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Abstract

This paper presents our metric (UoW-
LSTM) submitted in the WMT-15 met-
rics task. Many state-of-the-art Machine
Translation (MT) evaluation metrics are
complex, involve extensive external re-
sources (e.g. for paraphrasing) and require
tuning to achieve the best results. We
use a metric based on dense vector spaces
and Long Short Term Memory (LSTM)
networks, which are types of Recurrent
Neural Networks (RNNs). For WMT-
15 our new metric is the best performing
metric overall according to Spearman and
Pearson (Pre-TrueSkill) and second best
according to Pearson (TrueSkill) system
level correlation.

1 Introduction

Deep learning approaches have turned out to be
successful in many NLP applications such as para-
phrasing (Mikolov et al., 2013b; Socher et al.,
2011), sentiment analysis (Socher et al., 2013b),
parsing (Socher et al., 2013a) and machine trans-
lation (Mikolov et al., 2013a). While dense vec-
tor space representations such as those obtained
through Deep Neural Networks (DNNs) or Re-
current Neural Networks (RNNs) are able to cap-
ture semantic similarity for words (Mikolov et
al., 2013b), segments (Socher et al., 2011) and
documents (Le and Mikolov, 2014) naturally, tra-
ditional measures can only achieve this using re-
sources like WordNet and paraphrase databases.

This paper presents a novel, efficient and com-
pact MT evaluation measure based on RNNs. Our
metric (Gupta et al., 2015) is simple in the sense
that it does not require much machinery and re-
sources apart from the dense word vectors. This
cannot be said of most of the state-of-the-art MT
evaluation metrics, which tend to be complex and

require extensive feature engineering. Our met-
ric is based on RNNs and particularly on Tree
Long Short Term Memory (Tree-LSTM) networks
(Tai et al., 2015). LSTM is a sequence learning
technique which uses a memory cell to preserve
a state over a long period of time. This enables
distributed representations of sentences using dis-
tributed representations of words. Tree-LSTM
(Tai et al., 2015) is a recent approach, which
is an extension of the simple LSTM framework
(Hochreiter and Schmidhuber, 1997; Zaremba and
Sutskever, 2014).

2 Related Work

Many metrics have been proposed for MT eval-
uation. Earlier popular metrics are based on n-
gram counts (e.g. BLEU (Papineni et al., 2002)
and NIST (Doddington, 2002)) or word error rate.
Other popular metrics like METEOR (Denkowski
and Lavie, 2014) and TERp (Snover et al., 2008)
also use external resources like WordNet and para-
phrase databases. However, system-level cor-
relation with human judgements for these met-
rics remains below 0.90 Pearson correlation co-
efficient (as per WMT-14 results, BLEU-0.888,
NIST-0.867, METEOR-0.829, TER-0.826, WER-
0.821).

Recent best performing metrics in the WMT-
14 metric shared task (Machácek and Bojar, 2014)
used a combination of different metrics. The top
performing system DiskoTK-Party-Tuned (Joty et
al., 2014) in the WMT-14 task uses five differ-
ent discourse metrics and twelve different metrics
from the ASIYA MT evaluation toolkit (Giménez
and Màrquez, 2010). The metric computes the
number of common sub-trees between a reference
and a translation using a convolution tree kernel
(Collins and Duffy, 2001). The basic version of
the metric does not perform well but in combi-
nation with the other 12 metrics from the ASIYA
toolkit obtained the best results for the WMT-14
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metric shared task. Another top performing metric
LAYERED (Gautam and Bhattacharyya, 2014),
uses linear interpolation of different metrics. LAY-
ERED uses BLEU and TER to capture lexical sim-
ilarity, Hamming score and Kendall Tau Distance
(Birch and Osborne, 2011) to identify syntactic
similarity, and dependency parsing (De Marneffe
et al., 2006) and the Universal Networking Lan-
guage1 for semantic similarity.

For our participation in the WMT-15 task,
we used our metric ReVal (Gupta et al.,
2015). ReVal metric is based on dense vec-
tor spaces and Tree Long Short Term Mem-
ory networks. This metric achieved state of
the art results for the WMT-14 dataset. The
metric including training data is available at
https://github.com/rohitguptacs/ReVal.

3 LSTMs and Tree-LSTMs

Recurrent Neural Networks allow processing of
arbitrary length sequences, but early RNNs had
the problem of vanishing and exploding gradi-
ents (Bengio et al., 1994). RNNs with LSTM
(Hochreiter and Schmidhuber, 1997) tackle this
problem by introducing a memory cell composed
of a unit called constant error carousel (CEC) with
multiplicative input and output gate units. Input
gates protect against irrelevant inputs and output
gates against current irrelevant memory contents.
This architecture is capable of capturing important
pieces of information seen in a bigger context.
Tree-LSTM is an extension of simple LSTM. A
typical LSTM processes the information sequen-
tially whereas Tree-LSTM architectures enable
sentence representation through a syntactic struc-
ture. Equation (1) represents the composition of a
hidden state vector for an LSTM architecture. For
a simple LSTM, ct represents the memory cell and
ot the output gate at time step t in a sequence. For
Tree-LSTM, ct represents the memory cell and ot

represents the output gate corresponding to node
t in a tree. The structural processing of Tree-
LSTM makes it more favourable for representing
sentences. For example, dependency tree structure
captures syntactic features and model parameters
capture the importance of words (content vs. func-
tion words).

ht = ot ⊙ tanh ct (1)

1http://www.undl.org/unlsys/unl/unl2005/UW.htm

Figure 1 shows simple LSTM and Tree-LSTM
architectures.
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Figure 1: Tree-LSTM (left) and simple LSTM
(right)

4 Evaluation Metric

We used the ReVal (Gupta et al., 2015) metric for
this task. This metric represents both the reference
(href ) and the translation (htra) using a depen-
dency Tree-LSTM (Tai et al., 2015) and predicts
the similarity score ŷ based on a neural network
which considers both distance and angle between
href and htra:

h× = href ⊙ htra

h+ = |href − htra|
hs = σ

(
W (×)h× + W (+)h+ + b(h)

)
p̂θ = softmax

(
W (p)hs + b(p)

)
ŷ = rT p̂θ

(2)

where, σ is a sigmoid function, p̂θ is the estimated
probability distribution vector and rT = [1 2...K].
The cost function J(θ) is defined over probability
distributions p and p̂θ using regularised Kullback-
Leibler (KL) divergence.

J(θ) =
1
n

n∑
i=1

KL
(
p(i)||p̂(i)

θ

)
+

λ

2
||θ||22 (3)

In Equation 3, i represents the index of each train-
ing pair, n is the number of training pairs and p is
the sparse target distribution such that y = rT p is
defined as follows:

pj =


y − ⌊y⌋, j = ⌊y⌋+ 1
⌊y⌋ − y + 1, j = ⌊y⌋
0 otherwise
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for 1 ≤ j ≤ K. Where, y ∈ [1,K] is the
similarity score of a training pair. For example,
for y = 2.7, pT = [0 0.3 0.7 0 0]. In our case, the
similarity score y is a value between 1 and 5.

To compute our training data we automatically
convert the human rankings of the WMT-13 eval-
uation data into similarity scores between the ref-
erence and the translation. These translation-
reference pairs labelled with similarity scores are
used for training. We also augment the WMT-13
data with 4500 pairs from the SICK training set
(Marelli et al., 2014), resulting in a training dataset
of 14059 pairs in total.

The metric uses Glove word vectors (Penning-
ton et al., 2014) and the simple LSTM, the de-
pendency Tree-LSTM and neural network imple-
mentations by Tai et al. (2015). Training is per-
formed using a mini batch size of 25 with learning
rate 0.05 and regularization strength 0.0001. The
memory dimension is 300, hidden dimension is
100 and compositional parameters are 541,800.
Training is performed for 10 epochs. System level
scores are computed by aggregating and normal-
ising the segment level scores. Full details can be
found in (Gupta et al., 2015).2

5 Results

The results for WMT-15 are presented in Table 1
and Table 2.

Table 1 shows system-level Pearson correlation
(TrueSkill) (see (Bojar et al., 2013) for differ-
ence between TrueSkill and Pre-TrueSkill system-
ranking approaches) obtained on different lan-
guage pairs as well as average (PAvg) over all
language pairs. The second last column shows
average Pearson correlation (Pre-TrueSkill). The
last column shows average Spearman correlation
(SAvg). The 95% confidence level scores are
obtained using bootstrap resampling as used in the
WMT-2015 metric task evaluation. Table 2 shows
results on segment-wise Kendall tau correlation.

The first section of Table 1 and Table 2 shows
the results of our ReVal metric as UoW-LSTM, the
second section shows the other four top perform-
ing metrics and the third section shows baseline
metrics (BLEU, TER and WER for system-level
and SENTBLEU for segment level).

Table 1 shows that our metric obtains the best
results overall for both Pearson (Pre-TrueSkill)

2Please refer to L+Sick(100, 300) in (Gupta et al., 2015)
for more details and results on the WMT-14 settings.

and Spearman system-level correlation and second
best overall using Pearson (TrueSkill) correlation.
Table 2 shows that while improving over SENT-
BLEU our metric does not obtain high segment
level scores.

6 Conclusion and Future Work

Our dense-vector-space-based ReVal metric is
simple, elegant and fully competitive with the best
of the current complex alternative approaches that
involve system combination, extensive external re-
sources, feature engineering and tuning. In future
work we will investigate the difference between
system and segment level evaluation scores.
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