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Abstract

We address the problem of interac-
tively learning perceptually grounded
word meanings in a multimodal dialogue
system. We design a semantic and visual
processing system to support this and il-
lustrate how they can be integrated. We
then focus on comparing the performance
(Precision, Recall, F1, AUC) of three
state-of-the-art attribute classifiers for the
purpose of interactive language ground-
ing (MLKNN, DAP, and SVMs), on the
aPascal-aYahoo datasets. In prior work,
results were presented for object classi-
fication using these methods for attribute
labelling, whereas we focus on their per-
formance for attribute labelling itself. We
find that while these methods can perform
well for some of the attributes (e.g. head,
ears, furry) none of these models has good
performance over the whole attribute set,
and none supports incremental learning.
This leads us to suggest directions for fu-
ture work.

1 Introduction

Identifying, classifying and talking about ob-
jects or events in the surrounding environment
are key capabilities for intelligent, goal-driven
systems that interact with other agents and the
external world (e.g. smart phones, robots, and
other automated systems), as well as for image
search/retrieval systems. To this end, there has
recently been a surge of interest and significant
progress made on a variety of related tasks, in-
cluding generation of Natural Language (NL) de-
scriptions of images, or identifying images based
on NL descriptions (Karpathy and Fei-Fei, 2014;
Bruni et al., 2014; Socher et al., 2014). Another
strand of work has focused on learning to generate

object descriptions and object classification based
on low level concepts/features (such as colour,
shape and material), enabling systems to identify
and describe novel, unseen images (Farhadi et al.,
2009; Silberer and Lapata, 2014; Sun et al., 2013).

Our goal is to build interactive systems that can
learn grounded word meanings relating to their
perceptions of real-world objects – rather than ab-
stract coloured shapes as in some previous work
e.g. (Roy, 2002). For example, we aim to build
multimodal interfaces for Human-Robot Interac-
tion which can learn object descriptions and ref-
erences in interaction with humans. In contrast
to recent work on image description using ‘deep
learning’ methods, this setting means that the sys-
tem must be trainable from little data, composi-
tional, able to handle dialogue, and adaptive – for
instance so that it can learn visual concepts suit-
able for specific tasks/domains, and even new id-
iosyncratic language usage for particular users.

However, most of the existing systems for im-
age description rely on training data of both high
quantity and high quality with no possibility of on-
line error correction. Furthermore, they are unsuit-
able for robots and multimodal systems that need
to continuously, and incrementally learn from
the environment, and may encounter objects they
haven’t seen in training data. These limitations are
likely to be alleviated if systems can learn con-
cepts, as and when needed, from situated dialogue
with humans. Interaction with a human tutor en-
ables systems to take initiative and seek the partic-
ular information they need or lack by e.g. asking
questions with the highest information gain (see
e.g. (Skocaj et al., 2011), and Fig. 1).

For example, a robot could ask questions to
learn the color of a “mug” or to request to be pre-
sented with more “red” things to improve its per-
formance on the concept (see e.g. Figure 1). Fur-
thermore, such systems could allow for meaning
negotiation in the form of clarification interactions
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Dialogue Image Final semantics

S: Is this a green mug?
T: No it’s red
S: Thanks.

 x=o1 : e
p2 : red(x)
p3 : mug(x)



T: What can you see?
S: something red.
What is it?
T: A book.
S: Thanks.


x1=o2 : e
p : book(x1)
p1 : red(x1)
p2 : see(sys, x1)



Figure 1: Example dialogues & resulting semantic representations

with the tutor.
This paper presents initial work in a larger pro-

gramme of research with the aim of developing
dialogue systems that learn (visual) concepts –
word meanings – through situated dialogue with
a human tutor. Specifically, we compare several
existing state-of-the-art classifiers with regard to
their suitability for interactive language grounding
tasks. We compare the performance of MLKNN
(Zhang and Zhou, 2007), DAP (zero-shot learn-
ing (Lampert et al., 2014)), and SVMs (Farhadi et
al., 2010) on the image datasets aPascal (for train-
ing) and aYahoo (testing) – see section 4. To our
knowledge, this paper is the first to compare these
attribute classifiers in terms of their suitability for
interactive language grounding.

Our other contribution is to integrate an incre-
mental semantic grammar suited to dialogue pro-
cessing – DS-TTR1 (Purver et al., 2011; Eshghi et
al., 2012), see section 3 – with visual classifica-
tion algorithms that provide perceptual grounding
for the basic semantic atoms in the representations
produced by the parser through the course of a di-
alogue (see Fig. 1). In effect, the dialogue with the
tutor continuously provides semantic information
about objects in the scene which is then fed to an
online classifier in the form of training instances.
Conversely, the system can utilise the grammar
and its existing knowledge about the world, en-
coded in its classifiers, to make reference to and
formulate questions about the different attributes
of an object identified in the scene.

2 Related work

There has recently been a lot of research into
learning to classify and describe images/objects.

1Downloadable from http://dylan.sourceforge.
net

Some approaches attempt to ground meaning
of words/phrases/sentences in images/objects by
mapping these modalities into the same vector
space (Karpathy and Fei-Fei, 2014; Silberer and
Lapata, 2014; Kiros et al., 2014), or using dis-
tributional semantic models that build distribu-
tional representations with the conjunction of tex-
tual and visual information (Bruni et al., 2014).
Other approaches, such as (Socher et al., 2014),
propose Neural Network models based on Depen-
dency Trees (DT), which project all words in a
sentence into a DT structured representation to ex-
plore parents of each node and correlations be-
tween nodes.

In contrast to these approaches, which do not
support NL dialogues, some approaches are de-
signed based on logical semantic representations
and some of them are incorporated with spoken
dialogue systems (Skocaj et al., 2011; Matuszek
et al., 2012; Kollar et al., 2013). A well-known
logical semantic parser is the Combinatory Cate-
gorial Grammar (CCG) parser, which represents
natural language sentences from human tutors in
the logical forms. The “Logical Semantics with
Perception” (LSP) framework by Kollar et al. (Kr-
ishnamurthy and Kollar, 2013) and the joint lan-
guage/perception model by Matuszek et al. (Ma-
tuszek et al., 2012) are based on a CCG parser
or using a CCG lexicon respectively. Although a
CCG parser could generate similar logical repre-
sentations to the DS-TTR parser/generator we use
here, we believe that DS-TTR would show bet-
ter performance than CCG in terms of handling
the inherent incremental, fragmentary and highly
context-dependent nature of dialogue.

The “Describer” system (Roy, 2002) learns to
generate image descriptions, but it works at the
level of word sequences rather than logical seman-
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tics, and uses only synthetically generated scenes
rather than real images and image processing. Our
approach extends (Dobnik et al., 2012) in integrat-
ing vision and language within a single formal sys-
tem: Type Theory with Records (TTR). This com-
bination will allow complex multi-turn dialogues
for language grounding with deep NL semantics,
including natural correction and clarification sub-
dialogues (e.g. “No this isn’t red, it’s green.”).

2.1 Attribute classification

Regarding attribute-based classification or de-
scription, Farhadi et al. (Farhadi et al., 2009) have
successfully described objects with attributes by
sharing appearance attributes across object cate-
gories. Silberer and Lapata (Silberer and Lapata,
2014) extend Farhadi et al.’s work to predict at-
tributes using L2-loss linear SVMs and to learn the
associations between visual attributes and particu-
lar words using Auto-encoders. Sun et al. (Sun
et al., 2013) also build an attribute-based identi-
fication model based on hierarchical sparse cod-
ing with a K-SVD algorithm, which recognizes
each attribute type using multinomial logistic re-
gression. However, as these models require a large
mass of training data, an increasing amount of re-
search attempts to learn novel objects using ‘one-
shot’ (Li et al., 2006; Krause et al., 2014) or ‘zero-
shot’ learning algorithms (Li et al., 2007; Lampert
et al., 2014). They enable a system to classify un-
seen objects with fewer or no examples by sharing
attributes between known and unknown objects.
Note that these methods ultimately focus on ob-
ject class labels, using attributes as intermediate
representations.

On the other hand, to learn attribute-based ob-
jects through NL interaction, some approaches
learn unknown objects or attributes with online
incremental learning algorithms (Li et al., 2007;
Kankuekul et al., 2012). The “George” system
(Skocaj et al., 2011), which is similar in spirit to
our work, learns object attributes from a human tu-
tor and creates specific questions to request infor-
mation to fill detected knowledge gaps. However,
the George system only learns about 2 shapes and
8 colours. Our goal is to couple attribute classifiers
with much wider coverage to the formal semantics
of a full Natural Language dialogue system.

3 System Architecture

We are developing a system to support an
attribute-based object learning process through
natural, incremental spoken dialogue interaction.
The architecture of the system is shown in Fig. 2.
The system has two main modules: a vision mod-
ule for visual feature extraction and classifica-
tion; and a dialogue system module using DS-
TTR (see below). Visual feature representations
are built based on base features akin to (Farhadi
et al., 2009). We do not yet have a fully inte-
grated dialogue system, so for our experiments
presented below, we assume access to logical se-
mantic representations, that will be output by the
DS-TTR parser/generator as a result of process-
ing dialogues with a human tutor (more on this
below) – and interface these representations with
attribute-based image classifiers. Below we de-
scribe these components individually and then ex-
plain how they interact.

3.1 Attribute-based Classifiers used
In this research, in order to explore the best so-
lution for attribute classification for an interactive
system, we compare several methods which have
previously shown good performance on image-
labelling tasks – a multi-label classification model,
a zero-shot learning model, and a linear SVM:

(a) MLkNN (Zhang and Zhou, 2007) is a su-
pervised multi-label learning model based on the
k-Nearest Neighbour algorithm, which predicts a
label set for unknown instances. It has previously
been used for scene labelling with 5 labels (sunset,
desert, mountains, sea, trees) and reached a Preci-
sion of 0.8;

(b) L2-loss Linear SVM as used by (Farhadi et
al., 2009). We used the published feature extrac-
tion and attribute training code2, though we appear
to have achieved slightly worse AUC results than
achieved in (Farhadi et al., 2009) (see section 4);

(c) Direct Attribute Prediction (DAP) (Lam-
pert et al., 2014), is a kind of zero-shot learn-
ing model, which implements a multi-layer clas-
sifier - the layer of attributes and the layer of la-
bels - which apply the attribute variables in the
attribute layer to decompose the object images in
the label layer. This model allows the use of any
supervised classification models for learning per-
attribute coefficients. Once the image-attribute pa-
rameters are predicted, DAP can explore the class-

2From http://vision.cs.uiuc.edu/attributes/
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Figure 2: Architecture of the simulated teachable system

attribute relations and infer the corresponding ob-
ject classes using a probabilistic model. In this
paper, we reimplement the DAP zero-shot learn-
ing model based on Lampert’s work; but since
we are here concerned only with attribute classi-
fication we only test the first tier of their algo-
rithm for attribute classification. (Note that al-
though both (Farhadi et al., 2009) and (Lampert
et al., 2014) implement a SVM classifier for each
attribute, DAP learns the supervised model with
the linearly combined χ2-kernels rather than the
original visual representations.) Note that the im-
plementation of the DAP model is not identical to
that of (Lampert et al., 2014), so our results are
not directly comparable to that paper. We used the
Libsvm 3.0 library (Chang and Lin, 2011), differ-
ing from the Shogun library in the original imple-
mentation for learning visual classifiers. To more
directly compare the DAP model with other meth-
ods, we moreover generated the visual represen-
tation using the feature extraction algorithms by
(Farhadi et al., 2009) instead of the original meth-
ods.

All models will output attribute-based label sets
for novel unseen images by predicting binary la-
bel vectors. We build visual representations and
binary label vectors as inputs to train new clas-
sifiers for learning attributes, as explained in the
following subsections.

3.1.1 Visual Feature Representation

Following the feature extraction methods pro-
posed by (Farhadi et al., 2009), we extract a fea-
ture representation consisting of the base features
for learning to classify and describe novel objects,
i.e. the colour space for colour attributes, texture
for materials, visual words for object components,
as well as edges for shapes.

Colour descriptors, consisting of L*A*B colour
space values, are extracted for each pixel and then
are quantized to the nearest 128 k-means cen-
tres. These descriptors inside the bounding box
are binned into individual histograms. Edges and
their orientations are detected using a MATLAB
canny edge detector, which contributes to finding
both edges and boundaries of objects within an
image. Detected edges are quantized into 8 un-
signed bins. A texture descriptor is computed for
each pixel and then quantized to the nearest 256
k-means centres. Finally, object visual words are
built in HOG descriptors using 8x8 blocks, a 4-
pixel step size, and quantized into 512 k-means
centres.

The feature extractor in the vision module
presents a feature matrix with dimensions w ×
9751, where w is the number of training instances,
and each training instance has a 9751-dimensional
vector generated by stacking all quantized fea-
tures, as shown in Figure 2.
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3.1.2 Binary Label Vectors
For learning multi-attribute objects, the multi-
label models require a label vector for each train-
ing instance. In the interactive system, an instance
χ and its related label set η ⊆ Y are given by the
feature extractor and DS-TTR parser individually,
where Y is a total collection of attribute-based la-
bels. We suppose

−→
l is the binary label vector for

χ, where its i-th component
−→
l (i)(i ∈ η) will take

the value 1 if i ∈ Y and -1 otherwise. Eventually,
the system builds a binary label matrix with di-
mensions w×n, where w is the number of instances
and n is the total number of labels for all training
instances. Each instance contains a full binary la-
bel vector. The label vectors and feature represen-
tations are used to learn new classifiers once novel
object instances are learned incrementally from in-
teraction.

3.2 Dynamic Syntax (DS)

The DS module is a word-by-word incremental
semantic parser/generator, based around the Dy-
namic Syntax (DS) grammar framework (Cann et
al., 2005) especially suited to the fragmentary and
highly contextual nature of dialogue. In DS, di-
alogue is modelled as the interactive and incre-
mental construction of contextual and semantic
representations (Purver et al., 2011). The con-
textual representations afforded by DS are of the
fine-grained semantic content that is jointly nego-
tiated/agreed upon by the interlocutors, as a re-
sult of processing questions and answers, clarifi-
cation requests, corrections, acceptances, etc (see
Eshghi et al (2015) for an account of how this can
be achieved grammar-internally as a low-level se-
mantic update process). Recent versions of DS
incorporate Type Theory with Records (TTR) as
the logical formalism in which meaning represen-
tations are couched (Purver et al., 2011; Eshghi et
al., 2012), due to its useful properties. Here we
do not introduce DS due to space limitations but
proceed to introducing TTR.

3.3 Type Theory with Records

Type Theory with Records (TTR) is an exten-
sion of standard type theory shown to be use-
ful in semantics and dialogue modelling (Cooper,
2005; Ginzburg, 2012). TTR is particularly well-
suited to our problem here as it allows information
from various modalities, including vision and lan-
guage, to be represented within a single semantic

framework (see e.g. Larsson (2013); Dobnik et al.
(2012) who use it to model the semantics of spatial
language and perceptual classification).

In TTR, logical forms are specified as record
types (RTs), which are sequences of fields of the
form [ l : T ] containing a label l and a type T . RTs
can be witnessed (i.e. judged true) by records of
that type, where a record is a sequence of label-
value pairs [ l = v ]. We say that [ l = v ] is of type
[ l : T ] just in case v is of type T .

R1 :

 l1 : T1
l2=a : T2
l3=p(l2) : T3

 R2 :
[

l1 : T1
l2 : T2′

]
R3 : []

Figure 3: Example TTR record types

Fields can be manifest, i.e. given a singleton
type e.g. [ l : Ta ] where Ta is the type of which
only a is a member; here, we write this using the
syntactic sugar [ l=a : T ]. Fields can also be de-
pendent on fields preceding them (i.e. higher) in
the record type (see Fig. 3).

The standard subtype relation v can be defined
for record types: R1 v R2 if for all fields [ l : T2 ]
in R2, R1 contains [ l : T1 ] where T1 v T2. In Fig-
ure 3, R1 v R2 if T2 v T2′ , and both R1 and R2 are
subtypes of R3. This subtyping relation allows se-
mantic information to be incrementally specified,
i.e. record types can be indefinitely extended with
more information/constraints. For us here, this
is a key feature since it allows the system to en-
code partial knowledge about objects, and for this
knowledge (e.g. object attributes) to be extended
in a principled way, as and when this information
becomes available.

3.4 Integration

Fig. 2 shows how the various parts of the system
interact. At any point in time, the system has ac-
cess to an ontology of (object) types and attributes
encoded as a set of TTR Record Types, whose in-
dividual atomic symbols, such as ‘red’ or ‘mug’
are grounded in the set of classifiers trained so far.

Given a set of individuated objects in a scene,
encoded as a TTR Record (see above), the sys-
tem can utilise its existing ontology to output some
maximal set of Record Types characterising these
objects (see e.g. Fig. 1). Since these representa-
tions are shared by the DS-TTR module, they pro-
vide a direct interface between perceptual classifi-
cation and semantic processing in dialogue: they
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can be used directly at any point to generate utter-
ances, or ask questions about the objects.

On the other hand, the DS-TTR parser incre-
mentally produces Record Types (RT), represent-
ing the meaning jointly established by the tutor
and the system so far. In this domain, this is ulti-
mately one or more type judgements, i.e. that some
scene/image/object is judged to be of a particular
type, e.g. in Fig. 1 that the individuated object, o1
is a red mug. These jointly negotiated type judge-
ments then go on to provide training instances for
the classifiers. In general, the training instances
are of the form, 〈O,T 〉, where O is an image/scene
segment (an object), and T , a record type. T is
then converted automatically to an input format
suitable for specific classifiers; e.g. the dialogues
in Fig. 1 provide the following instances to our
classifiers: 〈o1, {red,mug}〉 and 〈o2, {red, book}〉.

What sets our approach apart from other work
is that these types are constructed/negotiated in-
teractively, and so both the system and the tutor
can contribute to a single representation (see e.g.
second row of Fig. 1).

4 Experiments and Results

4.1 Datasets for Attribute-based classification
In order to compare the different classifiers with
previous work (Farhadi et al., 2009), we perform
our experiments on a benchmark dataset of natu-
ral object-based images with attribute annotations
– the aPascal-aYahoo data set3 – which is intro-
duced by Farhadi et al. The aPascal-aYahoo data
set has two subsets: the Pascal VOC 2008 dataset
and the aYahoo dataset. The Pascal VOC 2008
dataset is created for visual object classifications
and detections. The aPascal data set covers 20
attribute-labelled classes and each class contains
a number of samples, ranging from 150 to 1000.
The aYahoo dataset, as a supplement of the aPas-
cal dataset, contains objects similar to aPascal, but
with different correlations between attributes. The
aYahoo dataset only contains 12 objects classes.
Images in both aPascal and aYahoo sets are anno-
tated with 64 binary attributes, covering shape and
material as well as object components (see table
1). We use the 6340 images selected by (Farhadi
et al., 2009) from the aPascal dataset for training
and use the whole aYahoo dataset with 2644 im-
ages as the test set. As both aPascal and aYahoo
data sets are imbalanced in the number of positive

3http://vision.cs.uiuc.edu/attributes/

instances for each attribute, as shown in table 1,
this might affect the performance of the models on
attribute classification.

4.2 Experiment Setup

We test how well the different classifiers work on
learning object attributes. We implemented sev-
eral classification models – MLkNN, DAP, and
SVMs as described in Section 3.1. Most work
on attribute classification reports the Precision and
Recall only for object classes – which are com-
puted using the attribute labels – but we are di-
rectly interested in the performance of the attribute
classifiers themselves. Thus we report Precision,
Recall, and F1-Score for the attribute labels for
each model. We also show the average scores
across all attributes in table 2.

4.3 Results

We first plot the Precision and Recall for each at-
tribute for the different models, as shown in fig-
ures 4 and 5. We take Precision to be 1 where the
number of True Positives and False Negatives are
both 0 for an attribute (otherwise it would be un-
defined).

Figures 4 - 7 compare the different methods for
each attribute in terms for Precision, Recall, F1,
and AUC (Area Under ROC Curve). The AUC
scores are computed using an open library for
computer vision algorithms – Vlfeat (Vedaldi and
Fulkerson, 2010).

Table 2 shows the average scores for each
method, computed across all of the attributes. The
results show that DAP generally has better perfor-
mance across all of the attributes, although each
method has specific strengths and weaknesses.

5 Discussion

The results presented above show that while the
models sometimes perform quite well on specific
attributes, the performance over all attributes in
general is rather poor. But we note that the shapes
of the plots in the Precision and the Macro-F1 Fig-
ures, 4 and 6, are very similar, showing that the
performance of the algorithms are correlated with
external factors, certainly including the number of
positive training instances, but also how distinc-
tive (easy to detect) an attribute generally is. For
example, the attribute ‘Furry’ with 250 training
instances is performing relatively well using all
three algorithms while other attributes with sim-
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Attribute Label aPascal aYahoo Attribute Label aPascal aYahoo Attribute Label aPascal aYahoo
2D Boxy 207 146 3D Boxy 393 752 Round 39 179
Vert Cyl 195 334 Horiz Cyl 94 286 Occluded 1913 778

Tail 184 529 Head 1737 1157 Ear 1097 1048
Snout 237 708 Nose 995 345 Mouth 930 332
Hair 1095 216 Face 1022 392 Eye 1183 1061
Torso 1538 1024 Hand 811 364 Arm 1080 383
Leg 994 922 Foot/Shoe 604 719 Wing 114 11

Window 304 167 Row Wind 86 224 Wheel 336 64
Door 192 13 Headlight 162 36 Taillight 104 5

Side mirror 150 71 Exhaust 50 41 Handlebars 92 37
Engine 35 71 Text 84 388 Horn 4 145
Rein 32 284 Saddle 20 121 Skin 1396 161
Metal 581 739 Plastic 260 459 Wood 195 167
Cloth 1591 123 Furry 250 996 Glass 180 34

Feather 99 1 Wool 12 15 Clear 32 42
Shiny 432 527 Leather 6 85

Table 1: The Number of Positive instances on each attribute in aPascal-aYahoo Datasets (aPascal for
training set, aYahoo for testing Set, attributes with no testing instances removed)

Figure 4: Precisions on each attribute for each method: MLkNN, DAP and Linear SVM (note that
Precision is defined as 1 when there are in fact no True positives or False positives returned)

Figure 5: Recalls on each attribute for each method (MLkNN, DAP and Linear SVM)

ilar numbers of training instances are performing
far worse.

Since our ultimate goal here is to create a full
dialogue system that can learn concepts (word

66



Figure 6: Macro-F1 on each attribute for each method (MLkNN, DAP and Linear SVM)

Figure 7: Area Under ROC curve for each attribute for each method (MLkNN, DAP and Linear SVM)

meanings) from human tutors, these results would
lead us to pick, at least in an initial proof-of-
concept system, attributes that show rapid learn-
ing rates. Presumably this is why prior work on
this problem has often used ‘toy’ images where
real image processing is not required (e.g. (Roy,
2002; Kennington et al., 2015)).

What we would need ultimately are attribute
classifier learning methods which can operate ef-
fectively on small numbers of examples, and
which can improve performance robustly when
new examples are presented, without “unlearning”
previous examples and without needing long re-
training times. The dialogue abilities of the over-
all system will allow correction and clarification
interactions to correct false positives (e.g “it’s not
red it’s green”) and other errors, and the attribute
classification model must allow for such rapid re-
training.

Finally we note that none of these algorithms
are incremental. Incremental learning methods
(Kankuekul et al., 2012; Tsai et al., 2014; Furao
et al., 2007; Zheng et al., 2013) have been devel-
oped to train object classification networks with-
out abandoning previously learned knowledge or
destroying the old trained prototypes. These meth-
ods (such as (Kankuekul et al., 2012)) could en-
able systems to label known/unknown attributes
gradually through NL interaction with human tu-
tors. Incremental learning approaches can also
speed up the object learning/prediction process
and the system responses, rather than taking a long
computational time.

We will explore these approaches in future
work, to learn objects and their perceptual at-
tributes gradually from conversational Human-
Robot interaction.
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Model average Precision average Recall average Macro-F1
MLkNN 0.5186 0.1537 0.2372

DAP 0.3326 0.2276 0.2703
SVMs 0.1676 0.3118 0.2180

Table 2: Average scores across attribute labels for each method, trained on aPascal and tested on aYahoo

6 Conclusion

We are developing a multimodal interface to ex-
plore the effectiveness of situated dialogue with
a human tutor for learning perceptually-grounded
word meanings. The system integrates the seman-
tic/contextual representations from an incremen-
tal semantic parser/generator, DS-TTR, with at-
tribute classification models to evaluate their per-
formance.

We compared the performance (Precision, Re-
call, F1, AUC) of several state-of-the-art attribute
classifiers for the purpose of interactive language
grounding (MLKNN, DAP, and SVMs), on the
aPascal-aYahoo datasets. The results show that
the models can sometimes perform quite well on
specific attributes (e.g. head, ears, torso), but the
performance over all attributes in general is rather
poor. This leads us to either restrict the attributes
actually used in a real system, or to explore other
methods, such as incremental learning.

The immediate future direction our research
will take is in developing and evaluating a fully
implemented system involving classifiers incor-
porated with incremental learning algorithms for
each visual attribute, DS-TTR, and a pro-active di-
alogue manager that formulates the right questions
to gain information and increase accuracy.

We envisage the use of such technology in mul-
timodal systems interacting with humans, such as
robots and smart spaces.
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