
Proceedings of the ACL 2015 Workshop on Novel Computational Approaches to Keyphrase Extraction, pages 2–9,
Beijing, China, July 30, 2015. c©2015 Association for Computational Linguistics

Technical Term Extraction Using Measures of Neology

Christopher Norman
Royal Institute of Technology

The University of Tokyo
chnor@kth.se

Akiko Aizawa
National Institute of Informatics

The University of Tokyo
aizawa@nii.ac.jp

Abstract

This study aims to show that frequency of
occurrence over time for technical terms
and keyphrases differs from general lan-
guage terms in the sense that technical
terms and keyphrases show a strong ten-
dency to be recent coinage, and that this
difference can be exploited for the auto-
matic identification and extraction of tech-
nical terms and keyphrases. To this end,
we propose two features extracted from
temporally labelled datasets designed to
capture surface level n-gram neology. Our
analysis shows that these features, cal-
culated over consecutive bigrams, are
highly indicative of technical terms and
keyphrases, which suggests that both tech-
nical terms and keyphrases are strongly bi-
ased to be surface level neologisms. Fi-
nally, we evaluate the proposed features on
a gold-standard dataset for technical term
extraction and show that the proposed fea-
tures are comparable or superior to a num-
ber of features commonly used for techni-
cal term extraction.

1 Introduction

Keyphrases are terms assigned to documents, con-
ventionally by its authors, that are intended chiefly
as an aid in searching large collections of docu-
ments, as well as to give a brief overview of the
document’s contents. Technical terms are words
or phrases that hold a specific meaning in spe-
cific domains or communities. Keyphrases are
closely related to technical terms in the sense that
the keyphrases assigned to a document are gen-
erally selected from the terminology of the doc-
ument’s domain. Keyphrases and technical terms
show considerable conceptual overlap, and by ex-
tension, so do keyphrase and technical term ex-
traction. As a consequence, these two are closely

related research topics. In this study we will see
technical term extraction and keyphrase extraction
as distinct but related. We will take the view that
the technical terms in a scientific article are likely
candidates to be keyphrases for the document and
consequently that technical term extraction meth-
ods might also be useful in keyphrase extraction.

We will show that features that capture the neol-
ogy of term candidates can be used to extract tech-
nical terms, and that the basic assumptions that en-
able this extraction also hold true for keyphrases.

This paper is organized as follows: We first dis-
cuss how technical terms and keyphrases differ
from general language terms in terms of neology.
We then define features that capture this differ-
ence and analyze these features statistically using
the SemEval-2010 dataset (Kim et al., 2010) and a
gold-standard for technical term extraction derived
from the same dataset (Chaimongkol and Aizawa,
2013). Our analysis shows that the proposed fea-
tures reliably separate positive from negative ex-
amples, both of technical terms and of keyphrases.
Furthermore, the histograms for the proposed fea-
tures are very similar when calculated for techni-
cal terms and keyphrases, suggesting that techni-
cal terms and keyphrases have very similar neo-
logical properties. Finally, we demonstrate that
this statistical bias can be used to reliably extract
technical terms in a gold-standard dataset, and that
the proposed features are comparable or superior
to other features used in technical term extraction,
with an F-score of 0.509 as compared to 0.593,
0.367, 0.361, and 0.204 for affix patterns, tf-idf,
word shape, and POS tags respectively.

We argue that, given the high performance of
the proposed features on technical term extrac-
tion, and given that we can show that the statisti-
cal properties that enable us to use them to extract
technical terms also extend to keyphrases, the pro-
posed features should also be useful in keyphrase
extraction.

2



2 Related works

Most technical term extraction systems work fairly
similarly to keyphrase extraction systems, using
an initial n-gram or POS tag-based filtering to
identify term candidates, then proceeding to nar-
row this list down using machine learning algo-
rithms on various kinds of document statistics
such as term frequency or the DICE coefficient
(Justeson and Katz, 1995; Frantzi et al., 2000; Pin-
nis et al., 2012). For an in-depth summary of the
state-of-the-art in technical term extraction, we re-
fer to Vivaldi and Rodrı́guez (2007). For a sum-
mary of the state-of-the-art in keyphrase extrac-
tion, which largely follow the same pattern, we re-
fer to Hasan and Ng (2014). The main difference
in implementation might simply come down to a
choice in top-level machine learning approach: in
technical term extraction it makes sense to view
the problem as a binary classification problem,
whereas in keyphrase extraction it makes more
sense to see the problem as a ranking problem.

Approaches based on frequency statistics ex-
tracted from the documents themselves are, how-
ever, not without their drawbacks. To begin with,
for document statistics to be meaningful we will
need a dataset that is large enough, consisting of
documents that are large enough individually. We
might also encounter problems if the documents
are too large, because then the statistics might be
drowned out by noise in the data (Hasan and Ng,
2014). We should also be careful about the topi-
cal composition of the data set – if the dataset only
contains documents from a single domain, then we
will have to approach the problem very differently
than if the dataset contains documents from mul-
tiple domains. Preferably, we want methods that
do not make these kinds of assumptions about the
data set, methods that can be applied to documents
of any size, and to document collections of any
size or of any topical composition. In the best of
worlds, we want methods that can be applied to
document collections consisting of a single docu-
ment, or even a single sentence.

One way to go beyond simple document statis-
tics is to use external, pregenerated resources. To
give some examples of this, Medelyan and Wit-
ten (2006) use a pregenerated domain thesaurus to
conflate equivalent terms and to select candidates
that are thematically related to each other, Hulth
et al. (2006) use a pregenerated domain ontology
to select candidates whose synonyms, hypernyms,

and hyponyms also appear in the text, and Lopez
and Romary (2010) use a terminology database as
one way to measure the salience of term candi-
dates for keyphrase extraction in scientific articles.
Medelyan et al. (2009) use a somewhat more in-
direct external resource by taking the frequency
by which a term candidate appears in Wikipedia
links, divided by the frequency by which it ap-
pears in Wikipedia documents. The idea behind
using external resources is that human annotators
generally perform better than automatic systems,
and resources produced by human beings are thus
much more reliable than automatic methods, even
if the resources themselves are only obliquely re-
lated to keyphrases.

However, depending on the speed by which
the terminology of the subject field changes, any
previously generated resource might become out-
dated very quickly. In a subject field such as law,
where the terminology only changes impercepti-
bly over time (Lemmens, 2011), this is unlikely to
be an issue, but in a quickly changing subject field
such as information science, where the terminol-
ogy has been reported to change by as much as 4%
per year (Harris, 1979), it is likely that pregener-
ated resources will lag behind recent terminolog-
ical developments. One selling point of the auto-
matic extraction of keyphrases or technical terms
is that automatic methods are able to respond to
changes in the terminology of a subject field with
the same speed that the terminology changes, but
if we rely on pregenerated resources then we for-
sake this advantage, since these are unlikely to in-
clude terminology that only recently appeared in
the subject field.

3 Theoretical basis

In this paper we will examine the use of external
corpora in order to track the frequency of occur-
rence of n-grams over time, and use measures of
neology as a way to extract technical terms. We
are not aware of any previous attempts to use ne-
ology as a feature for technical term extraction,
keyphrase extraction, or other kinds of natural lan-
guage processing tasks. We will use the Google
Ngrams dataset (Lin et al., 2012), where this in-
formation is already extracted. Although we use
this dataset, mainly because of its convenience
in our initial investigation, there is nothing keep-
ing us from using other corpora consisting of raw
documents, such as Pubmed. In particular, this

3



would allow us to obtain more recent data than
the Google Ngrams dataset, which only contains
frequencies of occurrence from before 2008.

Figure 1: Example timelines (frequency of oc-
currence) for three technical terms and one non-
technical term. The frequencies of occurrence for
each timeline has been normalized to sum to one
to fit all graphs in the same diagram.

In order to develop some intuition about how
technical terms are adopted, let us look at the
timelines for some technical terms in the Google
Ngrams dataset (Figure 1). To begin with, all
the technical terms (graph problem, motor control,
and jet engine) are relatively recent coinage, and
none of them were in use in the 19th century. In
all three cases, there is some point in time at which
the term gained momentum and began to surge in
frequency. This characteristic is fairly typical of
technical terms, although we can of course find
general language terms that exhibit the same pat-
tern of adoption. By contrast, the non-technical
term (clear water) has been in use throughout the
19th and 20th century. Unlike technical terms,
general language do not have generally observable
characteristics, and the shape of the timelines vary
greatly from case to case. The defining character-
istic instead seems to be one of contrast: general
language terms seldom have the steep curves that
we can observe of the technical terms here.

We will formalize this difference and examine
it statistically in the later parts of this study.

Of course, our ability to find neologisms by ex-
amining the frequency of occurrence of their sur-
face forms necessitates that technical terms gener-
ally do not share surface forms with general lan-
guage terms. If such is the case, then the general
language senses of the terms are likely to drown
out the technical term senses. For instance, con-
sider a term like worm in computer security. The
vast majority of the occurrences of the unigram

worm in the Google Ngrams dataset are likely to
be of the biological variety, and it is consequently
impossible to tell from the Google Ngrams dataset
alone that the computer security term only ap-
peared in the later half of the 20th century1. For-
tunately, the case where technical terms coincide
with general language terms is rare, at least when
considering terms composed of multiple words.

The overall recency of coinage of technical
terms depends on the subject field – the major-
ity of the terminology in e.g. computer science
consists of terms whose surface forms were in-
troduced no earlier than the middle of the 20th
century, whereas subject fields such as mathemat-
ics and physics include terminology coined in the
19th century or earlier. Consequently, if we plot
the frequency of usage of a neologism over time
we would expect to see a curve similar to those
in Figure 1, but we should expect that the curves
may be shifted to the left or to the right, largely
depending on the subject field.

Why are technical terms so often neologisms?
It turns out that general language, which is what
is ordinarily studied in linguistics, and special lan-
guage, which is what we actually encounter in the
documents commonly used for keyphrase extrac-
tion, differ quite substantially in linguistic aspects
(Sager et al., 1980). One difference is that sur-
face level neologisms are seldom created in gen-
eral language. Rather, the creation of new sur-
face forms generally occur in special language,
from which the term might later be transferred
to general language (Sager et al., 1980, p. 287).
Consequently, terms that have appeared recently,
given some specific point in time, are likely to be
domain-specific at that point. The longer that has
passed since the adoption of the term, the more
likely it is that the term has been adopted into gen-
eral language.

4 Measures of neology

We have noted that the shape of the timelines seem
to indicate whether a given term is recent coinage,
but in order to use these as input to machine learn-
ing algorithms, we need to distill the high dimen-
sional data into low-dimensional features that re-
tain the neological information.

1However, the term computer worm is a surface level ne-
ology. We might thus observe that new senses of the unigram
worm appeared in the later half of the 19th century by exam-
ining bigrams.

4



What we want to extract is of course not neces-
sarily the shape of the timelines, but whether the
occurrences of the n-grams predominantly occur
in the far right side on the time axis. In other
words, we want to determine if the timeline is
mainly concentrated on the right side. This is sim-
ple to do using statistical measures such as the
mean and the standard deviation of the curves.

Let f i
y denote the frequency of an n-gram i in

year y. Then pi(y) = f i
y

Σyf i
y

constitutes a probabil-
ity density function, with the expected value:

µi =
∑
y

pi(y) · y =
∑

y f
i
y · y∑

y f
i
y

How this ”mean” should be interpreted might
not be completely intuitively obvious, but for our
purposes here it is enough to note that µi indi-
cates where the curve is mainly concentrated. If
the curve is concentrated around higher values of
y then we have, by definition, a surface level neol-
ogism.

We can take the standard deviation of pi in the
same way:

σ2
i =

∑
y

pi(y) · (y − µi)2 =
∑

y f
i
y · (y − µi)2∑

y f
i
y

The standard deviation σi then yields a mea-
sure of how much the probability density is con-
centrated around µi, in other words, how ”steep”
the probability density is. A low standard devia-
tion consequently indicates that the term has been
adopted or abandoned rapidly. Low standard de-
viation should thus in general imply either surface
level neologisms or fads. If we are only interested
in how quickly a term has been adopted and not
how quickly it might have been abandoned, then
we can take a one-sided ”standard deviation”, by
separating out the y for which y < µi, but this
does not seem to make much difference for the
sake of the separability of technical terms. Those
terms that have been adopted quickly also appear
to be likely to quickly fall into relative disuse.

We should hasten to point out that there does
not seem to exist any theoretical reasons to use the
mean and standard deviation in this way. For in-
stance, using the peak of the curve (i.e. the mode
of the distribution) might have more intuitive ap-
peal, since this should correspond to the point in
time at which the term was in its most widespread
use. However, the Google Ngrams dataset is of-

ten plagued by severe noise, in particular for less
commonly used n-grams such as technical terms,
and the peaks of the timelines are thus likely to
be spurious. The mean and the standard deviation
may be crude measures of shape, but they have the
advantage of being robust against noise, and can
generally be used with good results even for very
noisy timelines.

Other intuitively appealing features, such as the
first order derivatives of the timelines or the skew-
ness of pi have turned out not to be very useful,
presumably because of the noise.

5 Statistical properties of technical terms
and keyphrases

In this section, we examine statistically the fea-
tures we propose, and show that both technical
terms and keyphrases are strongly biased towards
certain values for our features. We also under-
line the relationship between technical terms and
keyphrases by showing that these are very similar
in terms of neology.

To analyze keyphrases we will use the
SemEval-2010 dataset (Kim et al., 2010), one
of the most commonly used gold standards for
keyphrase extraction. To analyze technical terms
we will use a dataset consisting of the abstracts
from the SemEval-2010 dataset manually anno-
tated by two annotators such that all the technical
term spans have been labeled (Chaimongkol and
Aizawa, 2013). Since this dataset was constructed
from the abstracts of the SemEval-2010 dataset we
assume that these datasets are similar enough that
analyzing and comparing the statistical properties
of these two datasets is meaningful.

For the analysis in the following section, we
construct three classes of data:

• We extract the n-grams that are part of
the spans labeled as technical terms in the
Chaimongkol-Aizawa dataset to obtain one
set of positive examples of technical terms.

• We extract the constituent n-grams from the
gold-standard keyphrases from the SemEval-
2010 training dataset (using the combined
set) to obtain one set of positive examples of
keyphrases

• We extract the n-grams that are not part of
the spans labeled as technical terms in the
Chaimongkol-Aizawa dataset to obtain one

5



Figure 2: Class separation between technical terms, keyphrases, and background terms over µi (left) and
σi (right), when considering unigrams (top), and bigrams (bottom). Histogram bin size was set to 2 in
all cases. The resulting histograms have been smoothed using Matlab’s default settings (moving average
with span 5) and normalized to sum to one.

set of negative examples of both technical
terms and keyphrases.

We could of course extract negative examples of
keyphrases from the SemEval-2010 dataset, but it
is not so clear that these would all unquestionably
be negative examples of keyphrases. Given that
inter-annotator agreement is generally very low
for keyphrases, this set might well contain terms
that could reasonably be considered keyphrases
by other annotators. We here assume that the
negative examples of technical terms also consti-
tute negative examples of keyphrases, and that this
set is less likely to contain borderline cases of
keyphrases. Only using three classes of data also
simplifies both the exposition and the processing.

For these three classes of n-grams, we ex-
tract the corresponding timelines from the Google
Ngrams dataset over the period 1800–2008, and
we calculate the means µ and standard deviations
σ from these as defined in the preceding section.
To analyze the features µ and σ we plot the his-
tograms of the values for the technical term n-
grams and the keyphrase n-grams versus the back-
ground n-grams (Figure 2).

In order for the features to be useful for either
technical term extraction or keyphrase extraction

we would like to see as little overlap as possi-
ble between the histograms of the positive and the
negative examples. This seems to hold true for the
bigrams, but not for the unigrams. In the unigram
case we can see only a weak tendential difference
in the histogram densities of the positive and neg-
ative examples.

We should point out that the mode of the his-
togram densities for the negative examples fall
very close to the mean and standard deviation of
a uniform distribution over the period 1800–2008.
These would occur around 1904 and 60.48 respec-
tively.

In all cases, the histograms for the technical
terms and the keyphrases are very similar. This
might not seem very surprising given that all the
data is derived from the SemEval-2010 dataset, but
it bears mentioning that these were annotated by
different people, and more importantly, using very
different annotation criteria.

We omit trigrams and higher order n-grams
from consideration.

It is unlikely that higher order n-grams would
help in keyphrase and technical term extraction,
because the Google Ngrams dataset excludes any
n-gram that has a total frequency of occurrence
less than 50. This means that less frequently used

6



n-grams, such as technical terms, as well as higher
order n-grams are likely to be missing (see Table
1). This problem is not very severe for unigrams
and bigrams, but technical term trigrams suffer
from data sparsity problem severe enough to es-
sentially render them useless. Part of this problem
might be due to the large mismatch between the
dataset used for evaluation, and the Google Ngram
dataset used to identify neology. If we were to use
an external dataset from a more similar domain to
the evaluation set, then we would expect to find
a greater portion of the n-grams in the external
dataset.

Technical terms Background
Unigram 97.5 % 100 %

Bigram 85.0 % 97.0 %
Trigram 25.5 % 71.0 %

Table 1: The ratio of n-gram in each class in
the Chaimongkol-Aizawa dataset that occur in the
Google Ngrams dataset. The percentages have
been generated by chosing a random sample of
200 unigrams of each class, 200 bigrams of each
et c., and checking if the n-gram occur in the
Google Ngrams dataset using the web interface.

6 Evaluation on technical term
extraction

In order to demonstrate that neology, as character-
ized by the features µ and σ, can be used to auto-
matically extract technical terms, we implement a
simple technical term extractor using these as fea-
tures. We generally follow the approach taken by
Chaimongkol and Aizawa (2013) and implement
a conditional random field model to BIO-tag the
dataset. The major difference in implementation
is that we use the neology features extracted from
Google Ngrams in the term extractor, and that we
do not use features based on clustering.

For the sake of our CRF model, bigrams and
unigrams are sufficient, since what we want to do
is to obtain features corresponding to each node
(i.e. to each unigram) and features correspond-
ing to the links between the nodes (i.e. to each
bigram). We might in theory achieve better per-
formance with higher order n-grams, but in real-
ity the results would be severely hampered by the
sparsity problems for higher order n-grams.

Similarly to Chaimongkol and Aizawa, we im-
plement a CRF model using the freely available

state-of-the-art CRF framework CRFSuite2, using
five different feature sets:

1. POS TAGS using the Stanford POS tagger3.

2. WORD SHAPE features extracted similarly to
Chaimongkol and Aizawa. These include bi-
nary features such as whether the current to-
ken is capitalized, uppercased, or alphanu-
meric.

3. AFFIXES of length up to 4 characters ex-
tracted for all tokens. In other words, for the
token carbonization we would extract carb-,
car-, ca-, c-, -tion, -ion, -on, and -n.

4. TF-IDF for each unigram and bigram in the
dataset.

5. NEOLOGY based features, in other words the
mean and standard deviation of the Google
Ngrams timeline as described in section 4.

The mutual information between each neigh-
boring token in the dataset has also been tried, but
this turned out to not have any perceptible effect
on the results.

Because CRFSuite cannot handle continuous
features, such as tf-idf, µ, or σ, we had to resort
to discretizing these by binning. Appropriate bin
sizes were established experimentally.

We apply the system on the labeled dataset
where we attempt to binary classify each token
into positive and negative examples, where posi-
tive examples are those that are part of a technical
term compound, and negative those that are part
of the background. We use the full dataset, and
evaluate using 10-fold cross-validation.

Using all features, the system achieves an F-
score around 0.7 for the technical term tokens, and
an F-score around 0.9 for the non-technical term
tokens.

To compare the different features with each
other, we evaluate their performance individually
(Table 2). The best performing feature turns out to
be the affixes, although our neology features are
quite comparable in performance. Neology per-
forms better than all other features except affixes.

2http://www.chokkan.org/software/
crfsuite/

3http://nlp.stanford.edu/software/
tagger.shtml

7



Technical terms Non-technical terms
P R F1 P R F1

POS tags 0.734 0.118 0.204 0.835 0.991 0.906
Word shape 0.659 0.248 0.361 0.853 0.971 0.909

Affixes 0.673 0.530 0.593 0.900 0.943 0.921
tf-idf 0.600 0.244 0.367 0.852 0.964 0.904

Neology 0.637 0.423 0.509 0.881 0.947 0.913

Table 2: Term extractor performance in terms of correctly labeled tokens. Here, the system is only using
a single feature class in each trial in order to compare the relative performance of each feature class.

Technical terms Non-technical terms
P R F1 P R F1

All features 0.728 0.673 0.700 0.929 0.944 0.936
− POS tags 0.728 0.656 0.690 0.925 0.946 0.935

− Word shape 0.719 0.671 0.694 0.928 0.942 0.935
− Affixes 0.691 0.634 0.661 0.920 0.937 0.929
− tf-idf 0.717 0.643 0.678 0.923 0.944 0.933

− Neology 0.715 0.647 0.679 0.923 0.943 0.933

Table 3: Term extractor performance in terms of correctly labeled tokens. Here, the system is using all
but one feature class in each trial in order to compare the relative performance drop when each feature
class is removed from the classifier.

It might be mentioned that these results are calcu-
lated over all tokens, even those where the neol-
ogy features are missing because the correspond-
ing n-grams do not occur in the Google Ngrams
dataset. It is likely that the performance of the ne-
ology features would be higher if these were ex-
cluded from consideration. This might seem like
cheating, but we should consider what would hap-
pen if we were to use another dataset with greater
coverage, or some future improved version of the
Google Ngrams dataset with greater coverage.

We also perform an ablation experiment to see
how much the performance drops when exclud-
ing individual feature classes (Table 3). Similarly,
the biggest drop occurs when excluding affixes.
In this case, however, the differences between the
different features are quite modest, which seems
to imply that each single feature does not contain
much information that is not also contained in the
other features.

Compared to tf-idf, the neology feature is of-
ten able to correctly identify technical term spans
containing terms which are also frequent in the
remainder of the document collection, such as
technical terms containing words like: network,
computer, function, algorithm, complexity, data,
server, model, or vector. It is much less easy to
summarize where neology works well compared

to the other features besides tf-idf.
Neology features are much less effective when

the technical terms coincide with general language
terms, for instance worm, precision, or MAP. This
is generally only a problem in the unigram case,
and bigrams such as computer worm or average
precision generally do not have this problem.

7 Discussion

In this paper we have shown that technical terms
tend to be recently coined, and that this statistical
tendency is strong enough that it allows us to ex-
tract technical terms with reasonable accuracy. We
have also shown that this statistical feature of tech-
nical terms also seem to hold true for keyphrases,
and we therefore maintain that it is reasonable that
similar features might also be useful in keyphrase
extraction. We should not expect equally high per-
formance in keyphrase extraction, however, since
in keyphrase extraction we are not only interested
in whether the output keyphrases are terms in the
relevant domain, but also that they are significant
in the document under consideration. What we do
suggest is that neology can be useful for keyphrase
extraction when used in concert with other fea-
tures such as tf-idf that indicate significance or
topicality.

The extraction of either technical terms or

8



keyphrases fundamentally depends upon the as-
sumption that these are biased in certain ways.
For instance, a common assumption taken in
keyphrase extraction is that keyphrases are biased
to occur more frequently at certain positions in the
document. Another common assumption is that
technical terms and keyphrases are biased to occur
with different frequencies in certain communities,
or that the contexts in which keyphrases and tech-
nical terms appear differ between different com-
munities. Similarly to the position and community
bias of keyphrases, we suggest that keyphrases
also have a time bias, that the keyphrases of a
document are skewed to be overrepresented in the
contemporary and subsequent literature, but likely
to be absent or severely underrepresented in the
precedent literature.

The very high values of the means, and the
very low values of the standard deviations ob-
served for the technical terms in section 5 sug-
gests that the majority of the technical term bi-
grams studied in this paper come from terms that
only appeared after 1950. This might be explained
by the fact that the datasets we use here are de-
rived from the SemEval-2010 dataset, which is
strongly biased towards computer science litera-
ture. It seems reasonable that the separation be-
tween the classes should generally be stronger in
subject fields where the terminology tends to be
very recent coinage than in fields with more ma-
ture terminology. If this is true, then the ap-
proach we propose here should work well for sub-
ject fields where the terminology is rapidly chang-
ing, and where the need for automatic extraction
methods is arguably the greatest.

Acknowledgements

This work was supported by the Grant-in-Aid for
Scientific Research (B) (15H02754) of the Japan
Society for the Promotion of Science (JSPS).

References
Panot Chaimongkol and Akiko Aizawa. 2013. Uti-

lizing LDA Clustering for Technical Term Extrac-
tion. Proceedings of the Nineteenth Annual Meeting
of the Association for Natural Language Processing,
Nagoya, pages 686–689.

Katerina Frantzi, Sophia Ananiadou, and Hideki
Mima. 2000. Automatic recognition of multi-word
terms: The C-value/NC-value method. Interna-
tional Journal on Digital Libraries, 3:115–130.

Jessica Harris. 1979. Terminology change: Effect on
index vocabularies. Information Processing & Man-
agement, 15(2):77–88.

Kazi S. Hasan and Vincent Ng. 2014. Automatic
Keyphrase Extraction : A Survey of the State of the
Art. Acl, pages 1262–1273.

Anette Hulth, Jussi Karlgren, and Anna Jonsson. 2006.
Automatic keyword extraction using domain knowl-
edge. Computational Linguistics and Intelligent
Text Processing, pages 472–482.

John S. Justeson and Slava M. Katz. 1995. Technical
terminology: some linguistic properties and an al-
gorithm for identification in text. Natural Language
Engineering, 1:9–27.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2010. Semeval-2010 task 5: Au-
tomatic keyphrase extraction from scientific articles.
Proceedings of the 5th International Workshop on
Semantic Evaluation, pages 21–26.

Koen Lemmens. 2011. The slow dynamics of legal
language: Festina lente? Terminology, 17:74–93.

Yuri Lin, Jean-baptiste Michel, Erez L. Aiden, Jon
Orwant, Will Brockman, and Slav Petrov. 2012.
Syntactic Annotations for the Google Books Ngram
Corpus. Proc. of the Annual Meeting of the Associa-
tion for Computational Linguistics, pages 169–174.

Patrice Lopez and Laurent Romary. 2010. HUMB :
Automatic Key Term Extraction from Scientific Ar-
ticles in GROBID. Proceedings of the 5th Inter-
national Workshop on Semantic Evaluation, pages
248–251.

Olena. Medelyan and Ian H. Witten. 2006. Thesaurus
based automatic keyphrase indexing. Proceedings
of the 6th ACM/IEEE-CS joint conference on Digital
libraries, pages 6–7.

Olena Medelyan, Eibe Frank, and Ian H. Witten.
2009. Human-competitive tagging using automatic
keyphrase extraction. Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing, 3:1318–1327.

Mārcis Pinnis, Nikola Ljubešić, Dan Ştefănescu, In-
guna Skadiņa, Marko Tadić, and Tatiana Gornos-
tay. 2012. Term Extraction, Tagging, and Map-
ping Tools for Under-Resourced Languages. Pro-
ceedings of the 10th Conference on Terminology and
Knowledge Engineering, pages 193–208.

Juan C. Sager, David Dungworth, and Peter F. McDon-
ald. 1980. English special languages: principles
and practice in science and technology. John Ben-
jamins Publishing Company.

Jorge Vivaldi and Horacio Rodrı́guez. 2007. Evalua-
tion of terms and term extraction systems: a practi-
cal approach. Terminology, 13:225–248.

9


