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Abstract

Translations generated by current statisti-
cal systems often have a large variance, in
terms of their quality against human ref-
erences. To cope with such variation, we
propose to evaluate translations using a
multi-level framework. The method varies
the evaluation criteria based on the clus-
ters to which a translation belongs. Our
experiments on the WMT metric task data
show that the multi-level framework con-
sistently improves the performance of two
benchmarking metrics, resulting in better
correlation with human judgment.

1 Introduction
The aims of automatic Machine Translation (MT)
evaluation metrics, which measure the quality
of translations against human references, are
twofold. Firstly, they enable rapid comparisons
between different statistical machine translation
(SMT) systems. Secondly, they are necessary
to the tuning of parameter values during system
trainings.

To attain these goals, many machine transla-
tion metrics have been introduced in recent years.
For example, metrics such as BLEU (Papineni et
al., 2002), NIST (Doddington, 2002), and TER
(Snover et al., 2006) rely on wordn-gram surface
matching. Also, metrics that make use of linguis-
tic resources such as synonym dictionaries, part-
of-speech tagging, or paraphrasing tables, have
been proposed, including Meteor (Banerjee and
Lavie, 2005) and its extensions, TER-Plus (Snover
et al., 2009), and TESLA (Liu et al., 2011). In ad-
dition, attempts to deploy syntactic features or se-
mantic information for evaluation have also been
made, giving rise to the STM and DSTM (Liu
and Gildea, 2005), DEPREF (Wu et al., 2013) and
MEANT family (Lo and Wu, 2011) metrics.

All these evaluation metrics deploy a single
evaluation criterion or use the same source of in-
formation to evaluate translations. Nevertheless,
translations generated by current statistical sys-
tems often have widely varying scores, in terms
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Figure 1: Distributions of translation quality. X-
axis is in the range of [0,1].
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Figure 2: Clusters of translations based on quality.
Both X-axis and Y-axis are in the range of [0,1].

of their quality against human references. As a re-
sult, current metrics often perform better for a por-
tion of translations but worse against the others.
Consider, for example, two widely used metrics,
namely the sentence-level Meteor and BLUE. Fig-
ure 1 depicts the distributions of the two metrics’
evaluation scores, computed on system outputs for
two WMT test sets, i.e., thenewstest2013.fr-en
andnewstest2012.en-cs. As shown in Figures 1,
the variances of the created evaluation scores are
large across evaluation metrics as well as test sets.

Such widely varying evaluation quality, how-
ever, may be clustered into multiple sub-regions,
as illustrated in Figure 2. Here, we sample
300 sentences from the system output of the
newstest2013.fr-en test set; we depict the F-
measure based on dependency triplet (dependency
type, governor word, and dependent word) on the
Y-axis against the word-based F-measure on the
X-axis. We observe a straight line at the bot-
tom left corner (blue box) of the graph represent-
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ing sentences which all have dependency triplet F-
score of zero; if we want to distinguish between
them in terms of their quality score, we must rely
on word matching rather than on syntax. The sit-
uation in the upper right corner (green box) of the
graph is quite different. Here, the word-based F-
measure and dependency-based F-measure have a
roughly linear correlation, suggesting that a com-
bination of word-based and syntactic information
might be a better measure of quality than either
alone. These observations imply that a metric may
benefit from applying different sources of infor-
mation at different quality levels.

In this paper, we propose a multi-level auto-
matic evaluation framework for MT. Our strategy
first roughly classifies the translations into differ-
ent quality levels. Next, it rates the translations by
exploiting several different information sources,
with the weight on each source depending on its
quality level. We apply our method to two met-
rics: the Meteor and a new metric, DREEM, which
is based on distributed representations. Our exper-
iments on the WMT metric task data show that the
multi-level framework consistently improves the
performance of these two metrics.

2 Multi-level Evaluation
The multi-level evaluation framework works on
the sentence level. Specifically, we first assign
each test sentence to one of the three categories:
low-, medium-, or high-quality translations. Next,
we evaluate the translations within each category
with a tailored set of weights of the metric on the
information sources.

To this end, we deploy a simple strategy for the
category clustering. Note that more sophisticate
strategies could be deployed; we leave this to our
future work. Here, we first use a scoring func-
tion to compute a score between the translation
and its reference. Next, the category assignment of
the translation is then determined by a pre-defined
score threshold.

In detail, suppose we have a translation (t) and
its reference (r). The multi-level metric scores the
translation pair as follows.

Score(t,r)=


M(t, r, wl) if (F (t, r) ≤ θ1)
M(t, r, wm) if (θ1 < F (t, r) ≤ θ2)
M(t, r, wh) otherwise

where M(t, r, w) is a metric, w is the weight,
F (t, r) is the simple classification scoring func-

tion. Also, θ is a threshold, and its value is auto-
matically tuned on development data set.

For the classification function, we employ a
formula which combines word-based F-measure
(denoted asFW (t, r)) and a F-measure (denoted
asFD(t, r)) based on dependency triplet (depen-
dency type, governor word, dependent word), as
follows:

F (t, r) = λ · FW (t, r) + (1− λ) · FD(t, r) (1)

where the free parameterλ is tuned on develop-
ment data.

It is worth noting that, for languages which de-
pendency parser is not available, we only use the
word-based F-measure as the classification func-
tion. Specifically, we use Equation 1 for Into-
English task, and the word-based F-measure for
Out-of-English task in this paper.

In a scenario where there are multiple refer-
ences, we compute the score with each reference,
then choose the highest one. In addition, we treat
the document-level score as the weighted average
of sentence-level scores, with the weights being
the reference lengths, as follows.

Scored =
∑D

i=1 len(ri)Scorei∑D
i=1 len(ri)

(2)

where Scorei is the score of sentencei, andD is
the number of sentences in the document.

3 Evaluation metrics
We apply our multi-level approach to two met-
rics. The first one is Meteor (Banerjee and
Lavie, 2005), which has been widely used for ma-
chine translation evaluations. The second one is
DREEM, a new metric based on distributed repre-
sentations generated by deep neural networks.

3.1 Metric Meteor
We use the latest version of Meteor, i.e. Me-
teor Universal (Denkowski and Lavie, 2014) in
this paper. Meteor computes a one-to-one align-
ment between matching words in a translation
and a reference. The space of possible align-
ments is constructed by exhaustively identifying
all possible matches of the following types: ex-
act word matches, word stem matches, synonym
word matches, and matches between phrases listed
as paraphrases. Alignment is then conducted as a
beam search.

From the final alignment, the translation’s Me-
teor score is calculated as follows. First, content
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and function words are identified in the hypoth-
esis and reference according to a function word
list. Next, the weighted precision and recall us-
ing match weights (wi ...wn) and content-function
word weight (δ) are computed, as follows:

P =

∑

i wi · (δ · mi(tc) + (1 − δ) · mi(tf ))

δ · |tc| + (1 − δ) · |tf | (3)

R =

∑

i wi · (δ · mi(rc) + (1 − δ) · mi(rf ))

δ · |rc| + (1 − δ) · |rf | (4)

These two are then combined into a weighted
harmonic mean, where a largeα means recall is
weighted more heavily.

Fmean=
P · R

α · P + (1 − α) · R (5)

To penalize reorderings, this value is then scaled
by a fragmentation penalty based on the number
of chunks and number of matched words.

Meteor(t, r) = (1 − γ · (#chunk
#match

)β) · Fmean (6)

In our studies, we fine-tune all the parameters
for both multi-level and non-multi-level scoring
frameworks.

3.2 Representation based metric
Distributed representations for words and sen-
tences have been shown to significantly boost
the performance of a NLP system (Turian et al.,
2010). A representation-based translation evalu-
ation metric, DREEM, is introduced in (Anony-
mous, 2015). The metric has shown to be able to
achieve state-of-the-art performance, compared to
popular metrics such as BLEU and Meteor. There-
fore, in this paper, we also adapt this metric for our
experiments.

In a nutshell, the DREEM metric evaluates
translations by employing three different types
of word and sentence representations: one-hot
representations, distributed word representations
learned from a neural network model, and dis-
tributed sentence representations computed with a
recursive autoencoder (RAE). Two different RAE-
based representations are used in this metric: one
is based on a greedy unsupervised RAE, while the
other is based on a syntactic parse tree. To com-
bine the advantages of these four different repre-
sentations, the authors concatenate them to form
one vector representation for each sentence.

In detail, suppose that we have the sentence
representations for the translations (t) and refer-
ences (r). The translation quality is measured by

DREEM with a similarity score computed with the
Cosine function and a length penalty. Let the size
of the vector beN . The quality score is calculated
as follows.

Score(t, r) = Cosα(t, r) × Plen (7)

Cos(t, r) =

∑i=N
i=1 vi(t) · vi (r)

√

∑i=N
i=1 v2

i (t)
√

∑i=N
i=1 v2

i (r)
(8)

Plen =

{
exp(1− lr/lt) if (lt < lr)
exp(1− lt/lr) if (lt ≥ lr)

(9)

whereα is a free parameter,vi(.) is the value of
the vector element,Plen is the length penalty, and
lr, lt are lengths of the translation and reference,
respectively.

To use this metric in the multi-level framework,
we keep the parameterα consistent for all levels,
but use different weights to combine the represen-
tations. That is, we construct the representation
vector as follows:

V =< w1 ·Voh, w2 ·Vwd, w3 ·VgRAE , w4 ·VtRAE > (10)

whereVoh is the one-hot representation,Vwd de-
notes the word representations, andVgRAE and
VtRAE are representations learned with greedy
RAE and tree-based RAE, respectively. The
weightsw1 ... w4 are tuned on development data.

4 Experiments
4.1 Settings
We conducted experiments on the WMT met-
ric task data. Development sets include WMT
2012 all-to-English, and English-to-all submis-
sions. Test sets contain WMT 2013, and WMT
2014 all-to-English, plus 2013, 2014 English-
to-all submissions. The languages “all” include
French, Spanish, German, Czech and Russian.
For training the word embedding and recursive
auto-encoder model, we used WMT 2014 train-
ing data1. We used the English, French, German
and Czech sentences in “Europarl v7” and “News
Commentary” for our experiments. To train the
representations for Russian, we used the “Yandex
1M corpus”.

4.2 Results
Following WMT 2014’s metric task (Machacek
and Bojar, 2014), to measure the correlation with

1http://www.statmt.org/wmt14/translation-task.html
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Into-English
metric segτ sysγ

Original BLEU – 0.821
Sentence BLEU 0.259 0.841
Original Meteor 0.279 0.849
Sentence Meteor 0.279 0.863

Multi− levelw Meteor 0.285 0.871
Multi− levelwd Meteor 0.294⋆ 0.885⋆

DREEM 0.287 0.875
Multi− levelw DREEM 0.293 0.880

Multi− levelwd DREEM 0.303⋆ 0.892⋆

Table 1: Correlations with human judgment on the WMT
data for the Into-English task. Results are averaged on all
into-English test sets.Multi − levelw stands for only using
word-based F-measure as the classification function, while
Multi − levelwd denotes the use of a combination of word-
based F-measure and dependency triplet based F-measure.⋆

indicates the improvement over the non-multi-level metric is
statistically significant, with a significance level of 0.05.

human judgment, we employed Kendall’s rank
correlation coefficientτ for the segment level, and
used Pearson’s correlation coefficient (γ in the be-
low tables) for the system-level. We tested the
significance through bootstrap resampling (confi-
dence level of 95%).

We tuned the weights for the Into-English and
Out-of-English tasks separately. According to the
tuned thresholds, about 25% of the translations are
classified to low-quality translations, around 20%
belong to high-quality translations, and the rest
fall in the medium-quality category.

Experimental results conducted on the Into-
English and Out-of-English tasks are reported in
Tables 1 and 2. We also compared to the standard
de facto metric BLEU (Papineni et al., 2002).

Results, as shown in Tables 1 and 2, indicate
that the representation-based metric DREEM ob-
tained better performance than BLEU and Meteor
on both tasks at both segment and system lev-
els. The multi-level versions of these metrics con-
sistently improved the performance over the non-
multi-level ones on both segment and system lev-
els.

4.3 Further Analysis
In addition to showing the superior performance
of the multi-level framework, our experiments also
indicate the following observations.

Firstly, for BLEU and Meteor, document-level
score computed by weighted averaging sentence-
level scores can get better system-level correla-
tion with human judgment, compared to that of the
original document-level score which is computed
from aggregate statistics accumulated over the en-

Out-of-English
metric segτ sysγ

Original BLEU – 0.843
Sentence BLEU 0.221 0.846
Original Meteor 0.228 0.845
Sentence Meteor 0.228 0.853

Multi− levelw Meteor 0.234 0.861
DREEM 0.236 0.904#

Multi− levelw DREEM 0.241 0.922⋆#

Table 2: Correlations with human judgment on the WMT
data for Out-of-English task. Results are averaged over all
out-of-English test sets.# indicates DREEM is significantly
better than its corresponding version of Meteor, with a sig-
nificance level of 0.05.⋆ indicates the improvement over the
non-multi-level metric is statistically significant.

tire document.

task low medium high
Into-En 0.93 0.81 0.75

Out-of-En 0.99 0.90 0.81

Table 3:The value of parameterα in multi-level Meteor.

Secondly, for Meteor, recall received a larger
weight for low-quality translations than for high-
quality translations. For instance, as depicted in
Table 3, the parameterα in Meteor is higher for
low-quality translations.

Finally, the syntax feature received higher
weight for high-quality translations than for low-
quality translations. In contrast, as shown in Table
4, the surfacen-gram feature was assigned larger
weight for low-quality translations .

task low medium high
one-hot 0.23 0.11 0.05

word vec 0.42 0.42 0.40
greedy RAE 0.18 0.20 0.20

tree RAE 0.17 0.27 0.35

Table 4: The weights of each representation in the multi-
level DREEM tuned for Into-English task. The syntax-based
tree RAE representation received higher weight for high-
quality translations, while one-hot representation received
higher weight for low-quality translations.

5 Conclusions
Translations generated by statistical systems typi-
cally have a large variance in terms of their scores
against human references. Motivated by such ob-
servation, we propose a multi-level framework. It
enables a metric to deploy different criteria for
various quality levels of translations. Our exper-
iments on the WMT metric task data show that
the multi-level strategy consistently improves the
performance of two benchmarking metrics on both
segment and system levels.
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