
Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 467–476,
Lisboa, Portugal, 17-18 September 2015. c©2015 Association for Computational Linguistics.

Local System Voting Feature for Machine Translation System
Combination

Markus Freitag, Jan-Thorsten Peter, Stephan Peitz, Minwei Feng and Hermann Ney
Human Language Technology and Pattern Recognition Group

Computer Science Department
RWTH Aachen University
D-52056 Aachen, Germany

<surname>@cs.rwth-aachen.de

Abstract

In this paper, we enhance the traditional
confusion network system combination
approach with an additional model trained
by a neural network. This work is moti-
vated by the fact that the commonly used
binary system voting models only assign
each input system a global weight which
is responsible for the global impact of
each input system on all translations. This
prevents individual systems with low sys-
tem weights from having influence on the
system combination output, although in
some situations this could be helpful. Fur-
ther, words which have only been seen by
one or few systems rarely have a chance
of being present in the combined output.
We train a local system voting model by
a neural network which is based on the
words themselves and the combinatorial
occurrences of the different system out-
puts. This gives system combination the
option to prefer other systems at different
word positions even for the same sentence.

1 Introduction

Adding more linguistic informed models (e.g.
language model or translation model) additionally
to the standard models into system combination
seems to yield no or only small improvements.
The reason is that all these models should have al-
ready been applied during the decoding process of
the individual systems (which serve as input hy-
potheses for system combination) and hence al-
ready fired before system combination. To im-
prove system combination with additional models,
we need to define a model which can not be ap-
plied by an individual system.

In state-of-the-art confusion network system
combination the following models are usually ap-
plied:

System voting (globalVote) models For each
word the voting model for system i (1≤ i≤ I)
is 1 iff the word is from system i, otherwise 0.

Binary primary system model (primary)
A model that marks the primary hypothesis.

Language model 3-gram language model (LM)
trained on the input hypotheses.

Word penalty Counts the number of words.

To gain improvements with additional models,
it is better to define models which are not used
by an individual system. A simple model which
can not be applied by any individual system is the
binary system voting model (globalVote). This
model is the most important one during system
combination decoding as it determines the impact
of each individual system. Each system i is as-
signed one globalVote model which fires if the
word is generated by system i. Nevertheless, this
simple model is independent of the actual words
and the score is only based on the global prefer-
ences of the individual systems. This disadvan-
tage prevents system combination from produc-
ing words which have only been seen by systems
with low system weights (low globalVote model
weights). To give systems and words with low
weights a chance to affect the final output, we de-
fine a new local system voting model (localVote)
which makes decisions based on the current word
options and not only on a general weight. The lo-
cal system voting model allows system combina-
tion to prefer different system outputs at different
word positions even for the same sentence.

Motivated by the success of neural networks in
language modelling (Bengio et al., 2006, Schwenk
and Gauvain, 2002) and translation modelling
(Son et al., 2012), we choose feedforward neural
networks to train the novel model. Instead of cal-
culating the probabilities in a discrete space, the
neural network projects the words into a continu-
ous space. This projection gives us the option to
assign probability also to input sequences which

467

were not observed in the training data. In sys-
tem combination each training sentence has to be
translated by all individual system engines which
is time consuming. Due to this we have a small
amount of training data and thus it is very likely
that many input sequences of a test set have not be
seen during training.

The remainder of this paper is structured as fol-
lows: in Section 2, we discuss some related work.
In Section 3, the novel local system voting model
is described. In Section 4, experimental results are
presented which are analyzed in Section 5. The
paper is concluded in Section 6.

2 Related Work

In confusion network decoding, pairwise align-
ments between all system outputs are generated.
From the calculated alignment information, a con-
fusion network is built from which the system
combination output is determined using major-
ity voting and additional models. The hypothesis
alignment algorithm is a crucial part of building
the confusion network and many alternatives have
been proposed in the literature:

(Bangalore et al., 2001) use a multiple string
alignment (MSA) algorithm to identify the
unit of consensus and applied a posterior lan-
guage model to extract the consensus trans-
lations. In contrast to the following ap-
proaches, MSA is unable to capture word re-
orderings.

(Matusov et al., 2006) produce pairwise word
alignments with the statistical alignment al-
gorithm toolkit GIZA++ that explicitly mod-
els word reordering. The context of a whole
document of translations rather than a single
sentence is taken into account to produce the
alignments.

(Sim et al., 2007) construct a consensus network
by using TER (Snover et al., 2006) align-
ments. Minimum bayes risk decoding is ap-
plied to obtain a primary hypothesis to which
all other hypotheses are aligned.

(Rosti et al., 2007) extend the TER alignment ap-
proach and introduce an incremental TER

alignment which aligns one system at a time
to all previously aligned hypotheses.

(Karakos et al., 2008) use the inversion trans-
duction grammar (ITG) formalism (Wu,
1997) and treat the alignment problem as a

problem of bilingual parsing to generate the
pairwise alignments.

(He et al., 2008) propose an indirect hidden
markov model (IHMM) alignment approach
to address the synonym matching and word
ordering issues in hypothesis alignment.

(Heafield and Lavie, 2010) use the METEOR
toolkit to calculate pairwise alignments be-
tween the hypotheses.

All confusion network system combination ap-
proaches only use the global system voting mod-
els. Regarding to this chapter, there has been sim-
ilar effort in the area of speech recognition:

(Hillard et al., 2007) Similar work has been pre-
sented for system combination of speech
recognitions systems: the authors train a clas-
sifier to learn which system should be se-
lected for each output word. The learn-
ing target for each slot is the set of sys-
tems which match the reference word, or the
null class if no systems match the reference
word. Their novel approach outperforms the
ROVER baseline by up to 14.5% relatively
on an evaluation set.

3 Novel Local System Voting Model

In the following subsections we introduce
a novel local system voting model (localVote)
trained by a neural network. The purpose of this
model is to prefer one particular path in the con-
fusion network and therefore all local word deci-
sions between two nodes leading to this particular
path. More precisely, we want the neural network
to learn an oracle path extracted from the confu-
sion network graph which leads to the lowest error
score. In Subsection 3.1, we describe a polyno-
mial approximation algorithm to extract the best
sentence level BLEU (SBLEU) path in a confusion
network. Taking this path as reference path, we
define the model in Subsection 3.2 followed by
its integration in the linear model combination in
Subsection 3.3.

3.1 Finding SBLEU-optimal Hypotheses
In this section, we describe a polynomial ap-

proximation algorithm to extract the best SBLEU

hypothesis from a confusion network. (Leusch et
al., 2008) showed that this problem is generally
NP-hard for the popular BLEU (Papineni et al.,
2002) metric. Nevertheless, we need some paths
which serve as “reference paths“.

468

Using BLEU as metric to extract the best pos-
sible path is problematic as in the original BLEU

definition there is no smoothing for the geomet-
ric mean. This has the disadvantage that the BLEU

score becomes zero already if the four-gram preci-
sion is zero, which can happen obviously very of-
ten with short or difficult translations. To allow for
sentence-wise evaluation, we use the SBLEU met-
ric (Lin and Och, 2004), which is basically BLEU

where all n-gram counts are initialized with 1 in-
stead of 0. The brevity penalty is calculated only
on the current hypothesis and reference sentence.

We use the advantage that confusion networks
can be sorted topologically. We walk the confu-
sion network from the start node to the end node,
keeping track of all n-grams seen so far. At each
node we keep a k-best list containing the partial
hypotheses with the most n-gram matches leading
to this node and recombine only partial hypothe-
ses containing the same translation. As the search
space can become exponentially large, we only
keep k possible options at each node. This prun-
ing can lead to search errors and hence yield non-
optimal results. If needed for hypotheses with the
same n-gram counts, we prefer hypotheses with a
higher translation score based on the original mod-
els. For the final node we add the brevity penalty
to all possible translations.

As we are only interested in arc decisions which
match a reference word, we simplify the confusion
network before applying the algorithm. If all arcs
between two adjacent nodes are not present in the
reference, we remove all of them and add a single
arc labeled with ”UNK”. This reduces the vocab-
ulary size and still gives us the same best SBLEU

scores as before. In Figure 1, a confusion network
of four input hypotheses is given. As the words
black, red, orange, and green are all not present in
the reference, all of them are mapped to one single
”UNK” arc (cf. Figure 2). The best SBLEU path is
the UNK car.

the black

an
a
a green

orange
red

cab

train
car
car

Figure 1: System A: the black cab ; System B: an
red train ; System C: a orange car ; System D: a
green car ; Reference: the blue car .

the

an
a
a

UNK

cab

train
car
car

Figure 2: As the words black, red, orange, and
green in Figure 1 are all not present in the refer-
ence (the blue car), they are mapped to one single
”UNK” arc.

3.2 localVote Model Training

The purpose of the new localVote model is to
prefer the best SBLEU path and therefore to learn
the word decisions between all adjacent nodes
which lead to this particular path. During the ex-
traction of the best SBLEU hypotheses from the
confusion network, we keep track of all arc de-
cisions. This gives us the possibility to generate
local training examples based only on the I arcs
between two nodes. For the confusion network il-
lustrated in Figure 2, we generate two training ex-
amples for the neural network training. Based on
the arcs the, an, a and a we learn the output the.
Based on the arcs cab, train, car and car we learn
the output car.

In all upcoming system setups, we use the open
source toolkit NPLM (Vaswani et al., 2013) for
training and testing the neural network models.
We use the standard setup as described in the pa-
per and use the neural network with one projection
layer and one hidden layer. For more details we
refer the reader to the original paper of the NPLM
toolkit. The inputs to the neural network are the I
words produced by the I different individual sys-
tems. The outputs are the posterior probabilities
of all words of the vocabulary. The input uses the
so-called 1-of-n coding, i.e. the i-th word of the
vocabulary is coded by setting the i-th element of
the vector to 1 and all the other elements to 0.

For a system combination of I individual sys-
tems, a training example consists of I + 1 words.
The first I words (input of the neural network) are
representing the words of the individual systems,
the last position (output of the neural network)
serves as slot for the decision we want to learn (ex-
tracted from the best SBLEU path). We do not add
the ”UNK” arcs to the neural network training as
they do not help to increase the SBLEU score. Fig-
ure 3 shows the neural network training example
for the last words of Figure 2. The output of each

469

car

car

train

cab P(w1|)
projection

hiddenlayer
layer P(w2|)

P(w3|)

P(wn|)

0
0
1

0
..
.

1
0
0

0
..
.

0
1
0

0
..
.

0
1
0

0
..
.

.

.

.

Figure 3: Unigram neural network training exam-
ple: System A produces cab, System B train, Sys-
tem C car, System D car, reference is car. 1-of-n
encoding was applied to map words to a suitable
neural network input.

Table 1: Training examples from Figure 2.

input layer
Sys A Sys B Sys C Sys D ref
the an a a the
cab train car car car

individual system provides one input word. In Ta-
ble 1 the two training examples for Figure 2 are
illustrated.

As a neural network training example only con-
sists of the I words between two adjacent nodes,
we are able to produce several training examples
for each sentences. For a system combination of I
systems and a development set of S sentences with
an average sentence length of L, we can generate
up to I ∗S∗L neural network training examples.

Further, we can expand the model to use arbi-
trary history size, if we take the predecessor words
into account. Instead of just using the local word
decision of a system, we add additionally the pre-
decessors of the individual systems into the train-
ing data. In Figure 4, we e.g. use the bigram red
train instead of the unigram train for system B into
the training data. In Table 2 all bigram training ex-
amples of Figure 2 can be seen.

3.3 localVote model Integration
Having a trained localVote model, we then add

it as an additional model into the confusion net-
work. We calculate for each arc the probability
of the word in the trained neural network. E.g. for
Figure 1, we extract the probabilities for all arcs by
the strings illustrated in Table 3. Finally, we add
the scores as a new model and assign it a weight
which is trained additionally to the standard model

green

orange

red

black P(w1|)
projection

hiddenlayer
layer P(w2|)

P(w3|)

P(wn|)

.

.

.

cab

train

car

car

Figure 4: Bigram neural network training exam-
ple: System A produces black cab, System B red
train, System C orange car, System D green car,
reference is car.

Table 2: Training examples (bigram) from Fig. 2.

input layer
Sys A Sys B Sys C Sys D ref
<s>the <s>an <s>a <s>a the
black cab red train orange car green car car

weights with MERT.

Table 3: Calculating the probability for all possi-
ble output words from Figure 1. The output layer
is the current generated word.

input layer
Sys A Sys B Sys C Sys D arc word
the an a a the
the an a a an
the an a a a
black red orange green black
black red orange green red
black red orange green orange
black red orange green green
cab train car car cab
cab train car car train
cab train car car car

3.4 Word Classes

The neural network training sets are relatively
small as all sentences have to be translated by all
individual system engines. This results in many
unseen words in the test sets. To overcome this
problem, we use word classes (Och, 1999) instead
of words which were trained (10 iterations) on the
target part of the bilingual training corpus in some
experiments. We use the trained word classes on
both input layer and output layer.

470

4 Experiments

All experiments have been conducted with the
open source system combination toolkit Jane (Fre-
itag et al., 2014). For training and scoring neu-
ral networks, we use the open source toolkit
NPLM (Vaswani et al., 2013). NPLM is a toolkit
for training and using feedforward neural lan-
guage models. Variations in neural network ar-
chitecture have been tested. We tried various hid-
den layer sizes as well as projection layer sizes.
We achieved similar results for all setups and de-
cided to stick to 1 hidden layer whose size is 200,
a learning rate of 0.08 and let the training run 20
epochs in all experiments.

Translation quality is measured in lower-
case with BLEU (Papineni et al., 2002) and
TER (Snover et al., 2006) whereas the perfor-
mance of each setup is the best score on the tune
set across five different MERT runs. The system
combination weights of the linear model are opti-
mized with MERT on 200-best lists with (TER-
BLEU)/2 as optimization criterion. For all lan-
guage pairs we use three different test sets. In the
following the test set for extracting the training ex-
amples for the neural network training is labeled
as tune (NN). The test set tune (MERT) indicates
the tune set for MERT and test indicates the blind
test set.

The individual systems are different extensions
of phrase-based or hierarchical phrase-based sys-
tems. The systems are built on the same amount of
preprocessed training data and differ mostly in the
models which are used to score the translation op-
tions. Further, some systems are syntactical aug-
mented based on syntax trees on either source or
target side.

4.1 BOLT Chinese→English

For Chinese→English, we use the current
BOLT data set (corpus statistics are given in Ta-
ble 4). The test sets consist of text drawn from
”discussion forums” in Mandarin Chinese. We
use nine individual systems to perform the system
combination experiments. The lambda weights are
optimized on a tune set of 985 sentences (tune
(MERT)). We train the proposed localVote model
on 15,323,897 training examples extracted from
the 1844 sentences tune (NN) set.

As a first step we have to determine the k-best
pruning threshold for extracting the SBLEU opti-
mal path from the current confusion networks (cf.

Section 3.1). In Figure 5 the (TER-BLEU)/2 re-
sults of the SBLEU optimal hypotheses extracted
with different k-best sizes are given. Although,
the BLEU score improves by setting k to a higher
value, the computational time increases. To find
a tradeoff between running time and performance,
we set the k-best size to 1200 in the following ex-
periments.

Table 4: Corpus statistics Chinese→English.

Chinese English
Sentences 13M
Running words 255M 279M
Vocabulary 370K 833K
Tune sentences 1844 (NN), 985 (MERT)
Test sentences 1124

12
13
14
15
16
17
18
19
20

0 500 1000 1500 2000 2500

(T
E

R
−

B
L

E
U
)/

2

pruning treshold

tune (NN)
tune (MERT)

test

Figure 5: (TER − BLEU)/2 scores for dif-
ferent k-best pruning thresholds on the BOLT
Chinese→English data set.

Experimental results are given in Table 5. The
baseline is a system combination run without any
localVote model of nine individual systems us-
ing the standard models as described in (Freitag
et al., 2014). The oracle score is calculated on
the hypothesis of the SBLEU best path extracted
with k = 1200. We train the neural network on
15,323,897 training examples generated from the
1844 tune (NN) sentences. By training a neu-
ral network based on unigram decisions (unigram
NN), we gain small improvements of -0.6 points
in TER. As we have only few sentences of training
data, many words have not been seen during neu-
ral network training. To overcome this problem,
we train 1500 word classes on the target part of
the bilingual data. Learning the localVote model
on word classes (unigram wcNN) gain improve-
ment of +0.7 points in BLEU and -0.6 points in

471

Table 5: Results for the BOLT Chinese→English
translation task. The localVote models of the
systems +unigram NN and +unigram wcNN are
trained based on one word per system. The lo-
calVote models of the systems +bigram NN and
+bigram wcNN are trained based on two words
per system. For systems labeled with wcNN, the
neural network is trained on word classes. Sig-
nificance is marked with † for 95% confidence
and ‡ for 99% confidence, and is measured with
the bootstrap resampling method as described in
(Koehn, 2004).

system tune test
BLEU TER BLEU TER

baseline 17.9 61.5 18.3 60.9
+unigram NN 18.1 61.2 18.3 60.3†
+unigram wcNN 18.4 61.5 19.0‡ 60.3†
+bigram NN 18.1 61.3 18.6† 60.3†
+bigram wcNN 18.1 61.2 18.7† 59.9‡
oracle 28.6 62.3 31.1 57.2

TER. By taking a bigram history into the training
of the neural network, we reach only small fur-
ther improvement. Compared to the baseline, the
system combination +bigram NN outperforms the
baseline by +0.3 points in BLEU and -0.6 points
in TER. By using word classes (+bigram wcNN)
we gain improvement of +0.4 points in BLEU and
-1.0 points in TER.

All results are reached with a word class size
of 1500. In Figure 6 the (TER−BLEU)/2 scores
on tune(MERT) of system combinations including
one unigram localVote model trained with differ-
ent word class sizes are illustrated. Independent of
the word class size, system combination including
a localVote model always performs better com-
pared to the baseline. The best performance is
reached by a word class size of 1500. One rea-
son for the loss of performance when using no
word classes is the size of the neural network tune
set. Within a size of 1844 sentences, many words
of the test set have never been seen during neu-
ral network training. The test set has a vocab-
ulary size of 6106 within 2487 words (40.73%)
are not present in the training set (tune (NN)) of
the neural network. For the MERT tune set 2556
words (40.91%) are not present in the neural net-
work training set. Word classes tackle this prob-
lem and it is much more likely that each word class

has been seen during the training procedure of the
neural network.

21.4

21.5

21.6

21.7

21.8

21.9

500 1000 1500 2000 2500

baseline
+unigram wcNN

(T
E

R
−

B
L

E
U
)/

2

word class size

Figure 6: (TER− BLEU)/2 scores for different
word class sizes on the BOLT Chinese→English
tune (MERT) set.

4.2 BOLT Arabic→English

For Arabic→English, we use the current BOLT
data set (corpus statistics are given in Table 6).
The test sets consist of text drawn from ”discus-
sion forums” in Egyptian Arabic. We train the
neural network on 6,591,158 training examples
extracted from the 1510 sentences tune (NN) dev
set. The model weights are optimized on a 1080
sentences tune set. All results are system com-
binations of five individual systems. The test set
has a vocabulary size of 3491 within 1510 words
(43.25%) are not present in the training set (tune
(NN)) of the neural network. For the MERT tune
set 1549 words (43.24%) are not part of the neural
network training set.

We run the same experiment pipeline as for
Chinese→English and first determine the k-best
threshold for getting the oracle paths in the con-
fusion networks. As the Arabic→English system
combination is only based on 5 individual systems,
the confusion networks are much smaller. We set
the pruning threshold to 1000 (k = 1000) which
is a good tradeoff between running time and per-
formance. Figure 7 shows the (TER− BLEU)/2
scores for different k-best pruning thresholds. In-
creasing k to a higher value then 1000 improves
the (TER−BLEU)/2 only slightly.

Experimental results are given in Table 7. The
baseline is a system combination run without any
localVote model of five individual systems using
the standard models as described in (Freitag et
al., 2014). The oracle score represents the score

472

Table 6: Corpus statistics BOLT Arabic→English.

Arabic English
Sentences 8M
Running words 189M 186M
Vocabulary 608K 519K
Tune sentences 1510 (NN), 1080 (MERT)
Test sentences 1137

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500
pruning treshold

(T
E

R
−

B
L

E
U
)/

2

tune (NN)
tune (MERT)

test

Figure 7: (TER − BLEU)/2 scores for dif-
ferent k-best pruning thresholds on the BOLT
Arabic→English tune (MERT) set.

of the SBLEU best path extracted with k = 1000.
Training a localVote model based on the best
SBLEU path (+unigram NN) gives us improve-
ment of +0.9 points in BLEU compared to the
baseline. Adding bigram context to the neural net-
work training (+bigram NN) yields improvement
of +0.8 points in BLEU compared to the baseline
system combination. By training word classes on
the bilingual part of the training data, we gain ad-
ditional improvements. When using word classes
and a history size of two, +bigram wcNN yields
the best performance with +1.1 points in BLEU

compared to the baseline.
All results are conducted with a word class size

of 1000. The tune set performance of different un-
igram localVote models trained on different word
class sizes are illustrated in Figure 8. The results
are fluctuating and we set the word class size to
1000 in all Arabic→English experiments.

5 Analysis

In this section we compare the final translations
of the Chinese→English system combination +bi-
gram wcNN with the baseline. The word occur-
rence distributions for both setups are illustrated
in Table 8. This table shows how many input sys-
tems produce a certain word and finally if it is part

Table 7: Results for the BOLT Arabic→English
translation task. The localVote models of the
systems +unigram NN and +unigram wcNN are
trained by a neural network based on one word per
system. The localVote models of the systems +bi-
gram NN and +bigram wcNN are trained by a neu-
ral network based on two words per system. For
systems labeled with wcNN, the neural network is
trained on word classes for both input and output
layer. Significance is marked with ‡ for 99% con-
fidence and is measured with the bootstrap resam-
pling method as described in (Koehn, 2004).

system tune test
BLEU TER BLEU TER

baseline 30.1 51.2 27.6 55.8
+unigram NN 31.4 51.2 28.5‡ 56.0
+unigram wcNN 31.1 51.1 28.3‡ 55.7
+bigram NN 31.3 51.1 28.4‡ 55.8
+bigram wcNN 31.4 51.2 28.7‡ 56.0
oracle 38.1 46.3 34.8 50.9

9.8

10

10.2

10.4

10.6

500 1500 2500 3500

baseline
+unigram wcNN

(T
E

R
−

B
L

E
U
)/

2

word class size

Figure 8: (TER − BLEU)/2 tune set scores
for different word class sizes on the BOLT
Arabic→English task.

of the system combination output. As the original
idea of system combination is based on majority
voting, it should be more likely that a word which
is produced by more input systems is in the final
system combination output than a word which is
only produced by few input systems. E.g. 11008
words have been produced by all 9 individual sys-
tems from which all of them are in both the sys-
tem combination baseline and the advanced sys-
tem +bigram wcNN. If a word is only produced by
8 individual systems, a ninth system does not pro-
duce this word. 98,9% of the words produced by
only 8 different individual systems are in the final

473

Table 8: Word occurrence distribution for the
Chinese→English setup. First column indicates
in how many systems a word appears. E.g.
120/14072 (0.9%) indicates that 14072 words only
appear in one individual input system from which
120 (0.9%) are present in the baseline system com-
bination hypothesis.

baseline +bigram wcNN
1 120/14072 (0.9%) 214/14072 (1.5%)
2 592/ 6129 (9.7%) 764/ 6129 (12.5%)
3 1141/ 4159 (27.4%) 1319/ 4159 (31.7%)
4 1573/ 3241 (48.5%) 1669/ 3241 (51.5%)
5 2051/ 2881 (71.2%) 1993/ 2881 (69.2%)
6 2381/ 2744 (86.8%) 2332/ 2744 (85.0%)
7 2817/ 2965 (95.0%) 2820/ 2965 (95.1%)
8 3818/ 3860 (98.9%) 3815/ 3860 (98.8%)
9 11008/11008(100.0%) 11008/11008(100.0%)

baseline system combination output. The miss-
ing words result mostly from alignment errors pro-
duced by the pairwise alignment algorithm when
aligning the single systems together.

We observe the problem that the globalVote
models prevent words, which have only been pro-
duced by few systems, to be present in the system
combination output. In Table 8, you can see that
words which are only produced by 1-4 individual
systems are more likely to be present in the final
output when including the novel localVote model.
As e.g. in the baseline 592 of the 6129 words
which have only been produced by two individ-
ual system are in the output, the advanced +bi-
gram wcNN setup contains additional 172 words.
These statistics demonstrate the functionality of
the novel localVote model which does not only im-
prove the translation quality in terms of BLEU, but
also tackles the problem of the dominating glob-
alVote models.

The Arabic→English word occurrence distribu-
tion is illustrated in Table 9. A similar scenario as
for the Chinese→English translation task can be
observed. The words which only occur in few in-
dividual systems have a much higher chance to be
in the final output when using the novel local vot-
ing system model. It is also visible that the neural
network model prevents some words of being in
the combined output even if the word have been
produced by 4 of 5 systems. The novel local sys-
tem voting model gives system combination the

option to select words which have only be gener-
ated by few individual systems.

Table 9: Word occurrence distribution for the
Arabic→English setup. First column indicates in
how many systems a word appears. E.g. 214/5791
(3.7%) indicates that 5791 words only appear
in one individual input system from which 214
(3.7%) are present in the baseline system combi-
nation hypothesis.

baseline +bigram wcNN
1 214/ 5791 (3.7%) 285/ 5791 (4.9%)
2 1225/ 3200 (38.3%) 1243/ 3200 (38.8%)
3 2162/ 2719 (79.5%) 2297/ 2719 (84.5%)
4 3148/ 3207 (98.2%) 3119/ 3207 (97.3%)
5 14602/14602(100.0%) 14602/14602(100.0%)

6 Conclusion

In this work we proposed a novel local system
voting model (localVote) which has been trained
by a feedforward neural network. In contrast to
the traditional globalVote model, the presented lo-
calVote model takes the word contents and their
combinatorial occurrences into account and does
not only promote global preferences for some in-
dividual systems. This advantage gives confusion
network decoding the option to prefer other sys-
tems at different positions even in the same sen-
tence. As all words are projected to a continuous
space, the neural network gives also unseen word
sequences a useful probability. Due to the rela-
tively small neural network training set, we used
word classes in some experiments to tackle the
data sparsity problem.

Experiments have been conducted with
high quality input systems for the BOLT
Chinese→English and Arabic→English trans-
lation tasks. Training an additional model by a
neural network with word classes yields trans-
lation improvement from up to +0.9 points in
BLEU and -0.5 points in TER. We also took word
context into account and added the predecessors
of the individual systems to the neural network
training which yield additional small improve-
ment. We analyzed the translation results and
the functionality of the localVote model. The
occurrence distribution shows that words which
have been produced by only few input systems are

474

more likely to be part of the system combination
output when using the proposed model.

Acknowledgement

This material is partially based upon work sup-
ported by the DARPA BOLT project under Con-
tract No. HR0011-12-C-0015. Any opinions,
findings and conclusions or recommendations ex-
pressed in this material are those of the au-
thors and do not necessarily reflect the views of
DARPA. Further, this paper has received funding
from the European Union’s Horizon 2020 research
and innovation programme under grant agreement
no 645452 (QT21).

References

Srinivas Bangalore, German Bordel, and Giuseppe Ric-
cardi. 2001. Computing consensus translation
from multiple machine translation systems. In IEEE
Workshop on Automatic Speech Recognition and
Understanding (ASRU), pages 351–354, Madonna
di Campiglio, Italy, December.

Yoshua Bengio, Holger Schwenk, Jean-Sébastien
Senécal, Fréderic Morin, and Jean-Luc Gauvain.
2006. Neural probabilistic language models. In
Innovations in Machine Learning, pages 137–186.
Springer.

Markus Freitag, Matthias Huck, and Hermann Ney.
2014. Jane: Open source machine translation sys-
tem combination. In Conference of the European
Chapter of the Association for Computational Lin-
guistics (EACL), pages 29–32, Gothenburg, Sweden,
April. Association for Computational Linguistics.

Xiaodong He, Mei Yang, Jianfeng Gao, Patrick
Nguyen, and Robert Moore. 2008. Indirect-HMM-
based Hypothesis Alignment for Combining Out-
puts from Machine Translation Systems. In Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 98–107, Honolulu, HI,
USA, October.

Kenneth Heafield and Alon Lavie. 2010. Combining
Machine Translation Output with Open Source: The
Carnegie Mellon Multi-Engine Machine Translation
Scheme. The Prague Bulletin of Mathematical Lin-
guistics, 93:27–36.

Dustin Hillard, Björn Hoffmeister, Mari Ostendorf,
Ralf Schlüter, and Hermann Ney. 2007. i
rover: improving system combination with classifi-
cation. In Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL), pages 65–68, Rochester, NY, USA, April.
Association for Computational Linguistics.

Damianos Karakos, Jason Eisner, Sanjeev Khudanpur,
and Markus Dreyer. 2008. Machine translation sys-
tem combination using ITG-based alignments. In
46th Annual Meeting of the Association for Compu-
tational Linguistics on Human Language Technolo-
gies (ACL): Short Papers, pages 81–84, Columbus,
OH, USA, June.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 388–395, Barcelona, Spain, July.

Gregor Leusch, Evgeny Matusov, and Hermann Ney.
2008. Complexity of finding the bleu-optimal hy-
pothesis in a confusion network. In Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 839–847, Honolulu, HI, USA, Oc-
tober.

Chin-Yew Lin and Franz Josef Och. 2004. Auto-
matic evaluation of machine translation quality us-
ing longest common subsequence and skip-bigram
statistics. In The 42nd Annual Meeting on Associa-
tion for Computational Linguistics (ACL), page 605,
Barcelona, Spain, July.

Evgeny Matusov, Nicola Ueffing, and Hermann Ney.
2006. Computing Consensus Translation from Mul-
tiple Machine Translation Systems Using Enhanced
Hypotheses Alignment. In Conference of the Eu-
ropean Chapter of the Association for Computa-
tional Linguistics (EACL), pages 33–40, Trento,
Italy, April.

Franz Josef Och. 1999. An Efficient Method for De-
termining Bilingual Word Classes. In Ninth Con-
ference on European Chapter of the Association
for Computational Linguistics (EACL), pages 71–
76, Bergen, Norway, June.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In 40th Annual
Meeting on Association for Computational Linguis-
tics (ACL), pages 311–318, Philadelphia, PA, USA,
July.

Antti-Veikko Rosti, Necip Fazil Ayan, Bing Xiang,
Spyridon Matsoukas, Richard Schwartz, and Bon-
nie Dorr. 2007. Combining outputs from multiple
machine translation systems. In The Annual Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics (NAACL-HLT),
pages 228–235, Rochester, NY, USA, April.

Holger Schwenk and Jean-Luc Gauvain. 2002. Con-
nectionist language modeling for large vocabulary
continuous speech recognition. In IEEE Interna-
tional Conference on Acoustics, Speech, and Signal
Processing (ICASSP), volume 1, pages I–765, Or-
lando, FL, USA, May.

Khe Chai Sim, William J. Byrne, Mark J.F. Gales,
Hichem Sahbi, and Phil C. Woodland. 2007. Con-
sensus Network Decoding for Statistical Machine

475

Translation System Combination. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 105–108, Honolulu,
HI, USA, April.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciula, and John Makhoul. 2006. A Study
of Translation Edit Rate with Targeted Human An-
notation. In Association for Machine Translation in
the Americas (AMTA), pages 223–231, Cambridge,
MA, USA, August.

Le Hai Son, Alexandre Allauzen, and François Yvon.
2012. Continuous space translation models with
neural networks. In The 2012 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL HLT), pages 39–48, Montreal,
Canada, June.

Ashish Vaswani, Yinggong Zhao, Victoria Fossum,
and David Chiang. 2013. Decoding with large-
scale neural language models improves translation.
In Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1387–1392,
Seattle, WA, USA, October.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational linguistics, 23(3):377–403.

476

