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Abstract

This paper describes LIMSI’s submis-
sions to the shared WMT’15 translation
task. We report results for French-English,
Russian-English in both directions, as well
as for Finnish-into-English. Our submis-
sions use NCODE and MOSES along with
continuous space translation models in a
post-processing step. The main novelties
of this year’s participation are the follow-
ing: for Russian-English, we investigate a
tailored normalization of Russian to trans-
late into English, and a two-step process to
translate first into simplified Russian, fol-
lowed by a conversion into inflected Rus-
sian. For French-English, the challenge is
domain adaptation, for which only mono-
lingual corpora are available. Finally, for
the Finnish-to-English task, we explore
unsupervised morphological segmentation
to reduce the sparsity of data induced by
the rich morphology on the Finnish side.

1 Introduction

This paper documents LIMSI’s participation to the
machine translation shared task for three language
pairs: French-English and Russian-English in both
directions, as well as Finnish-into-English. Each
of these tasks poses its own challenges.

For French-English, the task differs slightly
from previous years as it considers user-generated
news discusssions. While the domain remains the
same, the texts that need to be translated are of
a less formal type. To cope with the style shift,
new monolingual corpora have been made avail-
able; they represent the only available in-domain
resources to adapt statistical machine translation
(SMT) systems.

For Russian-English, the main source of diffi-
culty is the processing of Russian, a morphologi-

cally rich language with a much more complex in-
flectional system than English. To mitigate the ef-
fects of having too many Russian word forms, we
explore ways to normalize Russian prior to trans-
lation into English, so as to reduce the number of
forms by removing some ”redundant” morpholog-
ical information. When translating into Russian,
we consider a two-step scenario. A conventional
SMT system is first built to translate from En-
glish into a simplified version of Russian; a post-
processing step then restores the correct inflection
wherever needed.

Finally, for Finnish-into-English, we report pre-
liminary experiments that explore unsupervised
morphological segmentation techniques to reduce
the sparsity issue induced by the rich morphology
of Finnish.

2 Systems Overview

Our experiments use NCODE1, an open source im-
plementation of the n-gram approach, as well as
MOSES, which implements a vanilla phrase-based
approach.2 For more details about these toolkits,
the reader can refer to (Koehn et al., 2007) for
MOSES and to (Crego et al., 2011) for NCODE.

2.1 Tokenization and word alignments

Tokenization for French and English text relies
on in-house text processing tools (Déchelotte et
al., 2008). All bilingual corpora provided by
the organizers were used, except for the French-
English tasks where the UN corpus was not con-
sidered.3 We also used a heavily filtered version
of the Common Crawl corpus, where we discard
all sentences pairs that do not look like proper
French/English parallel sentences. For all cor-

1http://ncode.limsi.fr
2http://www.statmt.org/moses/
3In fact, when used in combination with the Giga Fr-En

corpus, no improvement could be observed (Koehn and Had-
dow, 2012).
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pora, we finally removed all sentence pairs that did
not match the default criteria of the MOSES script
clean-corpus-n.pl or that contained more
than 70 tokens.

Statistics regarding the parallel corpora used
to train SMT systems are reported in Ta-
ble 1 for the three language pairs under
study. Word-level alignments are computed using
fast align (Dyer et al., 2013) with options ”-d
-o -v”.

2.2 Language Models

The English language model (LM) was trained on
all the available English monolingual data, plus
the English side of the bilingual data for the Fr-En,
Ru-En and Fi-En language pairs. For the French
language model, we also used all the provided
monolingual data and the French side of the bilin-
gual En-Fr data. We removed all duplicate lines4

and trained a 4-gram language model, pruning all
singletons, with lmplz (Heafield et al., 2013).

2.3 SOUL

Neural networks, working on top of conventional
n-gram back-off language models, have been in-
troduced in (Bengio et al., 2003; Schwenk et al.,
2006) as a potential means to improve conven-
tional language models. As in our previous par-
ticipations (Le et al., 2012b; Allauzen et al., 2013;
Pécheux et al., 2014), we take advantage of the
proposal of (Le et al., 2011). Using a specific
neural network architecture, the Structured OUt-
put Layer (SOUL), it becomes possible to esti-
mate n-gram models that use large output vocab-
ulary, thereby making the training of large neural
network language models feasible both for target
language models and translation models (Le et al.,
2012a). Moreover, the peculiar parameterization
of continuous models allows us to consider longer
dependencies than the one used by conventional
n-gram models (e.g. n = 10 instead of n = 4).

3 Experiments for French-English

This year, the French-English translation task fo-
cuses on user-generated News discusssions, a less
formal type of texts than the usual News articles of
the previous WMT editions. Therefore, the main

4Experiments not reported in this paper showed no
changes in BLEU score between keeping or removing dupli-
cate lines, but removing duplicate lines conveniently reduced
the size of the models due to singleton pruning.

challenge for this task is domain adaptation, for
which only monolingual data are distributed.

3.1 Development and test sets
Since this is the first time this translation task is
considered, only a small development set of news-
discusssions is available. In order to properly tune
and test our systems, we performed a 3-fold cross-
validation, splitting the 1,500 in-domain sentences
in two parts. Each random split respects doc-
ument boundary, and yields roughly 1,000 sen-
tences for tuning and 500 sentences for testing.
The source of the documents, the newspapers Le
Monde and The Guardian are also known. This
allows us to balance the proportion of documents
from each source in the development and test sets.
The BLEU scores for the French-English experi-
ments are computed on the concatenation of each
test set decoded using weights tuned on the corre-
sponding 1,000 sentence tuning set.

3.2 Domain adaptation
The vast majority of bilingual data distributed for
the translation task are News articles, meaning that
they correspond to a more formal register than the
News discussions. The only in-domain texts pro-
vided for this task are monolingual corpora. Nev-
ertheless, these monolingual data have been used
to adapt both the translation and language models.
To adapt the bilingual data, we subsampled the
concatenation of the noisy Common Crawl and
Giga Fr-En corpus, which represent around 90%
of all our bilingual data, using the so-called Mod-
ified Moore-Lewis (Axelrod et al., 2011) filter-
ing method (MML). We kept all the Europarl and
News-Commentary data. MML expects 4 LMs to
score sentence pairs in the corpus we wish to fil-
ter: for the source and target languages, it requires
a LM trained with in-domain data, along with an
out-of-domain LM estimated on the data to fil-
ter.5 The MML score of a sentence pair is the sum
of the source and target’s perplexity differences
for both in-domain and out-of-domain LMs. Sen-
tences pairs are ranked according to the MML score
and the top N parallel sentences are used to learn
the translation table used during decoding.

For LM adaptation, we used a log-linear combi-
nation of our large LM with a smaller one trained
only on the monolingual in-domain corpus.6

5All language models for the MML scoring are 4-grams
trained with lmplz.

6Corresponding respectively to 3.5 and 50 millions sen-
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Corpus
Fr-En Ru-En Fi→En

Sentences Tokens (Fr-En) Sentences Tokens (Ru-En) Sentences Tokens (Fi-En)

parallel data 24.3M 712.8M-597.7M 2.3M 45.7M-47.3M 2M 37.3M-51.7M
monolingual data 2.2B-2.7B 834.7M-2.7B -2.7B

Table 1: Statistical description of the training corpora

3.3 Reranking
The N-best reranking steps uses the following fea-
ture sets to find a better hypothesis among the
1,000-best hypotheses of the decoder:

• IBM1: IBM1 features (Hildebrand and Vo-
gel, 2008);
• POSLM: 6-gram Witten-Bell smoothed POS

LM trained with SRILM on all the monolin-
gual news-discussions corpus;
• SOUL: Five features, one monolingual tar-

get language model and 4 translation models,
see section 2.3 for details;
• TagRatio: ratio of translation hypothesis by

number of source tokens tagged as verb, noun
or adjective;
• WPP: count-based word posterior probabil-

ity (Ueffing and Ney, 2007);

POS tagging is performed using the Stanford
Tagger7. The reranking system is trained us-
ing the kb-mira algorithm (Cherry and Foster,
2012) implemented in MOSES.

3.4 Experimental results
For all French-English experiments, we used
MOSES and NCODE with the default options, in-
cluding lexicalized reordering models. Tuning is
performed using kb-mira with default options
on 200-best hypotheses.

Table 2 reports experimental results for filter-
ing the bilingual data using MML before or after
learning the word alignment step. Results for fil-
tering are always lower when the word alignments
are learnt only on the filtered data. The baseline
system, which uses all the bilingual data, yields
better performance than all our filtered systems,
even though keeping only 25% of the bi-sentences,
gives almost similar results. However, since there
is no clear gain in filtering, we kept all the data
without any MML filtering for the following exper-
iments. The additional LM learned only on the
in-domain data gives a slight improvement, +0.18

tences for French and English.
7http://nlp.stanford.edu/software/tagger.shtml

Configuration Fr-En

baseline 29.33

before
10% 28.63
25% 29.09
50% 28.96

after
10% 29.14
25% 29.31
50% 29.11

Table 2: Results (BLEU) for keeping the top 10%,
25% or 50% of the bi-sentences scored with MML,
before and after word alignment. The baseline sys-
tem uses all the bilingual data.

Configuration Fr-En En-Fr

w/o additional LM 29.15 29.56
w/ additional LM 29.33 30.22

Table 3: Results (BLEU) with and without the ad-
ditional in-domain language model.

BLEU, for Fr-En, and a larger improvement for
En-Fr (+0.66 BLEU, see Table 3).

Table 4 reports the comparison between NCODE

and MOSES. MOSES outperforms NCODE on our
in-house test set using the 3-fold cross-validation
procedure. However, when tuning on the complete
development set and testing on the official test set,
we observed a different result where NCODE out-
performs MOSES for Fr-En (+0.69 BLEU), while
MOSES remains the best choice for En-Fr (+0.74
BLEU). These differences between the results ob-
tained with our dev/test configuration and the of-
ficial ones may be due to the lack of tuning data
when performing the 3-fold cross-validation, leav-
ing only 1,000 sentences for tuning. Nonetheless,
further investigations will be helpful to better un-
derstand these discrepancies.

Regarding reranking, results in Table 5 show
that SOUL is the most useful feature and sig-
nificantly improves translation performance when
reranking a 1,000-best list generated by the de-
coder: we observe an improvement of nearly +0.9
BLEU for both translation directions. These re-
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System
in-house test official test

Fr-En En-Fr Fr-En En-Fr

MOSES 29.33 30.22 32.16 35.74
NCODE 28.66 30.17 32.85 35.00

Table 4: Results (BLEU) for NCODE and MOSES

on respectively the in-house and official test set.

Feature sets Fr-En En-Fr

baseline 29.33 30.22

+ IBM1 29.24 30.25
+ POSLM 29.45 30.28
+ SOUL 30.20 31.15
+ TagRatio 29.33 30.30
+ WPP 29.40 30.20

all 30.45 31.25

Table 5: Reranking results (BLEU) using differ-
ent feature sets individually and their combination.
For the all configurations these features are in-
troduced during a reranking step.

sults can be further improved by adding more fea-
tures during the reranking phase, with a final gain
of +1.12 and +1.03 BLEU, for respectively Fr-En
and En-Fr.

Our primary submissions for Fr-En and En-Fr
use MOSES to generate n-best list, with phrase
and reordering tables learned from all our bilin-
gual data; the reranking step includes all the fea-
tures presented in section 3.3.

4 Russian-English

Russian is a morphologically rich language char-
acterized notably by a much more complex inflec-
tion system than English. This observation was
the starting point of our work and led us to explore
ways to process Russian in order to make it closer
to English.

4.1 Preprocessing Russian

Inflections in Russian encode much more infor-
mation than in English. For instance, while En-
glish adjectives are invariable, their Russian coun-
terparts surface as twelve distinct word forms, ex-
pressing variations in gender (3), number (2) and
case (6). Such a diversity of forms creates data
sparsity issues, since many word forms are not ob-
served in training corpora. When translating from
Russian, the number of unknown words is accord-
ingly high, making it impossible to translate many

forms, even when they exist in the training corpus
with a different inflection mark. Conversely, when
translating into Russian, the system may not be
able to generate the correct word form in a given
context. Finally note that training translation mod-
els for such a language pair causes each English
word to be typically paired with a lot of transla-
tions of low probability, corresponding to morpho-
logical variants on the Russian side.

To address this issue, we decided to normalize
Russian by replacing all case marks by the cor-
responding nominative inflection: this applies to
nouns, adjectives and pronouns. For these word
types, the case information is thus lost, but the
gender and number marks are preserved.

4.2 Predicting Case Marks
When translating into Russian, the normalization
scheme described above is not well suited because
of its lossy reduction of Russian word forms. Its
use therefore requires a post processing step which
aims to recover the inflected forms from the output
of the SMT system. Since normalization essen-
tially removes the case information, this last step
consists in predicting the right case for a given nor-
malized word before generating the correctly in-
flected form.

For this purpose, we designed a cascade of Con-
ditional Random Fields (CRFs) models. A first
model predicts POS tags, which are then used by
a second model to predict the gender and number
information. A last model is then used to in-
fer the case from this information. POS, gender
and number prediction are used to disambiguate
the normalized words, which is necessary to gen-
erate the correct word forms. All predictions were
performed considering only the target side output,
meaning that no information from the source was
used. The first two models use standard features
for POS tagging as described in (Lavergne et al.,
2010). The last one (for case prediction) addition-
ally contains features testing the presence of a verb
or a preposition in the close vicinity of the word
under consideration.

4.3 Experimental results
Standard NCODE and MOSES configurations with
lexicalized reordering models were used for all
the English-Russian and Russian-English experi-
ments. Alignments in both directions were com-
puted with normalized Russian. The models were
tuned with kb-mira using 300-best lists.
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The results reported in Table 6 show a similar
trend for NCODE and MOSES in both translation
directions. Note that MOSES outperforms NCODE

(+0.72 BLEU) for Ru-En task. Using normal-
ized Russian as the source language allows us to
achieve a slight gain of +0.4 over the baseline for
both systems. Moreover, the addition of SOUL
models yields a further improvement of 1.1 BLEU
score (see Table 7). The English-into-normalized-
Russian task has been performed for the sake of
comparison, to assess the gain we could expect if
we were able to always predict the right case for
the normalized Russian output. The comparison
of BLEU scores between translating directly into
Russian and producing an intermediate normal-
ized Russian shows differences of 3.15 BLEU for
NCODE and 3.44 BLEU for MOSES. These scores
represent an upper-bound that unfortunately we
were not able to reach with our post-processing
scheme.

System MOSES NCODE

Baseline 26.85 26.02
+ Normalized Ru 27.27 26.44

+ SOUL 27.28

Table 6: Results (BLEU) for Russian-English
with NCODE and MOSES on the official test.

System MOSES NCODE

Baseline 22.91 22.97
+ SOUL 24.08

En-Rx 26.35 26.12
En-Rx-Ru 19.99 19.88

Table 7: Results (BLEU) for English-Russian (Rx
stands for normalized Russian) with NCODE and
MOSES on the official test. The score for En-Rx
was obtained over the normalized test.

4.4 Error Analysis

As Russian is a morphologically rich language,
which has many features not observed in the En-
glish language, we conducted a simple error anal-
ysis to better understand the possible morpholog-
ical mistakes made by our NCODE baseline. We
used METEOR to automatically align the outputs
with the original references at the word level, dis-
carding multiple alignment links. About 56.3%
of the words in the NCODE output have a coun-

terpart in the human references, which is consis-
tent with the BLEU unigram precision (53.3%).
Among those, 85.4% are identical and 9.8% are
different but share a common lemma. This last sit-
uation happens when our system fails to predict
the correct form. The remaining 4.8% (different
word forms with no common lemma), correspond
either to synonyms or to METEOR alignment er-
rors. Figure 1 also suggests that, within the 9.8%
word form errors, most morphological errors are
related to case prediction. Figure 1 displays de-
tailed results split by POS. Results for MOSES or
when rescoring NCODE outputs with SOUL are
very similar.

case

52.5%

number

21.0%

gender

14.9%
tense

5.6%

voice
4.5%

others

2.5%

(a) Incorrectly predicted inflections

noun

44.6%

verb

12.6%

long-form adjective

35.1%

long-form participle

4.2%

others

3.5%

(b) Word form errors wrt POS

Figure 1: Distribution of mispredictions for
NCODE outputs, according to the mispredicted in-
flection (a) and their POS (b).

5 Translating Finnish into English

This is our first attempt to translate from Finnish
to English. The provided development set con-
tains only 1,500 parallel sentences. Therefore all
the results are computed using a two-fold cross
validation. The baseline system is a conventional
phrase-based system built with the MOSES toolkit.
Experimental results are in Table 8. The first two
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Configuration dev. test
Baseline 13.2 12.8
+ large LM 16.1 15.7
+ Morph. segmentation 16.2 15.9

Table 8: BLEU scores for the Finnish to English
translation task, obtained with different configura-
tions after a two-fold cross-validation.

lines give the BLEU scores obtained with a basic
tokenization of the Finnish side. When the English
LM is only estimated on the parallel data, the sys-
tem achieves a BLEU score of 12.8, while using
a LM estimated on all the available monolingual
data yields a 1.8 BLEU point improvement.

Finnish is a synthetic language that employs ex-
tensive regular agglutination. This peculiarity im-
plies a large variety of word forms and, again, se-
vere sparsity issues. For instance, we observed on
the available parallel training data 860K different
Finnish forms for 37.3M running words and only
2M sentences. Among these forms, more than half
are hapax. For comparison purposes, we observed
in English 208K word forms for 51.7M running
words. To address this issue, we have tried to re-
duce the number of forms in the Finnish part of the
data. For that purpose, we use Morfessor 8 to
perform an unsupervised morphological segmen-
tation. The new Finnish corpus therefore con-
tains 67K types for 77M running words. With
this new version, we obtain only a slight improve-
ment of 0.2 BLEU point. We assume that the
Finnish data was over-segmented and that a bet-
ter tradeoff can be found with an extensive tuning
of Morfessor.

6 Discussion and Conclusion

This paper described LIMSI’s submissions to the
shared WMT’15 translation task. We reported re-
sults for French-English, Russian-English in both
direction, as well as for Finnish-into-English. Our
submissions used NCODE and MOSES along with
continuous space translation models in a post-
processing step. Most of our efforts for this years
participation were dedicated to domain adaptation
and more importantly to explore different strate-
gies when translating from and into a morpholog-
ically rich language.

For French-English, we experimented adapta-

8https://github.com/aalto-speech/
morfessor

tion using only monolingual data that represents
the targeted text, i.e news-discussions. Our at-
tempt to filter the available parallel corpora did
not bring any gain, while the use of an additional
language model estimated on news-discussions
yielded slight improvement.

When translating from Russian into English,
small improvements were observed with a tailored
normalization of Russian. This normalization was
designed to reduce the number of word forms and
to make it closer to English. However, experi-
ments in the other direction were disappointing.
While the first step that translates from English to
the normalized version of Russian showed positive
results, the second step designed to recover Rus-
sian inflected forms failed. This failure may be
related to the cascade of statistical models, work-
ing solely on the target side. However, the reasons
need to be better understood with a more detailed
study.

To translate from Finnish into English, we
explored the use of unsupervised morphological
segmentation. Our attempt to reduce the num-
ber of forms on the Finnish side did not sig-
nificantly change the the BLEU score. This
under-performance can be explained by an over-
segmentation of the Finnish data, and maybe a bet-
ter tradeoff can be found with a more adapted seg-
mentation strategy.

We finally reiterate our past observations that
continuous space translation models used in a
post-processing step always yielded significant
improvements across the board.
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