Moreover, these
sections usually appear sequentially and merging
them together is sensible to avoid the overlapping
problem. Therefore, this component identifies the
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sentences roles in abstracts by labelling them with
one of the four possible categories: Introduction,
Methods, Results and Conclusions.

3.1.1 Data
The claim zoning component is built using a
dataset consisting of 10,000 structured abstracts
collected from Medline using the query “cardio-
vascular disease”.

3.1.2 Features
The claim zoning component employs various fea-
tures:

N-grams: N-grams are lexical features that
have been reported as useful to capture the gen-
eral context of text (Turney, 2002; Yu and Hatzi-
vassiloglou, 2003). For every sentence, uni-grams
and bi-grams are extracted from the abstract’s ti-
tle, the current sentence Sn, the previous sentence
Sn−1, and the next sentence Sn+1.

Sentence-Title similarity (st-sim): This feature
is the cosine similarity score sim(s, T ) between
each sentence in an abstract and its title. This fea-
ture has been previously found useful for summa-
rization tasks (Teufel and Moens, 2002). Achiev-
ing an accurate similarity score between the sen-
tences and the title in an abstract is not a straight-
forward task. Many abstracts in the medical do-
main use multiple forms (i.e abbreviation and its
expansions) to describe the same medical concept
e.g. ACE and angiotensin-converting enzyme.

Such variation may cause inaccurate scores par-
ticularly when computing the similarity between
an abbreviation and its expansion. Fortunately,
the pattern of using abbreviations and their expan-
sions in medical research can be predicted using
an algorithm developed by Schwartz and Hearst
(2003). We automatically replace all long-forms
concepts with their abbreviations to unified their
appearance within an abstract. Similarity scores
are binned into 11 values starting from 0 to 10.

Relative Sentence location: The relative loca-
tion of a sentence is important to identify its role
within the abstract. The introduction sentences for
instance tend to occur at the beginning of an ab-
stract and the conclusion sentences occur at the
end. Rather than using the original position of the
sentence, we adjusted the all sentences positions
to have the same scale from 1 to 10.

Tense feature: The tense of verbs used in sen-
tences often correlates with its rhetorical moves
(Teufel and Moens, 2002). For example, some

authors use the present perfect tense in the in-
troduction section and past simple in the conclu-
sion section. For each sentence in an abstract, the
main verb tense (ROOT-0, verb) is extracted using
the dependency tree generated from the Stanford
parser (de Marneffe and Manning, 2008).

3.2 Answers Detection Component
This component uses the sentences that belong
to the result or conclusion sections of abstracts
(claim zone) to identify the most informative sen-
tence(s) to a given query. It relies on three assump-
tions, two from the literature (Lin et al., 2008;
Ruch et al., 2007; Lin et al., 2009; Otani and
Tomiura, 2014) and the last one that is conven-
tional: the first assumption is that any sentence in
abstract that shares many words with the title tends
to express important information about the topic.
The second is that any sentence that applies the
first assumption within certain threshold and exist
in the result and conclusion sections is considered
as a key sentence concerning the research topic.
The third assumption is that any sentence that ap-
plies the previous two assumptions and has a high
lexical similarity score with the query is consid-
ered an informative sentence with respect to the
query.

The component classifier is built using a deci-
sion tree algorithm (Quinlan, 1993). The deci-
sion tree algorithm builds a tree-like model that
can be converted into rules which can be easily
interpreted and analysed by human. We use the
open source implementation of decision tree (J48)
in Weka (Hall et al., 2009) to build the model.

3.2.1 Data
This component uses two subsets (corpus-2 and
corpus-3) of a corpus that was originally devel-
oped to recognize contradictory claims in medical
abstracts. That corpus consists of abstracts that
were collected from the studies used in system-
atic reviews that discuss various problems about
cardiovascular diseases. Note that each system-
atic review attempts to answer one question. Two
independent annotators were asked to identify the
best claim sentence from each abstract that an-
swers the review question e.g. (1). In this research
the most informative information with respect to
the research question is considered to be the claim.

1. In patients with dilated cardiomyopathy, are
HLA genes associated with development of
Dilated Cardiomyopathy? [Question]
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2. In the IDC group, the frequency of hu-
man leukocyte antigen DR4 was similar
to that reported in the normal population.
[PMID#9220309][ANSWER]

The classifier of answer detection is trained and
evaluated using corpus-2 (structured abstracts).
That corpus consists of 183 sentences annotated
as answers and 987 sentences annotated as non-
answers to 24 review questions. Note that it is
possible for more than one sentence to answer a
review question, however, only the most informa-
tive sentence was annotated as answer.

Corpus-3 (unstructured abstracts) consists of
69 abstracts (69 answer sentences and 357 non-
answer sentences) which answer 15 review ques-
tions. It is used to evaluate the system resulted
from the integration of the claim zoning compo-
nent and the answer detection component.

3.2.2 Features
This component uses four features which are ex-
tracted from the result and conclusions sentences:

Sentence Structure Role (role-label): This
feature comes from annotating the abstract sen-
tences using the claim zoning component if the ab-
stract is unstructured, otherwise the value of nlm-
Category is extracted and used as a feature.

Sentence-Title Similarity (st-sim): This fea-
ture is similar to st-sim feature used in the claim
zoning component. The scores are normalized to
a scale of 0 to 50 since this was shown to improve
performance.

Sentence-Query Similarity (sq-sim): This fea-
ture captures the relationship between the research
question and sentences in the abstract. Those with
a high lexical similarity to the question are more
likely to be answers to it than others. Similar to
st-sim feature, the cosine similarity score between
sentences and their related questions are computed
and the scores are normalized to a scale of 0 to 50.

Z-score Value: This feature is used to exploit
assumption (2) described in section 3.2. This fea-
ture identifies the position of the similarity score
of a sentence with respect the distribution of the
similarity scores of the other sentences within an
abstract. It assumes that the similarities of the sen-
tences in the result and conclusion sections are
normally distributed. The goal of using this fea-
ture is to enable the classifier to learn a similarity
threshold score that can be used to identify the po-
tential answer sentences.

The Z-score value is a standard score that shows
the number of standard deviations (σ) above the
mean (µ) (Wonnacott and Wonnacott, 1990). This
value is identified for each sentence by exploring
all possibleZ values using equation (1) that makes
the similarity st-sim of that sentence is just equal
or above the score X .

X = µ+ Zσ (1)

4 Result and Discussion

Table (1) describes the performance of the claim
zoning component using corpus-1. Table (2) de-
scribes the performance of Hirohata et al. (2008)
system using the same corpus. Although, the dif-
ference was not significant, our system showed an
alternative set of features that can achieve at least
similar performance to the state of the art systems.

Precision Recall F1-score
Introduction 0.96 0.95 0.96
Method 0.83 0.82 0.83
Results 0.87 0.89 0.88
Conclusions 0.93 0.92 0.92
Overall 0.89 0.89 0.89

Table 1: Claim zoning performance

Precision Recall F1-score
Introduction 0.96 0.94 0.95
Method 0.81 0.84 0.83
Results 0.88 0.86 0.87
Conclusions 0.91 0.91 0.91
Overall 0.88 0.88 0.88

Table 2: Hirohata et al. (2008) system perfor-
mance.

The output of the first component, particularly
the sentences in the results and conclusions sec-
tions were then used as input in the answer detec-
tion component. That component was trained and
evaluated on corpus-2 using 10-folds cross vali-
dation. Table (3) shows the component’s perfor-
mance using five different combinations of fea-
tures as follows:

• feature-set 1: st-sim, sq-sim

• feature-set 2: Z-score, sq-sim

• feature-set 3: st-sim, role-label
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• feature-set 4: Z-score, role-label

• feature-set 5: st-sim, sq-sim, role-label

• feature-set 6: Z-score, sq-sim, role-label

The goal of trying different features combinations
was to measure the effect of the Z-score feature on
enhancing the overall performance of the compo-
nent. The component achieved F1-score of 45%
using set 1 compared to 56% using set 2. At this
stage it was clear that the Z-score feature outper-
formed the st-sim feature.

Next, the sq-sim feature was replaced with the
role-label as in set 3 and 4; however the results
showed that using set 3 enhanced the F1-score by
22% compared to using set 1; and 19% using set
4 compared to set 2. This suggested that combin-
ing the st-sim feature with sq-sim was better than
combining the Z-score and sq-sim.

The experiment was repeated using set 5 and set
6 which included the sq-sim feature in set 3 and
4; and the results were consistent with the results
of using set 3 and 4. The component using set 5
outperformed set 6 due to the recall score (85%) in
set 5. However, the precision score using set 6 was
higher than using set 5 (73% vs 70%). This result
was consistent with the component performance
using set 3 and 4.

The above experiments showed a comparison
between the st-sim and the Z-score features. The
results suggest that using the Z-score feature con-
tributes more than the st-sim feature with respect
to the precision score, but less with respect to the
recall score.

Precision Recall F1-score
features-set(1) 0.68 0.34 0.45
features-set(2) 0.67 0.48 0.56
features-set(3) 0.70 0.85 0.77
features-set(4) 0.73 0.78 0.75
features-set(5) 0.70 0.83 0.76
features-set(6) 0.73 0.75 0.74

Table 3: The performance of the answer detection
component using different combinations of fea-
tures

Table (4) shows the performance of integrating
the two components (the claim zoning and answer
detection) using corpus-3. Note that the corpus
only consists of unstructured abstracts (see sec-
tion (3.2.1). The integrated system was able to

achieve precision of 56%, recall of 57% and F1-
score of 56%. The main reason for the reduction
in the performance score was due to the number
of the answers examples used in the corpus being
relatively small (69 answers). Another reason was
the errors generated from the claim zoning com-
ponent, which may have influenced the decisions
made by the answer detection component.

Precision Recall F1-score
Answer 0.56 0.57 0.56
Non-answer 0.92 0.92 0.92
Overall 0.86 0.86 0.86

Table 4: Answer detection performance using both
components

5 Conclusion

This paper explored the problem of identifying the
sentence(s) in an abstract that are the most infor-
mative information for a given query. It described
a system for automatically identifying these sen-
tences that consisted of two components: claim
zone detection and answers detection. The sys-
tem used the attribute value of nlmCategory to
learn the sentences roles, which was found use-
ful. Moreover, the component used different set of
features that achieved at least similar performance
to other systems for similar task. Finally, the re-
search examined a new feature (Z-score) that was
extracted from the same information used in (st-
sim) feature. The Z-score feature was found more
useful to enhance the precision score of the system
compared with the st-sim.
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Abstract 

Identifying smoking status of patients is vital 

for assessing their risk for a disease. With the 

rapid adoption of electronic health records 

(EHRs), patient information is scattered 

across various systems in the form of 

structured and unstructured data.  In this 

study, we aimed to develop a hybrid system 

using rule-based, unsupervised and 

supervised machine learning techniques to 

automatically identify the smoking status of 

patients in unstructured EHRs. In addition to 

traditional features, we used per-document 

topic model distribution weights as features 

in our system. We also discuss the 

performance of our hybrid system using 

different feature sets. Our preliminary results 

demonstrated that combining per-document 

topic model distribution weights with 

traditional features improve the overall 

performance of the system.  

1 Introduction 

Electronic health records (EHRs) carry vital 

patient information. EHRs generally store 

information such as medical history, procedures 

and tests, medications, admissions data and social 

history. Social history includes details on a 

patient’s smoking habits, alcohol and drug usage. 

However, most of the information stored in EHRs 

are in the free-text form as clinical narratives. 

Natural language processing (NLP) and text 

mining can be used to extract this valuable 

information from unstructured EHRs.  The 

extracted information in turn can be used to build 

a number of applications such as clinical decision 

support, medical coding, cohort selection and 

registry systems (Jensen, Jensen, & Brunak, 2012; 

Jonnagaddala, Dai, Ray, & Liaw, 2015).  

Smoking is known to be one of the major risk 

factors in the development of coronary artery 

disease, cardiovascular disease, chronic kidney 

disease and cancer. Thus, identifying smoking 

status automatically from unstructured EHRs is 

crucial for preventive medicine. Smoking status 

can be used to assess risk for a particular disease 

and provide interventions based on clinical 

guidelines (Jonnagaddala, Liaw , et al., 2015). 

Identifying smoking status automatically in 

unstructured EHRs is not straightforward and 

often complex. Clinicians usually report smoking 

information in various formats. For example, few 

clinicians report in packs per day and others 

simply classify patient as just smoker or non-

smoker.  

Previous studies have reported success in using 

support vector machines (SVMs) to automatically 

identify smoking status in unstructured EHRs 

(Clark et al., 2008; Cohen, 2008; Khor et al., 

2013; Savova et al., 2010; Savova, Ogren, Duffy, 
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Buntrock, & Chute, 2008).  Similarly, Bui et al 

developed a system using SVMs by automatically 

learning regular expressions from two different 

datasets (Bui & Zeng-Treitler, 2014). However, 

most of these studies developed their automated 

systems using traditional features like unigrams, 

bigrams and POS tags in combination with few 

rules (Uzuner, Goldstein, Luo, & Kohane, 2008). 

In this study, we developed a hybrid system using 

topic modelling and SVMs to automatically 

identify patients smoking status in unstructured 

EHRs. Per-document topic distribution weights 

obtained from unsupervised topic modelling 

technique are used as features together with 

traditional features. For the purpose of this study 

we combined two different datasets to form one 

large dataset. The system classifies patients into 

five categories depending on their smoking 

history using rule-based and machine learning 

techniques. 

2 Materials and Methods 

2.1 Dataset 

The dataset used in the study is generated by 

merging datasets from the 2006 and 2014 NLP 

challenges set forth by the information for 

integrating biology to the bedside (i2b2) 

project(Amber Stubbs, Kotfila, Xu, & Uzuner, 

2015; A. Stubbs & Uzuner, 2015; Uzuner et al., 

2008). The 2006 i2b2 dataset has one document 

per patient. The 2014 has multiple documents 

(from multiple encounters) per patient. In this 

study, we aim to identify the smoking status of a 

given document irrespective of the fact that one 

patient might have multiple documents with 

varying smoking status. In other words, we aimed 

to develop an automated system to identify 

smoking status at document level. The final 

merged dataset consisted of documents classified 

into one of the five possible smoking categories 

listed below: 

Current Smoker:  A current smoker class is 

assigned to a document when it explicitly state 

that the patient was a smoker within the past year. 

If the document mentions, patient has quit 

smoking within the past one year, the document is 

still classified as current smoker.  

Past Smoker: A past smoker is when a document 

explicitly state that the patient used to smoke more 

than a year ago.  

Past or Current Smoker: A past or current smoker 

is assigned when a document mentions that 

patient smokes, but not possible to determine the 

status either as past or current. 

Non-Smoker: A non-smoker is when documents 

explicitly states that they never smoked.  

Unknown: An unknown status is assigned to a 

document if there is no mention of smoking. 

2.2 Baseline System 

The smoking status classifier of 

nttmuClinical.NET (Chang, Dai, Jonnagaddala, 

Chen, & Hsu, 2015) was used as the baseline 

system in this study. For the detection of smoking 

status, a list of smoking-related keywords, such as 

“smoking” and “cigarette”, was matched with the 

given document by the classifier. If no match was 

found, the document was automatically assigned 

with the UNKNOWN class. Otherwise, the line 

containing the listed terms was regarded as a 

Figure 1: Overview of components in smoking identification pipeline 
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context that could provide more information for 

detecting the smoking status of a patient in the 

document. The context-aware algorithm with 

several weighted rules developed by leveraging 

document creation information for different 

smoking statuses was then applied on the 

document to determine the smoking status. The 

algorithm starts by checking the current context. 

If the context did not provide sufficient temporal 

information to determine the smoking status, the 

classifier extends the current context to include 

more sentences and re-apply the developed rules 

until either the status was determined or no further 

updated context was available. 

2.3 Hybrid system for smoking classification 

Our smoking status identification system takes 

advantage of the fact that, most of the documents 

had smoking related information present in a 

particular section of the document. Thus, instead 

of using the whole document for classification, we 

first extracted the smoking related sentences and 

then used those sentences to identify smoking 

status. Our system comprised of the following 

components (Figure1).  

Sentence Splitter: To split the documents into 

individual sentences we used sentence 

segmentation available in Stanford coreNLP 

(Manning et al., 2014). The tool was modified to 

preserve the section headers like “Family History” 

and “Social History”. 

Smoking sentence detector: This component was 

developed to extract the smoking related 

sentences from the documents. The component 

identified the smoking status related terms and 

extracted surrounding sentences.  

Smoking sentence summarizer: As some of the 

documents had multiple smoking related 

instances a rule-based component was developed 

to summarize these sentences. The rules were 

created based on the headers, like Social History, 

Habits etc. 

NLP Component: Once the smoking related 

sentences were identified and summarized, they 

were processed further using multiple core NLP 

components - tokenizer, stemming, stop words 

removal and POS tagging to generate features. 

Feature Extraction: After NLP was done, 

multiple feature sets were developed including 

unigrams, bigrams, POS bigrams, word POS pairs 

and topic models. We generated ten topics using 

Latent dirichlet allocation (LDA) and Gibbs 

sampling (Blei, Ng, & Jordan, 2003). The per-

document distribution weights of the topics were 

later incorporated into the feature sets used to train 

smoking status classifier.  

SVM Classifier: Linear SVM classifier was used   

to classify the documents into one of the five 

classes discussed above. The cost parameter was 

optimized to 0.01 for better performance. The 

SVM classifier was developed using training set 

and evaluated on test set. The performance of the 

developed system is presented in the form of 

precision (P), recall (R) and F1 score (F1) in micro 

and macro averaged settings.  

3  Results 

We observed that the 2006 and 2014 i2b2 NLP 

smoking datasets are not identical in structure and 

smoking classification classes. We implemented 

few changes to standardize the smoking status in 

the merged dataset. Similarly, we also manually 

annotated documents where smoking status was 

missing, even though available in documents. 

Where the smoking status cannot be determined 

we labeled them as unknown. The summary of 

number of documents available in final merged 

dataset (training and test) with the class 

distribution is presented in Table 1. 

 

Smoking classification 

classes 

Training  Test  

Current Smoker 100 46 

Past Smoker 185 124 

Non-Smoker 251 136 

Past Or Current Smoker 29 6 

Unknown 623 306 

Total no. of documents 1188 618 
Table 1 Document level class distribution of dataset 

The training set was processed through our hybrid 

system to generate features and train linear SVM 

classifier to perform multi class classification. 

Initially the training set generated model was 

evaluated using tenfold cross validation on same. 

This evaluation allowed us to tweak the 

parameters of our components for better 

performance. We also used grid search to identify 

best parameters for linear SVM. The results on the 

test set with best performing parameters are 

reported in Table 2. The feature set which 

incorporated topic modelling based features 

performed better than baseline and traditional 

feature set. The topic modelling based feature set 

trained SVM classifier achieved F1 measure of 

83.66% whereas the traditional feature set 

achieved F1 measure of 82.69% and baseline 

system 81.85%.  

149



Table 2: Micro averaged results on test set 

4 Discussion 

Linear SVMs were used in this study and during 

the development stage it was observed that the 

linear kernel performs better than non-linear 

kernels like radial basis function (RBF). The 

reason behind the better performance of the linear 

kernel may be attributed to the presence of a large 

number of features. It is also believed that when 

the number of features is much greater than the 

number of instances then mapping the feature 

space to a higher dimension like in RBF adds no 

improvement to the performance of the system.  

We also noticed that adding topic models as 

features did increase the performance of the 

classifier. However, we believe that the overall 

performance of classifier can be further increased 

by optimizing the number of topics to be 

extracted. The high number of topics we chose to 

extract using LDA algorithm in current setting are 

creating sparse features for SVM classifier. 

Further investigation into choosing optimal 

number of topics is required.   

 

Both training and test sets in the merged dataset 

included almost half of documents with unknown 

class. SVMs in general tend to be biased towards 

majority classes giving less priority to minority 

classes. This resulted in significant gap between 

micro and macro averaged scores. This problem 

can be solved by taking a multi layered 

classification approach. As the system is detecting 

smoking related sentences first, one of the ways to 

classify is to mark all the instances with no 

smoking reference as unknown and then classify 

the remaining into two groups smoker and non-

smoker followed by past and current smoker. 

Another option to address this imbalance problem 

is by assigning weights to the SVM classifier 

(Chew, Bogner, & Lim, 2001). Our system also 

failed to classify current smoker and past smoker 

efficiently mainly due to negation. The 

performance of our system can be further 

improved by implementing a negation component 

in conjunction with temporal component which 

can leverage discharge/admission dates and 

document generated dates as demonstrated in the 

baseline system. During our error analysis we also 

noticed that few documents included smoking 

related administration data in the form of billing 

and medication codes. We can also use this 

information to improve the performance of our 

system (Wiley, Shah, Xu, & Bush, 2013). 

5 Conclusion 

In summary, we presented the results of a 

preliminary study in automatically identifying 

smoking status in unstructured EHRs using SVMs 

and topic models. Our approach encompassed 

usage of per-document topic distribution weights 

generated from topic modelling as features in 

conjunction with several other traditional features 

extracted from NLP pipeline. We compared the 

results of our system using various feature sets 

against a baseline system. The results 

demonstrated that topic modelling is useful in 

identifying smoking status, however, proper topic 

sampling strategies should be employed. Also, the 

need for the inclusion of negation and temporal 

information recognition components in smoking 

identification is highlighted. In future, we would 

like to improve our system performance by 

employing negation and temporal related features. 

We also would like to explore optimal topic size 

for smoking identification from relevant smoking 

related sentences and compare the performance of 

our system against various smoking identification 

systems available like Apache cTAKES (Savova 

et al., 2010).  
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Abstract

Clinical documents have been an emerg-
ing target of natural language applications.
Information stored in documents created
at clinical settings can be very useful for
doctors or medical experts. However,
the way these documents are created and
stored is often a hindrance to accessing
their content. In this paper, an automatic
method for restoring the intended structure
of Hungarian ophthalmology documents is
described. The statements in these docu-
ments in their original form appeared un-
der various subheadings. We successfully
applied our method for reassigning the
correct heading for each line based on its
content. The results show that the cate-
gorization was correct for 81.99% of the
statements in our testset, compared to a
human categorization.

1 Introduction

Documents created in clinical settings contain a
large amount of practical information characteris-
tic of the local community. Collecting and pro-
cessing such documents may provide doctors and
medical experts a valuable source of information
(Meystre et al., 2008; Sager et al., 1994; Friedman
et al., 1995).

In a broad sense, there are two sources of clin-
ical documents regarding the nature of these tex-
tual data. First, they might be produced through an
EHR (Electronic Health Records) system. In this
case, practitioners or assistants type the informa-
tion into a predefined template, resulting in struc-
tured documents. The granularity of this structure
might depend on the actual system and the habit
of its users. The second possibility is that the pro-
duction of these clinical records follows the nature
of traditional hand-written documents, i.e. even

though they are stored in a computer, it is only
used as a typewriter, resulting in raw text, hav-
ing some clues of the structure only in the manual
formatting. These are the two extremes, and the
production of such records is usually somewhere
in between, depending on institutional regulations,
personal habits and the actual clinical domain.

In this paper, an automatic method is described
that is able to assign labels of structural units
to statements in Hungarian ophthalmology docu-
ments. In Hungarian hospitals, the usage of EHR
systems is far behind expectations. Assistants or
doctors are provided with some documentation
templates, but most of them complain about the
complexity and inflexibility of these systems. This
results in keeping their own habit of documenta-
tion, filling most of the information into a single
field and manually copying patient history.

Moreover, ophthalmology has been reported to
be a suboptimal target of application of EHR sys-
tems in several surveys carried out in the US (Chi-
ang et al., 2013; Redd et al., 2014; Elliott et al.,
2012). The special requirements of documenting
a mixture of various measurements, some of them
resulting in tabular data, while others in single val-
ues or textual descriptions make the design of a us-
able system for storing ophthalmology reports in a
structured and validated form very hard.

2 The corpus of Hungarian
ophthalmology notes

We were provided with anonymized clinical
records from the ophthalmology department of a
Hungarian clinic. Due to the lack of a sophisti-
cated clinical documentation system, the structure
of the raw documents can only be inferred from
the formatting or by understanding the actual con-
tent. Besides basic separations – that are not even
uniform through documents – there were no other
clues for determining structural units. Moreover, a
significant portion of the records were redundant:
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medical history of a patient is sometimes copied
to later documents at least partially, making sub-
sequent documents longer without additional in-
formation regarding the content itself. Moreover,
the language of these documents contains a high
ratio of word forms not commonly used: such as
Latin medical terminology, abbreviations and drug
names. Many of the authors of these texts are not
aware of the standard orthography of this termi-
nology. Figure 1 shows a document after process-
ing, but the original format is kept in the example
and the English translation is provided.

The documents of ophthalmology investigated
in this research were especially characterized by
nontextual information interspersed with sections
containing texts. These (originally tabular) data
behave as noise in such a context. Non-textual in-
formation inserted into free-word descriptions in-
cludes laboratory test results, numerical values,
delimiting character series and longer chains of
abbreviations and special characters. Moreover,
these statements do not follow any standard pat-
terns even by themselves and they further vary
from document to document according to the style
of the doctor or assistant.

Regarding the textual parts of the documents,
these are also quite different from general Hungar-
ian. Consult Siklósi et al. (2014) and Siklósi and
Novák (2014) for a detailed comparison of Hun-
garian and the medical sublanguage.

3 Structuring and categorizing lines

First, a preprocessing chain adapted to these spe-
cial characteristics was applied to the documents,
which included tokenization (Orosz et al., 2013),
spelling correction (Siklósi et al., 2014), and part-
of-speech tagging (Orosz et al., 2014). Thus,
an enriched representation of the corpus was
achieved. This provided the basis for structuring
and categorizing the content of each document.
This was performed in two steps. First, format-
ting clues were recognized and labelled. Second,
each line was classified into a content unit defined
on statistical observations from the corpus.

3.1 Structuring

Even though the documentation system used when
creating these documents did provide a basic tem-
plate for labelling each section of the document to
be created, these were very rarely followed by the
administrative personnel. However, some of these

system generated labels were printed into the fi-
nal documents, which we could consider as ‘clues’
of the intended structure. These system gener-
ated labels followed a consistent pattern, and as
such, could easily be recognized based on features
such as the amount of white space at the begin-
ning of the line, capitalization, and the recurring
text of the headline. Thus, such structural units
were identified and labelled with a PART tag.

Similarly, tables of codes were also printed by
the system in a predefined format. These tables
contain the BNO-codes (the Hungarian system of
ICD coding) of diagnoses and the applied treat-
ments. Such tables, though printed as raw text,
could also be recognized by the spacing used in
them and were labelled with an SPART tag.

3.2 Detecting patient history
We found it very often that findings about a pa-
tient recorded in documents of earlier visits were
copied to the actual record, and in some cases mi-
nor adjustments were also introduced during the
replication. Thus, although these partial recur-
rences contain only redundant information, they
could not be recognized by simply looking for ex-
act matches. Moreover, the short and dense state-
ments of findings are often formatted the same
way in the case of different patients or even doc-
tors. In order to filter these copied sections, first
we detect all date stamps in each document. Date
stamps may occur in the headers, in the notation
of some examinations, in the tables of codings or
might be inserted manually at any point in the doc-
uments. The dates were labelled with a DATE tag.
Then, the contents between these tags were or-
dered in increasing order and partial matches were
found by comparing the md5 coded form of each
part. Those sections that had a matching under
an earlier date stamp, were labelled with a COPY
tag. Furthermore, these DATE tags were used to
partition each document corresponding to separate
visits. Thus, patient history could be retrieved by
referring to the same ID and each date. All the in-
formation that was originally in a single document
can thus be retrieved in order.

3.3 Categorizing statements
Even though the PART tags have labelled each
part according to the documentation template of
the system, the title of these fields is rarely in ac-
cordance with the content. For example, the sta-
tus field is frequently used to include all the in-
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formation, be it originally anamnesis, treatment,
therapy, or any other comments. Thus, it was nec-
essary to categorize each statement in each part of
the documents. Table 1 shows the categories and
their description used for classification. It should
be noted, that these categories are defined directly
for the ophthalmology domain. For other special-
ties, the tagset should be redefined.

Prior to categorization, units of statements had
to be declared. The documents were exported
from the original system in a way that kept the
fixed width of the original input fields. Thus, line-
breaks were inserted to the text at certain posi-
tions corresponding to this width. In order to re-
store the original units intended to be single lines,
these linebreaks were deleted from the end of a
line which could be continued by the next one.
That is, if the second line does not start with cap-
ital letter, does not start with whitespace and if
the length of the actual line plus the length of
the first word of the second line is larger than the
fixed width (hyphenation was not implemented in
the system, thus if a word would pass the right
margin, then the whole word is transmitted to a
new line). Moreover, lines containing tabular data
were also recognized during this processing step.
The units of categorization were these concate-
nated lines and since these lines were either short
or contained usually only one type of information,
each received one tag. Longer sections of neigh-
boring lines falling into the same category could
be merged after labelling each line. The catego-
rization was done in three steps.

First, using the preprocessed version of the
texts, some patterns were identified based on part-
of-speech tags and the semantic concept categories
assigned to the most frequent entities. For exam-
ple, due to the rare use of verbs, if a past tense verb
was recognized in a sentence, it was a good indi-
cator of being part of the anamnesis or the com-
plaints of the patient (Siklósi, 2015).

Second, some indicator words were extracted
from the documents. At the first place, these
were those line initial words and short phrases that
started with capital letter and were followed by
a colon and some more content. These phrases
were then ordered by their occurrence frequen-
cies. Then, they were manually assigned a cate-
gory label referring to the type of the statement
that the phrase could be an indicator of. For exam-
ple the phrase, korábbi betegségek ‘previous ill-

nesses’ was given the label Ana referring to anam-
nesis. Table 2 shows some more examples of tags
and phrases labelled by them. After having all the
phrases occurring at least 10 times in the whole
corpus labelled, they were matched against the
lines of each document that were found in PART
sections and were not recognized as tabular data.
If the line started with a phrase or any of its vari-
ations (case variations, misspellings, punctuation
marks and white spaces were allowed differences),
then the line was labelled with the tag the phrase
belonged to. These first two steps were able to cat-
egorize 34% of the concatenated lines in the doc-
uments.

tag phrase English translation
Ana egyéb betegség other illness

panasz complaint
család family
korábbi earlier
hypertonia hypertonia
anamnézis anamnesis

T eredmény result
ultrahang ultrasound
Topo Topo
Schirmer Schirmer

RL réslámpa slit lamp
macula macula
fundus fundus
rl sl (for slit lamp)
lencse lens

Ther th th (for therapy)
szemcsepp eyedrop
terápia therapy
rendelés prescription
javasolt recommended

Table 2: Examples of tags and some of the phrases
labelled by the tag.

In the third step, the rest of the lines were given
a label. In order to do this, all lines labelled in the
first two steps were collected for each tag (they
will be referred to as tag collections). Then, for
each line, the most similar tag collection was de-
termined and the tag of this collection was as-
signed to the actual line. The similarity measure
applied was the tf-idf weighted cosine similarity
between a line (l) and a tag collection (c) defined
by Formula 1.
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tag meaning description
Tens Tension Measurements of the tension of the eye
V/Refr Refraction Refraction data
Ana Anamnesis Complains of the patient, other/past diseases, family history, etc.
Dg Diagnosis The actual diagnoses
Beav Treatment Applied treatments, except operations and medication
Vél Opinion Opinion of the doctor, except diagnoses and treatments
St Status Actual status of the patient
Ther Therapy Prescribed/applied medication
BNO BNO (ICD) Statements used with their BNO codes
T Test Tests, other than those in the Rl category
V Visus Visus data
Rl Slit lamp Tests carried out using the slit lamp (most of the tests are done with it)
Kontr Control Information about when the patient should return to the doctor
M}utét Operation Operations applied or prescribed
XXX - Other statements that can not be categorized

Table 1: The tags used in categorizing statements

sim(~l,~c) =

∑
w∈l,c

tfw,ltfw,c(idfw)2√ ∑
li∈l

(tfli,lidfli
)2×

√ ∑
ci∈c

(tfci,cidfci )
2

(1)
, where ~l contained the normalized set of words in
line l, and ~c the normalized set of words contained
in the tag collection c. During normalization, stop-
words and punctuation marks were removed and
numbers were replaced by the character x, so that
the actual numerical values do not mislead the rep-
resentation. As a result, all lines within PART sec-
tions were labelled by a tag. Finally, tabular lines
were assigned the tag Vis, since these contained
the detailed information about the visual acuity of
the patient.

4 Results

The labels of 1000 lines were checked manu-
ally. This testset was selected randomly only from
PART sections, since the categorization was ap-
plied only to these portions of the documents.
However, the label XXX was also allowed in the
system when it was not able to assign any mean-
ingful labels. The rest of the lines were assigned
one of the 15 labels. Figure 1 shows the processed
state of a document. In the example, the for-
mat and whitespaces of the original document is
kept. Tags are shown at the beginning of the lines.
Tags starting with a number of # symbols are used
for the separation of structural units. Categoriza-

tion is applied to lines in a Part section, here
Part:Státusz. Lines ending with an @ sym-
bol were concatenated with the next line. tags re-
garding structural units and classification of state-
ments. The English translation for the meaningful
parts are inserted between the lines.

In the evaluation setup, the labels were consid-
ered either as correct, non-correct or undecidable.
Lines of this latter category either did not include
enough information referring to the content, or it
was too difficult even for the human evaluator to
decide what category the line belonged to. The la-
bel XXX was accepted as correct, if the line did not
belong to any category (e.g. a single date). Out of
the 1000 lines in the test set, its 7.8% could not be
categorized by the human expert. For the rest of
the lines, 81.99% of these lines were assigned the
correct label and only 18.01% the incorrect one.
Regarding the errors, most of them were due to
the lack of contextual information for the algo-
rithm. For example, if the anamnesis of a patient
included some surgery, then the label for surgery
was assigned to it, which is correct at the level of
standalone statements, but incorrect in the context
of the whole document. The other main source
of the errors was that some longer lines included
more than one types of statements and the sys-
tem was unable to choose a correct one. In these
cases, the human annotation assigned the “more
relevant” tag as correct. Thus, a significant part
of these errors could be eliminated by a more ac-
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###DOCTYPE:AMBULÁNS KEZEL}OLAP
‘T A M B U L Á N S K E Z E L }O L A P

###PART:Státusz //Status
St Státusz

##DOCDATE##
##DATE-TIME##
XXX ‘T 2010.10.19 12:28 Székelyhidi/Füst

Beav ‘C Olvasó szemüveget szeretne. Néha könnyeznek a szemei.
//S/he would like reading glasses, eyes are sometimes watering.

V V:0,7+0,75Dsph=1,0
V 1,0 +0,5 Dsph élesebb

V\Refr +2.0 Dsph mko Cs IV

St St.o.u: halvány kh, ép cornea, csarnok kp mély tiszta, iris ép békés, pupilla@
// St.o.u: blanch conj, intact cornea, chamber deep clean, iris intact, calm, papil

‘C rekciók rendben, lencse tiszta, jó vvf.
//reactions allright, clean lens, good rbl.

Ther Átfecskendezés mko sikerült.
//Successful squishing at both side

V\Refr ‘C Olvasó szemüveg javasolt: +2.0 Dsph mko.
//Reading glasses are suggested: +2.0 Dsph both side

Vél ‘C Éjszakánként m}ukönnygél ha szükséges.
//Artificial tears can be used at night if necessary

Kontr Kontroll: panasz esetén
//Contorl: in case of further complaints

###SPART:Diagnózis //Diagnoses
Diagnózis
DIAGNÓZISOK megnevezése Kód Dátum Év K V T

##DOCDATE##
Látászavar, k.m.n. H5390 2010.10.19 3

###SPART:Beavatkozások //Treatments
Beavatkozások

Kód Megnevezés Menny. Pont
11041 Vizsgálat 1 750

Figure 1: The processed state of a document.

curate segmentation for separating each statement
and by the incorporation of contextual features to
the categorization process, which are among our
future plans.

5 Conclusion

A method for structuring Hungarian ophthalmol-
ogy notes has been described. The original form of
these records created at clinical settings contains a
large amount of noise and lacks almost any struc-
ture. Thus, in order to be able to use these docu-
ments either as the input of information retrieval
algorithms or as a searchable database for medical
experts, their intended structure had to be restored
by assigning medical headings to each statement.
This categorization was achieved by our method in
three steps, relying on (1) the formatting clues of
the original documents, (2) domain-specific key-
words derived from the ophthalmology notes and
(3) a statistical classification approach. Compared
to a manually created gold standard, the results
showed relatively high accuracy.
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2014. Lessons learned from tagging clinical Hun-
garian. International Journal of Computational Lin-
guistics and Applications, 5(1):159–176.

Travis K. Redd, Sarah Read-Brown, Dongseok Choi,
Thomas R. Yackel, Daniel C. Tu, and Michael F.
Chiang. 2014. Electronic health record impact
on productivity and efficiency in an academic pedi-
atric ophthalmology practice. Journal of AAPOS,
18(6):584–589.

Naomi Sager, Margaret Lyman, Christine Bucknall,
Ngo Nhan, and Leo J. Tick. 1994. Natural lan-
guage processing and the representation of clinical
data. Journal of the American Medical Informatics
Association, 1(2), Mar/Apr.
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Abstract

Recently there is a surge in interest in
learning vector representations of words
using huge corpus in unsupervised man-
ner. Such word vector representations,
also known as word embedding, have
been shown to improve the performance of
machine learning models in several NLP
tasks. However efficiency of such repre-
sentation has not been systematically eval-
uated in biomedical domain. In this work
our aim is to compare the performance
of two state-of-the-art word embedding
methods, namely word2vec and GloVe on
a basic task of reflecting semantic simi-
larity and relatedness of biomedical con-
cepts. For this, vector representations of
all unique words in the corpus of more
than 1 million full-length research arti-
cles in biomedical domain are obtained
from the two methods. These word vec-
tors are evaluated for their ability to reflect
semantic similarity and semantic related-
ness of word-pairs in a benchmark data
set of manually curated semantic similar
and related words available at http://
rxinformatics.umn.edu. We ob-
serve that parameters of these models
do affect their ability to capture lexico-
semantic properties and word2vec with
particular language modeling seems to
perform better than others.

1 Introduction

One of the crucial step in machine learning (ML)
based NLP models is how we represent word as
an input to our model. Most of earlier works were
treating word as atomic symbol and were assign-
ing one hot vector to each word. Length of the
vector in this representation was equal to the size

of the vocabulary and the element at the word in-
dex is 1 while the other elements are 0s. Two ma-
jor drawbacks with this representation are: first,
length of the vector is huge and the second, there
is no notion of similarity between words. The in-
ability of one-hot vector representation to embody
lexico-semantic properties prompted researchers
to develop methods which are based on the notion
that the “similar words appear in similar contexts”.
These methods can broadly be classified into two
categories (Turian et al., 2010), namely, distribu-
tional representation and distributed representa-
tion. Both group of methods works in unsuper-
vised manner with huge corpus. Distributional
representations are mainly based on co-occurrence
matrixO of words in the vocabulary and their con-
texts. Here, among other possibilities, contexts
can be documents or words within a particular
window. Each entry Oij in the matrix may indi-
cate either frequency of word i in the context j
or simply whether the word i has appeared in the
context j at least once. Co-occurrence matrix can
be designed in variety of ways (Turney and Pan-
tel, 2010). The major issue with such methods is
size of the matrix O and reducing its size gener-
ally tends to be computationally very expensive.
Nevertheless, the requirement of constructing and
storing the matrix O are always there. The second
group of methods are mainly based on language
modeling (Bengio et al., 2003). We discuss more
about these methods in the section 3.

Outside the biomedical domain, this kind of
representation has shown significant improvement
in the performance of many NLP tasks. For ex-
ample, Turian et al. (2010) have improved the per-
formance of chunking and named entity recogni-
tion by using word embedding also as one of the
features in their CRF model. In one study, Col-
lobert et al. (2011) have formulated the NLP tasks
of parts of speech tagging, chunking, named entity
recognition and semantic role labeling as multi-
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task learning problem. They have shown improve-
ment in the performance when word vectors are
learned together with other NLP tasks. Socher
et al. (2012) improved the performance of senti-
ment analysis task and semantic relation classifi-
cation task using recursive neural network. One
common step among these models is: learning of
word embedding from huge unannotated corpus
like Wikipedia, and later use them as features.

Motivated by the above results, we evaluate
performance of the two word embedding mod-
els, word2vec (Mikolov et al., 2013a; Mikolov et
al., 2013b) and GloVe (Pennington et al., 2014)
for their ability to capture syntactic as well as se-
mantic properties of words in biomedical domain.
We have used full-length articles obtained from
PubMed Central (PMC) open access subset1 as
our corpus for learning word embedding. For eval-
uation we have used publicly available validated
reference dataset (Pakhomov et al., 2010; Ped-
ersen et al., 2007) containing semantic similarity
and relatedness scores of around 500 word-pairs.
Our results indicate that the word2vec word em-
bedding is capturing semantic similarity between
words better than the GloVe word embedding in
the biomedical domain, whereas for the task of
semantic relatedness, there does not seem to be
any statistical significant difference among differ-
ent word-embeddings.

2 Related Work

In a recent study, Miñarro-Giménez et al. (2015)
have evaluated the efficiency of word2vec in find-
ing clinical relationships such as “may treat”, “has
physiological effect” etc. For this, they have
selected the manually curated information from
the National Drug File - Reference Terminology
(NDF-RT) ontology as reference data. They have
used several corpora for learning word-vector rep-
resentation and compared these different vectors.
The word-vectors obtained from the largest corpus
gave the best result for finding the ”may treat” re-
lationship with accuracy of 38.78%. The relatively
poor result obtained for finding different clinical
relationships indicates the need for more careful
construction of corpus, design of experiment and
finding better ways to include domain knowledge.

In another recent study, Nikfarjam et al. (2015)
have described an automatic way to find adverse
drug reaction mention in social media such as twit-

1http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/

ter. Authors have shown that including word em-
bedding based features has improved the perfor-
mance of their classifier.

Faruqui and Dyer (2014) have developed an on-
line suit to analyze and compare different word
vector representation models on a variety of tasks.
These tasks include syntactic and semantic rela-
tions, sentence completion and sentiment analy-
sis. In another recent work, Levy et al. (2015)
have done extensive study on the effect of hyper-
parameters of word representation models and
have shown their influence on the performance on
word similarity and analogy tasks. However in
both the studies (Faruqui and Dyer, 2014; Levy
et al., 2015) the benchmark datasets available for
NLP tasks are not suitable for analyzing vector
representations of clinical and biomedical terms.

3 Word Embedding

As discussed earlier, word embedding or dis-
tributed representation is a technique of learn-
ing vector representation for all words present in
the given corpus. The learned vector representa-
tion is generally dense, real-valued and of low-
dimension. As contrast to one-hot vector repre-
sentation each dimension of the word-vector is
supposed to represent a latent feature of lexico-
semantic properties of the word. In our work
we considered two state of the art word embed-
ding techniques, namely, word2vec and GloVe.
Although in literature there exists several word-
embedding techniques (Hinton et al., 1986; Ben-
gio et al., 2003; Bengio, 2008; Mnih and Hin-
ton, 2009; Collobert et al., 2011), the selected two
word embedding techniques are very much com-
putationally efficient and are considered as state-
of-the art. We have summarized the basic princi-
ples of the two methods in subsequent sections.

3.1 word2vec Model

word2vec generates word vector by two different
schemes of language modeling: continuous bag
of words (CBOW) and skip-gram (Mikolov et al.,
2013a; Mikolov et al., 2013b). In the CBOW
method, the goal is to predict a word given the
surrounding words, whereas in skip-gram, given
a single word, window or context of words are
predicted. We can say skip-gram model is op-
posite of CBOW model. Both models are neural
network based language model and take huge cor-
pus as an input and learn vector representation for
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each words in the corpus. We used freely avail-
able word2vec2 tool for our purpose. Apart from
the choice of architecture skip-gram or CBOW,
word2vec has several parameters including size of
context window, dimension of vector, which effect
the speed and quality of training.

3.2 GloVe Model

GloVe (Pennington et al., 2014) stands for Global
Vectors. In some sense, GloVe can be seen as a
hybrid approach, where it considers global context
(by considering co-occurrence matrix) as well as
local context (such as skip-gram model) of words.
GloVe try to learn vector for wordswx andwy such
that their dot product is proportional to their co-
occurrence count. We used freely available glove3

tool for all analysis.

4 Materials and Methods

4.1 Corpus Data and Preprocessing

PubMed Central R© (PMC) is a repository of
biomedical and life sciences journal literature at
the U.S. National Institutes of Health’s National
Library of Medicine (NIH/NLM). We have down-
loaded the gzipped archived files of full length
texts of all articles in the open access subset 4

on 19th April, 2015. This corpus contains around
1.25 million articles having around 400 million to-
kens altogether.

In pre-processing step of the corpus, we mainly
perform following two operations-

• we put all numbers in different groups based
on number of digits in them. For example, all
single digit numbers are replaced by the to-
ken “number1”, all double digit numbers by
the token “number2” and so on.

• each punctuation mark is considered as sepa-
rate token.

4.2 Reference Dataset

Pakhomov et al. (2010) have constructed a ref-
erence dataset of semantically similar and re-
lated word-pairs. These words are clinical and
biomedical terms obtained from control vocabu-
laries maintained in the Unified Medical Language
System(UMLS). This reference dataset contains

2https://code.google.com/p/word2vec/
3http://nlp.stanford.edu/projects/glove/
4http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/

566 pairs of UMLS concepts which were man-
ually rated for their semantic similarity and 587
pairs of UMLS concepts for semantic relatedness.
We removed all pairs in which at least one word
has less than 10 occurrences in the entire corpus
as such words are removed while building vocabu-
lary from the corpus. After removing less frequent
words in both reference sets, we obtain 462 pairs
for semantic similarity having 278 unique words,
and 465 pairs for semantic relatedness having 285
unique words. In both cases, each concept pair is
given a score in the range of 0−1600, with higher
score implies similar or more related judgments
of manual annotators. The semantic relatedness
score span the four relatedness categories: com-
pletely unrelated, somewhat unrelated, somewhat
related, closely related.

4.3 Experiment Setup

We generate the word vectors using the two word
embedding techniques under different settings of
their parameters and compare their performance in
semantic similarity and relatedness tasks. Dimen-
sion of word-vector is varied under the two differ-
ent language models, CBOW and SKIP-GRAM,
for word2vec word embedding. For GloVe, only
dimension of word vector is changed. For each
model, word vectors of 25, 50, 100, and 200 di-
mensions are generated. Due to limited comput-
ing power, we could not go for higher dimensions.
For window size, we did not perform any experi-
ment and simply considered 9 as window size for
all models.

4.4 Evaluation

As discussed earlier, both reference data have pro-
vided a score for each word-pair in them. We
calculate cosine similarity between the two words
of each pair present in the reference data using
learned word vectors. Now, each word pair has
two scores: one given in the dataset and the other
cosine similarity based on learned word vectors.
We calculate Pearson’s correlation between these
two scores.

Further we visualize a limited number of manu-
ally selected words for qualitative evaluation. For
this we use the t-SNE (van der Maaten and Hinton,
2008) tool to project our high dimensional word
vectors into two-dimensional subspace. t-SNE is
being widely used for this purpose.
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Dimension Semantic Similarity Semantic Relatedness
CBOW Skip GloVe CBOW Skip GloVe

25 0.32 0.39 0.28 0.30 0.34 0.27
50 0.36 0.44 0.34 0.33 0.38 0.36
100 0.42 0.48 0.41 0.39 0.43 0.41
200 0.46 0.52 0.42 0.41 0.45 0.42

Table 1: Correlation between cosine similarity and the score provided in the benchmark dataset.

5 Results and Discussion

Table 1 shows the correlation values in all cases.
We observe that increasing the dimension of word
vectors improve their ability to capture semantic
properties of words. The above results indicate
that less than d = 200 dimension will likely to
be a bad choice for any NLP tasks. Due to the lim-
ited computing power, we could not complete our
experiments with 500 and 1000 dimensional vec-
tor representations. We have also calculated the
Spearman and Kendall-Tau’s correlation in each
case and have observed similar trends in all cases.

Skip-gram model seems to be better than both
CBOW and GloVe models in the semantic sim-
ilarity task for all dimensions. However this
does not seem to be the case with the relatedness
task. So we perform the statistical significance
test to check whether correlation corresponding to
word2vec skip-gram model is significantly higher
than correlation corresponding to other two mod-
els. In the statistical test, we evaluate the null-
hypothesis “ correlation corresponding to alternate
model (CBOW or GloVe) is equal to that corre-
sponding to the skip-gram model” at significance
level α = 0.05. We use cocor (Diedenhofen and
Musch, 2015) package for statistical comparison
of dependent correlations.

It turns out that for the semantic similarity task,
word2vec skip-gram model is significantly better
(i.e., correlation is higher corresponding to skip-
gram word vectors) than word2vec-CBOW (p-
value: 0.01) and GloVe (p-value: 0.0007) models.
On the other hand correlation in skip-gram model
is not found significantly higher than the correla-
tions in the other two models for the semantic re-
latedness task. The above observation is made for
the 200 dimensional vectors. But we can not say
the same for results obtained by lower dimensional
vectors. For example, in case of 25-dimensional
vectors, correlation obtained by skip-gram model
is significantly higher than that obtained by GloVe
model for both tasks. However similar observation

was made in case of comparison between CBOW
and skip-gram as in 200 dimensional case.

We further look at nearest neighbors of some
manually selected words. If word-vectors truly
represent latent features of lexical-semantic prop-
erties of words, then their nearest neighbors
must be related words. We tested this hypoth-
esis on a small set of manually selected seed-
words and their nearest neighbors. We selected
8 seed-words representing disease, disorder, or-
gan and treatment: eye (organ), liver (internal
organ), fever (disorder/symptom), tumour (dis-
ease/disorder), thyroid (gland), cough (symptom),
surgery (procedure/treatment), leg (external or-
gan), aids (disease). Table 2 shows the 10 near-
est neighbors of some of the seed-words (simi-
lar results are observed for other seed-words) as
picked by the three methods. As it can be seen
from the table that the nearest neighbors are very
much related to the seed-words. Not only words
like “coughs”, “coughing”, but also words like
“wheezing”, “dyspnea” are within the top-10 near-
est neighbors of “cough”. The first set of exam-
ples indicates ability of the learned word-vectors
to capture lexical properties of words, whereas the
later set of words shows vectors’ ability to capture
semantic properties as well.

Next we visualize (Figure 1) the 4 seed-words
(shown in Table 2) and their 25 nearest neighbors
using t-SNE. Here we have shown the result ob-
tained from the word2vec skip gram model (di-
mension = 200) only. Due to space constraints
we have not shown the results of other methods
but similar observation was made for the other
methods. t-SNE projects high-dimensional vec-
tors into R2 by preserving the local structure of
high-dimensional space.

Figure 1 clearly shows the ability of
the learned word-vectors to automatically
group similar words together. This again
provides another evidence of the vectors’
ability to represent semantic properties.
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seed
word

CBOW Skip GloVe

eye eye, eyes, eyeball, hemifield,
hemibody, forelimb, eyebrow,
midline, head, face

eye, eyes, face, head, ocular,
mouth, pupillary, fovea, angle,
Eye

eye, eyes, SEFsupplementary,
ocular, visual, vision, cornea,
optic, retina, ear

cough cough, coughing, breath-
lessness, Cough, dyspnea,
wheezing, wheeze, hemopty-
sis, coughs, haemoptysis

cough, breathlessness, expec-
toration, coughing, wheezing,
dyspnea, phlegm, shortness,
haemoptysis, sore

cough, coughing, shortness,
breathlessness, TDITransition,
dyspnea, wheezing, sore, bron-
chitis, expectoration

surgery surgery, operation, decom-
pression, dissection, resection,
parathyroidectomy, stenting,
surgeries, esophagectomy,
resections

surgery, surgical, operation,
procedure, esophagectomy,
surgeries, laparoscopic,
elective, reintervention, post-
operative

surgery, surgical, BCSBreast-
conserving, surgeries, oper-
ative, eBack, postoperative,
PSMPositive, operation, resec-
tion

tumour tumour, tumor, tumoral, tu-
moural, glioma, melanoma,
PDAC, HNSCC, tumors, neo-
plastic

tumour, tumor, tumors, tu-
mours, malignant, metastatic,
metastasis, metastases, tu-
moral, melanoma

tumour, tumor, Tprimary,
tumors, VHLVon-Hippel-
Lindau, tumours, metastatic,
metastasis, malignant,
EHSEngelbreth-Holm-Swarm

Table 2: 10 Nearest neighbors of selected seed-words.
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Figure 1: t-SNE projection of 100 biomedical words after applying word2vec skip-gram model. These words are nearest
neighbors of the 4 seed-words ’eye’, ’cough’, ’surgery’, and ’tumour’. All nearest neighbors of a particular seed-word are in
closer proximity of each other than the nearest-neighbors of other seed-words.

6 Conclusion and Future Work

In this study, we have shown that while word2vec
with skip-gram model gave the best performance
compared to other models in the semantic simi-
larity task, none of the model significantly out-

performed others in the semantic relatedness task.
Our results indicate that word-vectors should be
at least of dimension 200, irrespective of the em-
bedding model. However, further systematic eval-
uation of all models on more complex NLP tasks,
such as medical concept and relation extraction, is
required to find out which model will work best.
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch. J.
Mach. Learn. Res., 12:2493–2537, November.

Birk Diedenhofen and Jochen Musch. 2015. cocor: A com-
prehensive solution for the statistical comparison of corre-
lations. PLoS ONE, 10(4):e0121945, 04.

Manaal Faruqui and Chris Dyer. 2014. Community evalua-
tion and exchange of word vectors at wordvectors.org. In
Proceedings of ACL: System Demonstrations.

Geoffrey E Hinton, James L McClelland, and David E
Rumelhart. 1986. Distributed representations. In Parallel
distributed processing: Explorations in the microstructure
of cognition. Volume 1: Foundations, pages 77–109. MIT
Press.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned from
word embeddings. Transactions of the Association for
Computational Linguistics, 3:211–225.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
2013a. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,
and Jeff Dean. 2013b. Distributed representations of
words and phrases and their compositionality. In Ad-
vances in Neural Information Processing Systems, pages
3111–3119.
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Abstract

Microblog services such as Twitter are
an attractive source of data for pub-
lic health surveillance, as they avoid
the legal and technical obstacles to ac-
cessing the more obvious and targeted
sources of health information. Only
a tiny fraction of tweets may contain
useful public health information but
in Twitter this is offset by the sheer
volume of tweets posted. We present
a system which can identify medical
named entities in a real-time stream of
Twitter posts and determine their ge-
ographic locations, as well as prelimi-
nary experiments in using this informa-
tion for health surveillance purposes.

1 Introduction

Public health surveillance (Nsubuga et al.,
2006) is the systematic collection, analysis and
monitoring of population health for the pub-
lic good using a variety of tools. For in-
stance, syndromic surveillance (monitoring for
symptoms as signatures of diseases) can be
used for tracking and early detection of infec-
tious diseases to flag potential outbreaks, as-
sist in disease modelling, or detect cases of bi-
ological terrorism. Meanwhile, pharmacovig-
ilance (WHO and others, 2002) can be used
to detect adverse effects associated with phar-
maceutical products, while statistics on pop-
ulation health and wellbeing can inform gov-
ernmental health policy. However, to be effec-
tive, these applications require large volumes
of real-world data on health statistics (such
as from hospital records), which are in most
cases difficult to access because of privacy reg-
ulations and technical challenges.

The proliferation of social media might en-
able legitimate large scale collection of health

information. Users of forums (e.g., Patients-
LikeMe) and microblogs (e.g., Twitter), which
we focus on here, post health-related messages
with varying levels of frequency. These might
cover diseases they have, symptoms they have
experienced or drugs they have taken. Twit-
ter may have a large enough volume of data
to partially make up for its lack of a health-
specific focus. Some judiciously-used data
is better than no data at all which is often
all that can be obtained from health-specific
sources. Such information can be leveraged in
analytics to provide insights on public health,
e.g., for drug safety (Sarker et al., 2015). How-
ever, it is still unclear how large a contribution
social media could make to population health
surveillance.

In this paper, we perform analysis of health
related Twitter data for public health surveil-
lance. The large volume of data in Twitter
(approximately 5000 posts per second) is the
reason it is useful for such tasks, but each of
these posts must be examined (in real-time for
practical applications) to determine whether
is it relevant, and if so, stored for subsequent
analysis. Here, we consider a relevant post
to be one containing medical named entities,
as identified by an in-domain named-entity
tagger (Jimeno Yepes et al., 2015) which we
run over our entire data-set after applying
some pre-filtering heuristics. A second chal-
lenge with Twitter is that location informa-
tion is scarce, with only around 2% of mes-
sages containing reliable geographic coordi-
nates (Cheng et al., 2010). Location infor-
mation is needed, for instance, in syndromic
surveillance to identify the possible location
of an outbreak. We handle this by adapting
and tuning an existing geotagger to augment
the tweets with automatically-determined ge-
ographic information (Han et al., 2013). We
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then analyse the data, by examining the trend
of geolocated medical entities in different re-
gions, presenting commonly discussed medical
entities in different categories, and identify-
ing salient medical entities and common topics
for a given medical entity. Our results show
promising outcomes of utilising Twitter data
in health surveillance applications and also
raise some limitations of using this data. Over-
all, the contributions of this paper are twofold:
(1) it helps us to understand to what extent
Twitter data supports public health surveil-
lance and (2) it provides pilot results that indi-
cate future directions to explore when utilising
Twitter data for public health.

2 Related Work

Several sources of data have been previously
considered for public health surveillance. Bio-
surveillance has been usually achieved by mon-
itoring emergency department notes (Espino
et al., 2004). The data is reliably sourced,
however, there are severe issues in processing
time and data aggregations when the data is
collected from several departments in various
forms and with different time latencies. In
addition, access to these sensitive electronic
health records is also restricted by privacy is-
sues.

Search engine query logs are an abundant
source of data for the organisations which own
the search engines, and have been exploited in
the health realm. Google1 (Carneiro and My-
lonakis, 2009) finds a spatio-temporal correla-
tion between flu-related queries and data from
the United States Centers for Disease Control
(CDC). Similarly, Yom-Tov and Gabrilovich
(2013) have used Yahoo search data to identify
adverse-drug reactions. However, since the
search logs are not publicly accessible, these
methods are only viable for the companies
which own the search log data.

An alternative approach is to monitor infor-
mation from news data. Collier et al. (2008)
identified health rumours and compared them
to CDC data, however this might be less suc-
cessful for real time monitoring and less pub-
lic disease outbreaks, because only large out-
breaks of diseases are newsworthy, and they

1Google Flu Trends: http://www.google.org/
flutrends

will have some time lag. For health infor-
mation of individuals, it is more likely to ap-
pear in search logs or medical forums (Segura-
Bedmar et al., 2014; Metke-Jimenez et al.,
2014; Cameron et al., 2013).

Twitter data has also been considered to
identify trends in the 2009 swine flu out-
break in the UK that correlated with official
data (Lampos and Cristianini, 2010) and to
track alcohol consumption (Kershaw et al.,
2014) using geolocated tweet data. Some ini-
tial work on exploring health topics in Twitter
has been previously done (Paul and Dredze,
2011; Paul and Dredze, 2012; Prier et al., 2011;
Signorini et al., 2011), showing the presence
of health-related information. These systems
typically rely on the Twitter API data with
location information.

While there has been some work on medical
text mining in social media (e.g., identification
of relevant tweets for adverse drug events (Nik-
farjam et al., 2015)), a critical assessment of
performance of current text mining technology
has not been performed. In this work, we have
taken a closer look into Twitter data for public
health surveillance.

3 Methods

Our pipeline for processing and analysing the
Twitter stream is represented in Figure 1.
Medical named entities are identified in tweets
and those tweets are then geotagged if they
do not contain accurate GPS labels. From the
large volume of source Twitter data, this yields
a much smaller number of tweets containing of
medical named entities along with geographi-
cal information. This smaller data set is then
stored in a MongoDB2 document database for
querying and filtering.

3.1 Micromed: medical NER for
Twitter

We have developed a medical named entity
recogniser, named Micromed (Jimeno Yepes
et al., 2015), which uses supervised learn-
ing to recognise three types of entities: dis-
eases, symptoms and pharmacological sub-
stances.3 It uses a linear-chain CRF (condi-

2https://www.mongodb.org
3For performance reasons the CRF implementation

used here was different to the original system and no
POS-based features were used, resulting in a roughly
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Figure 1: Annotation pipeline

tional random field) (Lafferty et al., 2001),
and is trained on a publicly available4 set of
1300 tweets which have been manually an-
notated with relevant medical entities. The
three entity types are correspond with en-
tries in the Unified Medical Language System
(UMLS) (Bodenreider, 2004) Semantic types –
specifically T047 (Diseases or Syndrome) for
diseases, T184 (Sign or Symptom) for symp-
toms and T121 (Pharmacologic Substance) for
pharmacologic substances. Table 1 shows the
performance of Micromed on our annotated
set for exact matching of the boundaries of
the entities, which outperforms systems like
MetaMap (Aronson and Lang, 2010) or Stan-
ford NER (Finkel et al., 2005). A comparison
is available in (Jimeno Yepes et al., 2015).

Entity Type Precision Recall F1
Disease 0.7987 0.5020 0.6165
Pharm.Subs. 0.8142 0.3948 0.5318
Symptom 0.7193 0.6028 0.6559

Table 1: Micromed performance evaluated us-
ing 13-fold cross-validation

3.2 Geotagger

To obtain geolocation information for the vast
majority of tweets, we adapted and tuned
an off-the-shelf geotagger LIW-META (Han et
al., 2013). LIW-META leverages location in-
dicative words to infer geolocations for tweets
which lack GPS labels. It applies various fea-
ture selection methods to extract words as-
sociated with particular locations. Both ex-
plicit gazetted terms (such as city and country
names) and implicit location-indicative words
(such as local landmarks, sport teams and di-
alectal terms) are extracted and used in mod-
elling taggers. Additionally, it also exploits

1.5% drop in F-score
4https://github.com/IBMMRL/medinfo2015

user profile data such as user-declared loca-
tions and time zone information in a stacking
framework to enhance the prediction accuracy
(Han et al., 2014).

3.3 Twitter data set

We used all of the tweets from 20145 obtained
from GNIP Decahose,6 which provides 10% of
tweets randomly selected from Twitter. In
a pre-filtering step, we remove the 33.5% of
posts marked as retweets (which are less inter-
esting for our use cases) and the 70.5% that
were marked as non-English (which our tag-
ger is not designed for). The remaining tweets
(23.3% of the tweets in the GNIP decahose
overall) are processed using the pipeline in Fig-
ure 1 and stored if a medical entity was found.

4 Results

In this section, we explore the tweets that con-
tain medical entities to understand what in-
formation it might be possible to extract from
them. We first have a closer look at the medi-
cal entities extracted by Micromed and the ex-
tended coverage obtained from the geotagger.
The coverage of LIW-META is further displayed
showing statistics for several large cities.

4.1 Medical entities

The statistics for the number of tweets at each
phase of the pipeline are summarised in Table
2. 27 million tweets had at least one medical
entity, corresponding to 1.0 tweets per second
(83k tweets per day) from the GNIP decahose,
which would correspond to 10 tweets per sec-
ond on the full live Twitter stream. Unsur-
prisingly, this proportion containing medical
information is only a small fraction (around
0.2%) of the tweets in the Decahose stream.

5Apart from a gap from February 25 to March 22
in our dataset

6https://gnip.com/sources/twitter
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Stage Total Per day Kept
Decahose 12,000×106 36,254×103 –
Pre-filtered 2,800×106 8,459×103 23.3%
Medical 28×106 83×103 1%

Table 2: Statistics for tweet numbers initially,
pre-filtered (removing non-En and retweets)
and discarding tweets without medical entities

We have listed the most frequent annotated
entities for each type in Table 3. Some entries
are not particularly surprising: substances
like marijuana or caffeine) and symptoms like
tired or hungry are likely to be reflective of
the frequency of people using or experiencing
these. However diseases such as heart attack
are less likely to indicate actually occurrences
of that disease. Since the volume of tweets
with medical entities makes it difficult to in-
terpret the context of the entities mentioned,
we have used the MALLET (McCallum, 2002)
implementation of topic modelling (Blei et al.,
2003) to group the tweets by topic.

Table 4 shows 5 topics for heart attack. Ex-
cept for topic 3, related to the memory of peo-
ple who suffered the disease, in most cases
the use of the term seems to have a figura-
tive connotation related to excitement, which
indicates that additional work is required to
identify tweets to discard figurative terms (and
possibly historical events).

Table 5 shows the topics for marijuana. In
most cases, the topics are related to legalisa-
tion of marijuana in the USA. Whether this
has a correlation with actual usage rates, and
thus potential impact in public policy for ex-
ample, requires further investigation.

Topics for entity tired are shown in Table
6. In some topics, tired seems to be used fig-
uratively to express being bored or impatient.
Again, the ability to accurately identify figu-
rative uses of terms could be valuable.

4.2 Geolocation

Location information for each tweet is needed,
for instance, to identify the location of an out-
break. Overall, 4.8% of tweets come with GPS
labels in our English GNIP collection. Not all
tweets are equally predictable so we have cal-
ibrated LIW-META by selectively choosing reli-
able prediction indicators. We tested whether

the overall prediction is more reliable when its
sub-predictions agree with each other and we
found that the overall prediction is more accu-
rate when it agrees with predictions based on
user declared locations. This calibrated set-
ting achieves 0.938 precision and 0.214 recall
using all geotagged tweet data for evaluation.
Our Twitter set offers 0.6 million GPS-labelled
tweets while Twitter + LIW-META generates 8.9
million tagging results.

4.3 Geotagged tweets with medical
entities

The subset of tweets containing medical enti-
ties have been enhanced with location infor-
mation from the geotagger. Figure 2 shows
the number of tweets for three large cities
(New York City, London and Chicago) during
part of the first half of 2014. The geotagger
used here significantly increases the number
of health-related tweets that can be identified
belonging to these large cities.

5 Discussion

From the large number of tweets being posted
every second, just a small fraction of 0.2% (10
per second) contain medical terms. Despite
this, a large number of tweets still provide rel-
evant health information.

Twitter poses additional challenges com-
pared to traditional NLP in medical literature
and clinical text. Many tweets lack standard
grammatical structure or possess abbrevia-
tions and misspellings (Baldwin et al., 2013).
The use of figurative language in Twitter may
be more frequent than other domains (it is
clearly very common in our data for many
of the frequent symptoms and diseases), al-
though it is particularly important to disam-
biguate this here for most of the proposed used
cases. However there are cases in which the
context of the entity makes a medical entity
seem legitimate to the tagger (e.g. heart at-
tack), so additional filtering might be required.

6 Conclusions

This paper augments in-domain NLP tools to
extract and analyse medical information in
Twitter. We find the overall proportion of
tweets with medical entities is small, nonethe-
less, we are able to harvest a respectable num-
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Disease Frequency Pharm. Sub. Frequency Symptom Frequency
heart attack 374810 marijuana 379838 tired 5075812
cancer 268988 caffeine 114526 hungry 2885491
diabetes 175992 cannabis 100233 pain 1724314
stroke 161549 heroin 93723 headache 980699
aids 131792 alcohol 64957 stress 947341

Table 3: Most frequent entities annotated by Micromed per entity type.

1 love, guy, put, feel, direction, knew, mtvhottest, heart, https, line
2 phone, mini, dropped, alarm, drop, screen, show, fire, case, find
3 dad, died, find, massive, ago, couldn, told, years, today, days
4 heart, attack, read, seconds, reading, part, summer, book, words, min
5 eat, food, eating, bacon, burger, plate, cheese, grill, pizza, ate

Table 4: Top 5 topics for entity heart attack

1 http, tv, legalization, live, job, reporter, fight, vending, machine, quit
2 arrested, possession, police, jail, texas, charges, arrest, son, man, officer
3 tax, million, weed, legalizeit, year, shouldbelegal, sales, revenue, taxes, billion
4 legalized, states, bowl, super, legal, legalize, seattle, united, teams, recreational
5 alcohol, marijuana, dangerous, california, worse, difference, safe, decide, tobacco, human

Table 5: Top 5 topics for entity marijuana

1 tired, haha, damn, xd, ah, la, tmr, meh, hmm, uh
2 tired, omg, damn, stand, understatement, joke, soooo, social, omfg, soooooo
3 tired, anymore, isn, point, word, part, fight, basically, helping, state
4 don, wanna, feel, sleep, understand, worry, honestly, numb, aware, bothered
5 tired, soo, sleep, damn, gosh, fucken, darn, crabby, frick, aswell

Table 6: Top 5 topics for entity tired

Figure 2: Seven day rolling average of tweets with medical entities count per day for New York
city, London and Chicago for January–June 2014

ber of refined medical entities due to the sheer
volumes of Twitter data. We extract fre-
quent medical entities in three pre-defined cat-
egories, highlight the collocations with enti-
ties and investigate topics where an entity is
mentioned. By further assigning entities with
geographical locations, we can obtain better
local medical trend signals which makes pub-

lic surveillance more plausible. Overall, we
have found evidence for the plausibility of pub-
lic health surveillance using Twitter, although
there is much scope to expand on our data
analysis in the future.
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Abstract 

This study examined the use of neural 
word embeddings for clinical abbrevia-
tion disambiguation, a special case of 
word sense disambiguation (WSD). We 
investigated three different methods for 
deriving word embeddings from a large 
unlabeled clinical corpus: one existing 
method called Surrounding based em-
bedding feature (SBE), and two newly 
developed methods: Left-Right surround-
ing based embedding feature (LR_SBE) 
and MAX surrounding based embedding 
feature (MAX_SBE). We then added the-
se word embeddings as additional fea-
tures to a Support Vector Machines 
(SVM) based WSD system. Evaluation 
using the clinical abbreviation datasets 
from both the Vanderbilt University and 
the University of Minnesota showed that 
neural word embedding features im-
proved the performance of the SVM-
based clinical abbreviation disambigua-
tion system. More specifically, the new 
MAX_SBE method outperformed the 
other two methods and achieved the 
state-of-the-art performance on both clin-
ical abbreviation datasets.  

1 Introduction 

Abbreviations are frequently used in clinical 
notes and often represent important clinical con-
cepts such as diseases and procedures. However, 
it is still challenging to handle clinical abbrevia-
tions. In a previous study (Wu et al., 2012), we 
examined three widely used clinical Natural 
Language Processing (NLP) systems and found 
that all of them have limited capability to accu-
rately identify clinical abbreviations, especially 

for ambiguous abbreviations (abbreviations with 
multiple senses, e.g., “pt” can represent “patient” 
or “physical therapy”). The prevalence of am-
biguous clinical abbreviations is very high. A 
study (Liu et al., 2001b) examining the abbrevia-
tions in the Unified Medical Language System 
(UMLS) reported that 33.1% of them have more 
than one sense. In reality, the ambiguity problem 
of clinical abbreviations could be even higher, as 
existing knowledge bases (e.g., the UMLS) have 
low coverage of abbreviations’ senses (around 
38% to 50%) (Xu, Stetson, et al., 2007).  

Clinical abbreviation disambiguation is a par-
ticular case of the Word Sense Disambiguation 
(WSD), which is to “computationally determine 
which sense of a word is activated by its context” 
(Navigli, 2009). WSD has been extensively stud-
ied in the field of NLP (Lee and Ng, 2002). Re-
searchers have developed different WSD meth-
ods including knowledge-based methods 
(Ponzetto and Navigli, 2010), supervised ma-
chine learning methods (Brown et al., 1991) and 
unsupervised machine learning based methods 
(Chasin et al., 2014; Yarowsky, 1995) for gen-
eral English text. As the intrinsic linguistic es-
sentials shared in between, researchers have ap-
plied similar methods to biomedical literature 
and clinical text (Schuemie et al., 2005). For ex-
ample, researchers have conducted studies to 
disambiguate important entities in biomedical 
literature, such as gene names. (Xu, Fan, et al., 
2007) Much work has been done for disambigua-
tion of abbreviations in clinical text (Moon et al., 
2013; S. Moon et al., 2012; Pakhomov et al., 
2005; Wu, Denny, et al., 2013; Xu et al., 2012). 
Various types of WSD approaches have been 
proposed for clinical abbreviations, including 
traditional supervised machine learning based 
approaches with optimized features (Joshi et al., 
2006; Moon et al., 2013; S. Moon et al., 2012), 
vector space model based methods (Pakhomov et 
al., 2005; Xu et al., 2012),  algorithms based on 
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hyper-dimensional computing (Moon et al., 
2013), as well as recent unsupervised methods 
based on topic-modeling-based approaches 
(Chasin et al., 2014). Furthermore, there is also a 
study to recognize and disambiguate abbrevia-
tions in real-time when physicians are authoriz-
ing the notes (Wu, Denny, et al., 2013).  

Among all these methods, supervised machine 
learning methods often show good performances, 
when annotated corpora are available (Liu et al., 
2004). A few studies have proposed methods to 
automatically generate “pseudo” training corpus 
from biomedical/clinical text, by replacing the 
expanded long forms by their corresponding ab-
breviations (Liu et al., 2001a) (Pakhomov, 2002). 
In the recent 2013 Share/CLEF challenge on 
clinical abbreviation normalization (Suominen et 
al., 2013), a hybrid system developed by our 
group, which combines the supervised machine 
learning method, the profile-based method, as 
well as existing knowledge bases achieved the 
best performance (Wu, Tang, et al., 2013). 

Over the last few years, there has been in-
creasing interest in training word embeddings 
from large unlabeled corpora using deep neural 
networks. Word embedding is typically repre-
sented as a dense real-valued low dimensional 
matrix M of size V×D, where V is the vocabu-
lary size and D is the predefined embedding di-
mension. Each row of the matrix is associated 
with a word in the vocabulary, and each column 
of the matrix represents a latent feature. Several 
neural network based training algorithms have 
been proposed. Bengio (Bengio et al., 2003) and 
Mikolov (Mikolov et al., 2013) proposed algo-
rithms to train word embeddings by maximizing 
the probability of a word given by the previous 
word. Collobert (Collobert et al., 2011) proposed 
a neural network to train word embeddings using 
ranking lost criteria with negative sampling. The 
experimental results showed that the ranking 
based word embeddings derived from the entire 
English Wikipedia corpus greatly improved a 
number of NLP tasks in the general English text. 
Previous studies have found that the neural word 
embeddings could represent abundant semantic 
meanings in the real-valued matrix, which could 
be useful features for different NLP tasks includ-
ing WSD. In 2014, Li et al. (Li et al., 2014) pro-
posed two methods to derive word embedding 
features for WSD, including the “TF-IDF based 
Embedding” (TBE) feature, and the “Surround-
ing Based Embedding” (SBE) feature. The ex-
perimental results on the MSH collection data 
and the WISE collection data showed that the 

SBE method achieved better performance. In the 
biomedical domain, Tang et al. (Tang et al., 
2013) used the popular word2vec package to 
generate word embeddings and showed that the 
word embedding features improved the F1-score 
of a baseline NER system by 0.49% (from 70.0% 
to 70.49%).  

Nevertheless, there is no study that investi-
gates the use of neural word embeddings for 
WSD in the medical domain, i.e., clinical abbre-
viation disambiguation. In this study, we devel-
oped two new word embeddings methods to gen-
erate WSD features from a large unlabeled clini-
cal corpus. We compared them with the existing 
SBE method proposed by Li et al. for disambig-
uation of clinical abbreviations in two datasets 
from Vanderbilt University and the University of 
Minnesota. Our results showed that clinical ab-
breviation disambiguation could benefit from a 
much larger unlabeled corpus and our newly de-
veloped embedding features outperformed the 
SBE. To the best of our knowledge, this is the 
first study using the word embeddings trained 
from a large unlabeled clinical corpus to improve 
the performance of clinical abbreviation disam-
biguation methods. 

2 Methods 

2.1 Datasets 

This study used the annotated abbreviation da-
tasets from the Vanderbilt University Hospital’s 
(VUH) admission notes, as well as the clinical 
notes from the University of Minnesota-affiliated 
(UMN) Fairview Health Services in the Twin 
Cities. The VUH dataset contains 25 abbrevia-
tions. For each abbreviation, up to 200 sentences 
containing the abbreviation were randomly se-
lected and manually annotated by domain ex-
perts. The UMN dataset contains 75 abbrevia-
tions and 500 sentences were randomly selected 
and annotated for each abbreviation. Detailed 
information for the two datasets can be found in 
(Wu, Denny, et al., 2013) and (Sungrim Moon et 
al., 2012) respectively. In order to train the neu-
ral word embeddings, we utilized the unlabeled 
clinical notes from the Multiparameter Intelligent 
Monitoring in Intensive Care (MIMIC) II corpus 
(Saeed et al., 2011). The MIMIC II corpus is 
composed of 403,871 notes from four different 
note types, including discharge, radiology, ECG 
and ECHO. Table 1 shows the detailed infor-
mation about the three datasets. 
 
 

172



 
Dataset #ABBR #Sense Size 
VUH 25 103 4,721 sentences 
UMN 75 352 37,500 sentences 
MIMIC II N/A N/A 403,871 notes 

 
Table 1. Statistics of the two abbreviation da-
tasets and the unlabeled clinical corpus  

2.2 Supervised machine learning-based 
WSD method 

In this study, we used Support Vector Machines 
(SVMs), which is a supervised machine learning 
algorithm that has achieved state-of-the-art per-
formances on a number of WSD datasets. 
(Cabezas et al., 2001; Hui et al., 2004; Lee and 
Ng, 2002) We used the implementation of SVMs 
in the libsvm package a. The details of the SVM-
based WSD system can be found in our previous 
study (Wu, Denny, et al., 2013).  

2.3 Conventional features 

Previous research has identified a number of use-
ful features for WSD. (Wu, Denny, et al., 2013) 
In this study, we constructed a baseline SVM-
based WSD classifier by including the following 
proven features for clinical abbreviation disam-
biguation:  

1). Word features - words within a window of 
the target abbreviation. We used the Snowball 
Stemmer from the python NLTK (Natural Lan-
guage Toolkit) package to stem the words; 

2). Word feature with direction - The relative 
direction (left side or right side) of stemmed 
words in feature set 1 towards the target abbrevi-
ation; 

3). Position feature - The distance between the 
feature word and the target abbreviation; 

4). Word formation features from the abbrevi-
ation itself - include: a) special characters such as 
“-” and “.”; b) features derived from the different 
combination of numbers and letters; c) the num-
ber of uppercase letters.  

2.4 Word embedding features 

This study proposed two new strategies of deriv-
ing distributed WSD features from neural word 
embeddings, including the “MAX” surrounding 
based embedding features (MAX_SBE) and the 
Left-Right surrounding based embedding fea-
tures (LR_SBE). In addition, we compared the 
two proposed embedding features with the best 

                                                
a http://www.csie.ntu.edu.tw/~cjlin/papers/ libsvm.pdf 

embedding features reported by Li et al. in 2014 
– the surrounding based embedding (SBE) fea-
ture. 
Surrounding based embedding feature (SBE) 
Li et al. proposed the SBE feature, in 2014. The 
SBE feature for a target word was derived by 
aggregating the embedding row vectors of the 
surrounding words within a predefined window 
size (k), as shown in Equation 1. 
 

𝑆𝐵𝐸 𝑤 = 𝐸𝑚𝑏(𝑆(𝑖))
!!!

!!!!!
                  (1)   

Where w is the target word to disambiguate, j 
is the index of w, S is the sentence containing w, 
S(i) is the word indexed by position i in sentence 
S, and k is the predefined window size. Previous 
study from Li et al. showed that the SBE feature 
achieved the best performance in general English 
domain.  
 
Left-Right surrounding based embedding feature 
(LR_SBE) 
The LR_SBE is a variation of SBE. Instead of 
summing up over all of the surrounding word, 
the LR-SBE composed of the left-side SBE – the 
SBE from the left-side surrounding words, and 
the right side SBE – the SBE from the right-side 
surround words. Previous research has shown 
that the performance of WSD can be improved 
by considering the relative word feature with 
directions (left side or right side). Thus, we as-
sumed that the direction information could help 
the word embedding feature as well. Equation 2 
and 3 show the calculation of LR-SBE embed-
ding features. 
 

𝑆𝐵𝐸!"#!! 𝑤 = 𝐸𝑚𝑏(𝑆(𝑖))
!!!

!!!!!
                  (2) 

𝑆𝐵𝐸!"#$ 𝑤 = 𝐸𝑚𝑏(𝑆(𝑖))
!!!

!!!!!
                      (3) 

 
MAX surrounding based embedding feature 
(MAX_SBE) 
The MAX-SBE feature is generated by taking 
the MAX score of each embedding dimension 
over all the surrounding words. As each column 
of the embedding matrix represents a latent fea-
ture, the surrounding words that have a high as-
sociation with a particular semantic meaning are 
more likely to have a higher score in a particular 
latent feature. The intuition of MAX_SBE is that 
the high-score latent features are more important 
to describe the word semantics. It is more likely 
that the WSD performance can be improved by 
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keeping those high-score latent features over all 
the surrounding words. Equation 4 shows the 
calculation of MAX_SBE feature, where Embj 
denotes the jth dimension of the embedding ma-
trix. 
 

𝑀𝐴𝑋_𝑆𝐵𝐸 𝑤 ! = 𝑀𝐴𝑋 𝐸𝑚𝑏! 𝑆 𝑖  
𝑤. 𝑟. 𝑡.    𝑗 − 𝑘 ≤ 𝑖 ≤ 𝑗 + 𝑘, 𝑆(𝑖) ≠ 𝑤          (4) 

 

3 Experiments and evaluation 

We implemented the neural network based word 
embedding algorithm from Collobert et al. 
(Collobert et al., 2011) and trained the word em-
bedding matrix on the unlabeled MIMIC II cor-
pus. We used the suggested parameters to train 
the neural network with a hidden layer size of 
300, a fixed learning rate of 0.01, and an embed-
ding dimension of 50.  
    For each abbreviation in a dataset, we trained 
an SVMs model using the conventional features 
as the baseline, where the model parameters and 
the window size were optimized by 10-fold cross 
validation. To reduce the parameter tuning effort, 
we select a set of unified model parameters for 
all the abbreviations. To assess the effect of word 
embedding features, we added each type of word 
embedding features (SBE, LR_SBE, or 
MAX_SBE) to the conventional features and 
then re-trained the SVM classifier using the op-
timized parameters. We then reported the (Mac-
ro) average accuracy across all abbreviations in 
either the VUH dataset or the UMN dataset 
based on the results from 10-fold cross valida-
tion.  

4 Results 

Dataset Features Average 

Accuracy (%) 
 Baseline (SVMs) 92.19 
VUH  +SBE 92.70 
  +LR_SBE 92.86 
  +MAX_SBE 93.01 
 Baseline (SVM) 94.97 
UMN  +SBE 95.36 
  +LR_SBE 95.46 
  +MAX_SBE 95.79 
 
Table 2. Average accuracy of the WSD sys-

tems using different word embedding features on 
both VUH and UMN datasets 

 

According to 10-fold cross validation, we set the 
optimized window size of 3 for both datasets. 
Table 2 shows the macro average accuracy of 
using different embedding features on the VUH 
and the UMN abbreviation datasets. The baseline 
system (SVMs classifier using conventional fea-
tures) achieved an accuracy of 92.19% and an 
accuracy of 94.97% on the VUH and the UMN 
dataset, respectively. The baseline performance 
on the VUH dataset is lower than that in the 
UMN dataset. All three types of embedding fea-
tures (SBE, LR_SBE, and MAX_SBE) improved 
the average accuracy when compared with the 
baseline system, with improvements of 0.51%, 
0.67, 0.82% for the VUH dataset and 0.39%, 
0.49% and 0.82% for the UMN dataset, for SBE, 
LR_SBE, and MAX_SBE, respectively. We used 
Wilcoxon test to compare the embedding fea-
tures. The test results show that the best embed-
ding features in this study (MAX_SBE) outper-
formed the SBE feature with a significant p-
value of 0.004 on the VUH dataset and 7.05e-05 
on the UMN dataset. 

5 Discussion 

This study demonstrates that the word embed-
ding features derived from a large unlabeled cor-
pus could remarkably improve the performance 
of the SVM-based clinical abbreviation disam-
biguation system. To the best of our knowledge, 
this is the first study that investigates the use of 
neural word embeddings for WSD in clinical 
text. The most relevant work is a study by Li et 
al. (Li et al., 2014), where they utilized the algo-
rithm implemented in word2vec to derive  em-
bedding features for WSD on a biomedical litera-
ture dataset (MSH collection) and a general Eng-
lish dataset (Science WISE dataset). However, 
the unlabeled dataset used for training the word 
embedding was relatively small  (7,741 abstracts 
in the MSH dataset and 2,943 abstracts in the 
WISE dataset), and the proposed WSD method 
was to directly calculate the cosine similarity. In 
this study, we proposed two new embedding fea-
tures and explored a much larger unlabeled clini-
cal corpus (403,871 notes). Our evaluation 
showed that the proposed LR_SBE feature and 
the MAX_SBE feature outperformed the SBE 
feature by Li et al. Among them, the MAX_SBE 
embedding feature achieved the best average ac-
curacy on both the VUH and UMN datasets, in-
dicating the potential of this new embedding al-
gorithm in WSD tasks. 
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In fact, all word embedding features improved 
the performance of the baseline WSD system 
that uses conventional features only, indicating 
the usefulness of neural word embeddings in 
WSD tasks. The LR_SBE feature outperformed 
the SBE feature, denoting that it is helpful to 
consider the relative directions even for the real-
valued word embedding features. This is con-
sistent with the findings reported in the super-
vised machine learning based WSD methods us-
ing linguistic features. The MAX_SBE feature 
outperformed the other two types of embedding 
features, suggesting that the major dimension of 
the embedding matrix is more powerful for de-
scribing semantic meanings. The MAX_SBE 
word feature is related to the work from Col-
lobert et al., where they designed a MAX convo-
lutional layer in their deep neural network to 
weight and select the major dimensions among 
the context words. Our research shows that simp-
ly taking the major dimensions from the embed-
ding matrix of context words works well for clin-
ical abbreviation disambiguation. 

The neural word embeddings could represent 
abundant semantic meanings and capture multi-
aspect relations from unlabeled corpora, which 
may generate novel, useful features for various 
NLP tasks, as demonstrated in the open domain.  
(Collobert et al., 2011; Li et al., 2014) This study 
demonstrates its usefulness for clinical abbrevia-
tion disambiguation. In addition to WSD, we 
believe such word embedding features can bene-
fit other NLP tasks in the medical domain.  

This study has limitations. The evaluation da-
tasets are composed of the frequently used ab-
breviations that have enough training samples. 
For example, the UMN dataset is a balanced da-
taset that there are exactly 500 samples for each 
of the abbreviations.  We only used the embed-
ding features from the surrounding words, where 
some semantically important words out off the 
window were missed. Similar to the study of 
capturing long distance conventional features, 
e.g., the syntactic feature, there are possible ap-
proaches that can capture long distance features 
from embedding matrix. Le et al. (Le and 
Mikolov, 2014) proposed a distributed represen-
tation of sentence and documents, which could 
be a potential solution. In the future, we plan to 
investigate different approaches that can capture 
the sentence level distributed representation fea-
ture and paragraph level distributed representa-
tion feature. We will also examine the word em-
bedding features using deep neural network 
based classifiers.   

6 Conclusion 

This paper examined the neural word embedding 
features for the disambiguation of clinical abbre-
viations. We proposed two novel word embed-
ding features and compared them with an exist-
ing word embedding feature in an SVM-based 
WSD classifier. Evaluation using two clinical 
abbreviation datasets showed that all word em-
bedding features derived from a large unlabeled 
corpus could improve WSD performance, with 
MAX_SBE achieving the best performance. 
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Abstract 

Constructing standard and computable clini-
cal diagnostic criteria is an important and 

challenging research area in clinical informat-

ics community. In this study, we present our 

framework and methods for representing clin-

ical diagnostic criteria in Quality Data Model 

(QDM) using natural language processing 

(NLP) technologies. We used a clinical NLP 

tool known as cTAKES for preprocessing of 

textual diagnostic criteria. We created map-

pings between cTAKES type system and 

QDM elements in both datatype and data lev-
els. We evaluated the performance of our 

NLP-based approach by annotating 218 indi-

vidual diagnostic criteria in the categories of 

Symptom and Laboratory Test. In conclusion, 

our NLP-based approach is a feasible solu-

tion in developing diagnostic criteria repre-

sentation and computerization. 

1 Introduction 

The term diagnostic criteria designates the spe-
cific combination of signs, symptoms, and test 

results that the clinician uses to attempt to deter-

mine the correct diagnosis
1
. It is one kind of the 

most valuable sources of knowledge for support-
ing clinical decision-making and improving pa-

                                                
1 
https://en.wikipedia.org/wiki/Medical_diagnosis#Diagnostic
_criteria 

tient care (Yager and Mcintyre, 2014). Diagnos-

tic criteria are a critical evidence resource of 
clinical decision support system; however, diag-

nostic criteria are usually described without uni-

form standard, scattered over different media 

such as medical textbooks, literatures and clini-
cal practice guidelines, and mostly in free text 

formats. Several methods based on natural lan-

guage processing (NLP) technology have been 
reported and used in structuring free-text-based 

clinical guidelines, clinical notes and electronic 

health records (EHRs), as (Rea, etc., 2012) and 
(Ohno-Machado, etc., 2013). However, there are 

not sufficient researches on using NLP-based 

approaches to support the formalization of free-

text diagnostic criteria. To achieve computable 
diagnostic criteria, we consider that a computa-

ble model to represent diagnosis criteria and the 

use of clinical NLP applications to support the 
modeling are two essential research areas. 

Current efforts on development of international 

recommendation standard models in clinical do-

mains have laid the foundation for modeling and 
representing computable diagnostic criteria. Na-

tional Quality Forum (NQF) Quality Data Model 

(QDM) (Quality Data Model, 2015) as an infor-
mation model that describes clinical concepts in 

a standardized format. It allows quality measure 

developers and many clinical researchers or per-
formers to describe clearly and unambiguously 

the data required to calculate the performance 

measure. QDM is designed with the purpose to 
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allowing EHRs (Li,  etc., 2012) and other clinical 

electronic systems to share a common under-

standing and interpretation of the clinical data. In 

a previous study, researcher Jiang (2015) evalu-
ated the application feasibility of QDM through a 

data-driven approach and demonstrated that the 

use of QDM is feasible in building a standards-
based information model for representing com-

putable diagnostic criteria. 

On clinical NLP studies, many NLP tools cur-
rently are applied in the clinical unstructured free 

text processing and also support terminology 

annotation, such as Health Information Text Ex-

traction tool (HITex)
2
, MetaMap (Aronson and 

Lang, 2010), OpenNLP
3
 and Clinical Text Anal-

ysis and Knowledge Extraction System 

(cTAKES) (Savova, etc., 2010). Some studies 
compared the performance of the frequently used 

NLP tools, and the results showed that cTAKES 

scored best in both performance and usability. 
cTAKES is an open source Apache project and it 

is a NLP system for extraction of information 

from electronic medical record clinical free-text. 

cTAKES was built on the Unstructured Infor-
mation Management Architecture (UIMA) 

framework which is an open source framework 

designed by IBM and a series of comprehensive 
NLP methods (Bruce, 2012). In this study, we 

use cTAKES as a NLP tool to support the for-

malization of diagnostic criteria. 

The objective of our study is to describe our ef-
forts in developing a semi-automatic approach 

using NLP to facilitate the representation of clin-

ical diagnostic criteria in QDM. 

2 Materials & Methods 

2.1 Materials 

cTAKES: The components of cTAKES are 
specifically trained for the clinical domain, and 

create rich linguistic and semantic annotations 

that can be utilized by clinical decision support 
systems and clinical research

4
. cTAKES 

discovers clinical named entities and clinical 

events using a dictionary lookup algorithm and a 
subset of the Unified Medical Language System 

(UMLS)
5

, mainly including the following 

mentions: disease/disorders, sign/symptoms, 

medications, anatomical sites and procedures. 

                                                
2https://www.i2b2.org/software/projects/hitex/hitex_manual
.html. 
3 https://opennlp.apache.org/ 
4 http://en.wikipedia.org/wiki/CTAKES 
5 http://www.nlm.nih.gov/research/umls/ 

Besides, cTAKES extract named entity attributes 

and assigns values for the attributes such as 

UMLS concept unique identifiers (CUIs) and 

SNOMED CT codes, polarity, uncertainty, 
conditional, etc. In this study, we used the 

cTAKES version 3.2.1.  

NQF QDM: The QDM consists of criteria for 
data elements, relationships for relating data el-

ement criteria to each other, and functions for 

filtering criteria to the subset of data elements 
that are of interest

6
. The basic components of the 

QDM include: category (e.g., Symptom), 

datatype (e.g., Symptom, Active), attribute (e.g., 

information about severity, start Datetime, stop 
Datetime, and ordinality), and value set compris-

ing concept codes from one or more code sys-

tems. In this study, we used the QDM version 4.1 
(Quality Data Model, 2015). 

2.2 Methods 

Figure 1 shows a framework we designed for the 

NLP-supported QDM modeling of diagnostic 

criteria. The framework comprises three modules. 
The first module is an NLP annotation module. 

We use cTAKES as a NLP tool to support struc-

tured representation of diagnostic criteria. The 
second module is a data model transformation 

between cTAKES type system and QDM ele-

ments. The transformation is supported using 
both manual mapping strategies and machine 

learning algorithms. The third module is a uni-

fied web interface for human review. As the out-

put, all collected data elements, value sets and 
logic expressions of diagnostic criteria are for-

malized by using QDM-based standard represen-

tation. 
 

 
Figure 1. A framework for the NLP-supported 

QDM modeling of diagnostic criteria. 
 

                                                
6 http://www.healthit.gov/quality-data-model. 
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2.2.1 NLP annotation 

We first used the cTAKES to perform NLP 

annotation on textual diagnostic criteria. 

cTAKES is a modular system of pipelined 
components combining rule-based and machine 

learning techniques, introduced in  (Savova, 

Masanz, etc., 2010). As an operable interface, 
UIMA provides the tooling for selecting which 

descriptors are used together and determining the 

order of the descriptors, see detail in (cTAKES 
3.2 Component Use Guide, 2015). Dictionaries 

such as UMLS, SNOMED CT and RxNorm are 

integrated into cTAKES clinical pipeline. 

2.2.2 Data Model Transformation 
We implemented the model mapping and data 

transformation on two levels: the datatype-level 

mapping and the data-level mapping. 

(1) Datatype-level Mapping 

We created the datatype-level mappings between 

cTAKES UIMA Common Analysis System 
(CAS) type system and QDM datatypes, as well 

as corresponding attributes and features between 

these two heterogeneous schemas (Figure 2). We 

established the mapping relations through 
analyzing the textual definitions of datatypes in 

both models. Datatype-level mappings are 

mainly focused on 7 selected QDM datatypes 
and 8 cTAKES types that frequently appear in 

diagnostic criteria.  

 
Figure 2. Datatype-level Mapping between 

cTAKES type system and QDM elements 

(2) Data-level Mapping 
The second level of mapping analysis is the data-

level mappings which are created between the 

data structure of cTAKES CAS and QDM Health 

Quality Measure Format (HQMF) (HQMF 
Templates for QDM December 2013, 2015). The 

cTAKES processes text and stores the results in 

the UIMA-CAS structure, whereas the HQMF as 
a standard format is used to represent QDM-

based eMeasure data. All cTAKES instance data 

output as CAS XML data and are converted into 

HQMF XML data using the data-level mapping 

rules. 

Figure 3 illustrates the data-level mapping rules 

between CAS and HQMF elements we created 

for QDM datatype Laboratory Test, Performed.  

 
Figure 3. Data-level mappings between cTAKES 

CAS XML and QDM HQMF XML 

2.2.3 Evaluation 

For evaluation, we manually annotated a 

collection of individual criteria with QDM 
datatypes and attributes. We used the manual 

annotations as gold standard and evaluated the 

performance of NLP-based annotations. Two 

authors (HN, GJ) reviewed the annotations and 
the consensus was resolved through discussions. 

Three standard measures were used to describe 

the performance of the NLP module: precision, 
recall and F-measure. 

3 Results 

To implement experiment and evaluation, we 
first collected 218 individual criteria in the 

Symptom and Laboratory Test categories. The 

individual criteria were extracted manually from 
the text of 44 diagnostic criteria in 13 different 

clinical topics (an example of textual diagnostic 

criteria is shown in Appendix A). All the 

diagnostic criteria are collected from a number of 
sources including medical textbooks, journal 

papers, documents issued by professional 

organization (such as the World Health 
Organization - WHO) and Internet. Table 1 

shows the number of individual criteria of the 13 

clinical topics. We used a cTAKES (V.3.2.1) 
NLP analysis engine known as the 

AggregatePlaintxtUMLSProcessor and 

processed the test criteria. Using the datatype-
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level mapping rules we created and the cTAKES 

annotation results of two EventMentions 

(LabMention and SignSymptomMention), our 

algorithm automatically allocated a QDM 
datatype for each individual diagnostic criteria.  

Table 1 Clinical Topics Distribution of 218 indi-

vidual criteria. 

Clinical Topic Number 

of 

Symptom 

Criteria 

Number of 

laboratory 

test 

Criteria 

Allergy 6 0 

Cardiology 45 15 
Critical Care 37 26 
Dermatology 18 5 
Diabetes 2 9 

Endocrinology and 

Metabolism 
27 5 

Gastroenterology  1 2 

Hematology 0 4 

Immunology 2 3 

Infectious Disease 0 4 

Nephrology  0 4 

Neurology 1 1 

orthopedics 1 0 

Total 140 78 

 

The allocation results could reflect the automatic 

mapping classification performance for QDM 

datatypes (Laboratory Test, Performed and 
Symptom, Active). For example, Figure 4 and 

Figure 5 show the text of two individual 

diagnostic criteria with CTAKES annotations in 

LabMention and SignSymptomMention. 

Example1: Thrombocytopenia (platelets 

<100,000 cells/mm3) 

 

Figure 4. “platelets” is highlighted as an  

cTAKES annotation in LabMention 

Example2: Gastrointestinal-hepatic dysfunction: 
Moderate (diarrhea, nausea/vomiting, 

abdominal pain) 

 

Figure 5. “diarrhea, nausea, vomiting, abdominal 

pain” are highlighted as the cTAKES annotations 
in SignSymptomMention. 

After automatically mapping based on our 

mapping rules between two systems, diagnostic 

criteria in free-text are transformed into QDM 

based HQML XML structure. One of the QDM 
data examples attached in the Appendix B. Table 

2 shows the evaluation results in terms of 

whether mapping rules correctly allocate a QDM 
datatype for an individual criterion.  

To evaluate the performance of data-level 

mappings, we tested the mapping results of 78 
individual diagnostic criteria which were 

annotated manually using the QDM datatype 

Laboratory Test, Performed. The test was mainly 

focused on the mapping performance of four 
attribute elements, including code/code system, 

laboratory test value, measurement and unit, 

comparison operator. Table 3 shows the 
evaluation results of elements mapping in the 

QDM datatype Laboratory Test, Performed. 

Table 2. Performance of the Datatype-level 
Mapping Results 

QDM 

Datatype 

Laboratory 

Test, 

Performed 

Symptom, 

Active 

Precision 94.0% 69.2% 

Recall 80.8% 59.3% 

F-score 86.9% 63.9% 

Table 3. Performance of the Data-level Elements 

Mapping Results (QDM: Laboratory Test, 
Performed) 

QDM 

Element 

Code/

Code 

Syste

m 

Value Unit Operat

or 

Precision 94.0% 96.3% 100% 61.9% 

Recall 80.8% 98.2% 53% 26.5% 

F-score 86.9% 97.2% 69.3% 37.1% 

4 Discussion 

To bridge the semantic gap between cTAKES 
type system and QDM Model, we performed 

critical element analysis and created element 

mappings in both datatype and data levels. As 

cTAKES UIMA-CAS and QDM both are 
comprehensive models with independent 

structures, more semantic analysis need to be 

studied in order to extend our current mapping 
rules, e.g., the mapping analysis on QDM 

temporal representation and cTAKES temporal 

type. Furthermore, there exist elements that 

could not be directly mapped between two 
models under different contexts.  
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Previous studies investigated the eligibility 

criteria in clinical trial protocol and developed 

approaches (known as EliXR) for eligibility 

criteria extraction and semantic representation, 
and used hierarchical clustering for dynamic 

categorization of such criteria (Weng , etc., 2011) 

(Luo, etc.,2011). In future, we will develop 
machine learning-based methods leveraging the 

EliXR approach to enable the analysis for a large 

amount of clinical diagnostic criteria data.  

The study demonstrated overall performance of 

cTAKES used for generating the QDM-based 

representation of diagnostic criteria. The 

evaluation results in Table 2 indicated that 
criteria in the Laboratory Test category could be 

automatically classified into the QDM datatype 

effectively; whereas the performance for 
classifying criteria in the Symptom category was 

sub-optimal.  The reason is mainly because that 

cTAKES uses the SignSymptomMention that 
doesn’t distinguish between a sign and a 

symptom. The evaluation results in Table 3 

indicated that the code/code system and value 

mappings could acquire satisfactory performance 
whereas the performance for the unit annotation 

is good in precision but sub-optimal in recall. In 

addition, the operator recognition was 
insufficient, for examples, in criteria 'Sézary cells 

with a diameter > 14 um representing > 20% of the 

circulating lymphocytes' ， ‘%’ is annotated as 

Symbol but ‘>’ is not recognized in cTAKES 

that cause low precision. Above all, the mapping 

rules were able to generate validated QDM 

datatypes and related elements, covering most 
typical model elements used in diagnostic criteria. 

NLP-based technologies could provide a semi-

automatic way to support the preliminary 
classification and enable a pattern-based QDM 

representation. 

5 Conclusion 

In this study, we demonstrated that clinical NLP 

tool (e.g., cTAKES) could support the QDM 

modeling of free-text diagnostic criteria in a 
semi-automatic way. We are actively working on 

developing machine learning algorithms to im-

prove the performance of our NLP-based ap-

proaches for representing clinical diagnostic cri-
teria in QDM. 
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Appendix 

(A) An example of textual diagnostic criteria for diabetes mellitus  

 

1) A1C ≥ 6.5%. The test should be performed in a laboratory using a method that is NGSP certified 
and standardized to the DCCT assay. 

OR 

2) FPG ≥ 126 mg/dl (7.0 mmol/l). Fasting is defined as no caloric intake for at least 8 h.  
OR 

3) 2-h plasma glucose ≥ 200 mg/dl (11.1mmol/l) during an OGTT. The test should be performed as 
described by the World Health Organization, using a glucose load containing the equivalent of 
75 g anhydrous glucose dissolved in water. 

OR 

4) In a patient with classic symptoms of hyperglycemia or hyperglycemic crisis, a random plasma 
glucose ≥ 200 mg/dl (11.1 mmol/l).  

In the absence of unequivocal hyperglycemia, criteria 1–3 should be confirmed by repeat testing. 

 

Reference: American Diabetes Association.2012. Diagnosis and Classification of Diabetes Mellitus, Diabetes Care. 
35(suppl_1):S64-S71. 

 

 (B) An QDM representation of diagnostic criterion based on cTAKES annotation  

Example text: Thrombocytopenia (platelets <100,000 cells/mm3) 

<sourceOf typeCode="PRCN"> 

           <conjunctionCode code="AND"/> 

                  <act classCode="ACT" moodCode="EVN" isCriterionInd="true"><!-- Laboratory Test, Result pattern --> 

                               <templateId root="2.16.840.1.113883.3.560.1.12"/> 

                                       <id root="c5244e91-3c2e-4863-ae87-a48556b9e3ae"/> 

                                       <code code="30954-2" displayName="Results" codeSystem="2.16.840.1.113883.6.1"/> 

                                       <sourceOf typeCode="COMP"> 

                                          <observation classCode="OBS" moodCode="EVN" isCriterionInd="true"> 

                                               <code code=" 2.16.840.1.113883.3.117.1.7.1.267 "  displayName=" Platelets Count LOINC Value Set" 

codeSystem="2.16.840.1.113883.3.560.101.1"/> 

                                             <title>Laboratory Test, Result: platelets (result < 100,000  cells/mm3)</title> 

                                             <statusCode code="completed"/> 

                                             <sourceOf typeCode="REFR"> 

                                                <observation classCode="OBS" moodCode="EVN" isCriterionInd="true"> 

                                                   <templateId root="2.16.840.1.113883.3.560.1.1019.3"/> 

                                                   <code code="385676005" codeSystem="2.16.840.1.113883.6.96" displayName="result" 

codeSystemName="SNOMED-CT"/> 

                                                   <value xsi:type="IVL_PQ"> 

                                                      <high value="100,000" unit="cells/mm3" inclusive="false"/> 

                                                   </value> 

          </observation>           

                            </sourceOf>                                         

                                          </observation>                      

 </sourceOf>                                   

                                 </act> 

</sourceOf> 
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