
Proceedings of the EMNLP 2015 Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics, pages 83–88,
Lisboa, Portugal, 18 September 2015. c©2015 Association for Computational Linguistics.

Where Was Alexander the Great in 325 BC?
Toward Understanding History Text with a World Model

Yuki Murakami and Yoshimasa Tsuruoka
The University of Tokyo, 3-7-1 Hongo, Bunkyo-ku, Tokyo, Japan
{murakami,tsuruoka}@logos.t.u-tokyo.ac.jp

Abstract

We present a toy world model for inter-
preting textual descriptions of the move-
ment record of a historical figure such as
Genghis Khan or Napoleon. We cast the
problem of document understanding as the
task of finding episodes that do not violate
the soft constraint conditions derived from
the document. The model thus allows us to
infer his or her locations by finding multi-
ple solutions of an optimization problem.
Our experimental results using Wikipedia
text on Alexander the Great demonstrate
that such inference can indeed be per-
formed with reasonable accuracy. We also
show that the information obtained from
such inference is useful in solving a hard
coreference resolution problem.

1 Introduction

Recent decades have witnessed great strides in
data-driven language processing technology, yet
there are still many unsolved problems when the
machine has to deal with the meaning of a doc-
ument. Let us consider the following simple
question-answering problem.

• Document:
David left Paris on the 20th of July, driving his favorite

Peugeot. He arrived in Athens on the 22nd.

• Question:
Where was David on the 21st?

A. London B. Budapest C. Berlin D. New York

A possible answer to this question would be “He
was probably in Budapest, although there is a
small chance that he was in Berlin”. Putting aside
the problem of natural language generation, the
machine would have to have geographical knowl-
edge and perform some kind of inference about his

movement if it is to give a sensible answer to this
question.

This paper presents a toy world model that al-
lows us to perform such inference. We test this
approach as a first step toward building a computer
system that can “understand” documents on world
history and answer various questions about histori-
cal figures and events. Our aim is to go beyond tra-
ditional question-answering frameworks in which
the system can only answer the questions about the
facts that are explicitly written in the document.
We aim to build a system that can simulate what
could have happened in the world history using
an internal model and give a reasonable answer to
any question as long as the answer can be inferred
from other pieces of information available in the
document.

In this paper, we focus on the much simpler sub-
problem of modeling the movement record of a
historical figure. Our world model is simply an
undirected graph with an agent moving on it, and
his potential movement histories are obtained as
possible solutions to an optimization problem. In
experiments, we show that our system can perform
inference about his locations with reasonable ac-
curacy and the information obtained from such in-
ference is useful in solving a hard coreference res-
olution problem.

2 Related Work

There is an increasing body of research on using
world knowledge and inference in high-level text
processing tasks such as textual entailment, coref-
erence resolution and question answering (Tatu
and Moldovan, 2005; Fowler et al., 2005; Rah-
man and Ng, 2011; Peng et al., 2015; Berant et al.,
2015). However, most of the existing approaches
use “static” knowledge that is typically expressed
as a collection of n-ary relations between entities,
and there is little work that attempts to model the
dynamics of a world.

83



Figure 1: The graph overlayed on the map

Our work is much closer in spirit to
SHRDLU (Winograd, 1971), where natural
language queries were processed using a world
model for toy blocks. More recent research
efforts for connecting language with physical
world include Logical Semantics with Percep-
tion (Krishnamurthy and Kollar, 2013), referential
grounding (Liu et al., 2014), 3D scene generation
from text (Chang et al., 2014) and generation
of QA tasks by simulation (Weston et al., 2015).
Our work can be seen as an attempt of grounding
textual descriptions in history text to a simulation
model for world history.

Our work is also related to previous work on
representing structured sequences of actions and
events using scripts (Schank and Abelson, 1977).
Chambers and Jurafsky (2008) proposed a nar-
rative chain model based on scripts. They fo-
cused on a particular character, extracted chains
of events on his behavior using verbs and their ar-
guments, and sorted them by learning.

3 Model and Inference

3.1 Toy World Model

Our toy world model consists of an agent and an
undirected graph G = (V, E), where V is the set
of its nodes and E is the set of its edges. Let
ht ∈ V denote the location of the agent at some
discrete time t. The agent starts from the initial
node h0 and, at each time step, either stays at the
same node or moves from the current node to its
adjacent node. The entire history of his movement,
which we hereafter call an episode, is thus defined
as < h0, h1, ..., hT >.

Here, we formulate the problem of understand-

ing a document about an agent as the task of find-
ing an episode that does not contradict the textual
descriptions about the agent’s locations. In other
words, the descriptions in the documents serve as
the constraints in finding a possible episode. Note
that, in general, there are many episodes that sat-
isfy the constraints, because documents rarely pro-
vide the full detail of the movement history of an
agent. Once we obtain those episodes, we can use
them to resolve questions about the location of the
agent at any particular time.

3.2 Alexander’s Expeditions
In this work, we create a world model for inter-
preting documents on Alexander the Great, who
was a famous king of ancient Macedonia. Fig-
ure 1 shows the graph that we have manually cre-
ated from a map using frequent location names in
Wikipedia. It shows the 35 locations names used
in our experiments. Note that this graph is a very
crude approximation to the real geographical cost
and constraints in those days. Ideally, we should
incorporate more detailed information such as dis-
tance, terrain, and environment into the model, but
we leave it for future work.

Constraint conditions are generated from a doc-
ument. For example, the sentence “Alexander the
Great won a battle near Granicus river in May
334 BC.” would produce the constraint that his lo-
cation in May 334 BC is Granicus, which trans-
lates into something like h2 = Granicus in our
model. Although sophisticated information ex-
traction techniques could be used to do this, we
simply use the co-occurrence of the term “Alexan-
der the Great”, time and location expressions
within a sentence to generate the constraints. Note

84



Algorithm 1 Finding feasible episodes
function FINDFEASIBLEEPISODES(maxR,maxIter,α)

feasibleEpisodes← {}
for round = 1 to maxR do

currentE ← GETRANDOMEPISODE()
bestE ← currentE
for iter = 1 to maxIter do

nextE ← GETNEIGHBOREPISODE(currentE)
if V al(currentE) < V al(nextE) then

currentE ← nextE
if V al(nextE) > V al(bestE) then

bestE ← nextE
end if

else
temperature← 1

30
α

iter
maxIter

▷ 0 < α < 1 : α is constant

if rand(0, 1) ≤ e
V al(nextE)−V al(currentE)

temperature then
currentE ← nextE

end if
end if

end for
feasibleEpisodes.insert(bestE)

end for
return feasibleEpisodes

that this simplistic method can generate erroneous
constraints as well, but we will later show that
reasonable inference can be performed even with
these noisy constraints.

3.3 Calculation of Feasible Episodes

We use simulated annealing (Kirkpatrick et al.,
1983) to find the episodes that satisfy the (soft)
constraint conditions. Other approaches to opti-
mization such as integer linear programming can
be used for this purpose, but we chose simulated
annealing due to its generality and easiness of im-
plementation.

Algorithm 1 shows how we calculate feasible
episodes. The score of an episode, V al(e), is com-
puted as the proportion of the constraint condi-
tions satisfied by the episode. In this algorithm,
we start with a random episode and attempt to
find the episode that has the best score. More
specifically, at each iteration, we generate a new
episode by making a small modification to the cur-
rent episode. Finally, we add the episode having
the best score to the list of the feasible episodes.
We repeat this whole process maxR times to ob-
tain multiple episodes.

Algorithm 2 describes the four operations to
compute a neighbor episode in Algorithm 1. The
first operation changes the time when the agent
stays at the same place. For example, < Ankara→
Ankara → Tarsus → Issus > is changed to <

Ankara → Tarsus → Tarsus → Issus >. The sec-

Algorithm 2 Computing a neighbor episode
function GETNEIGHBOREPISODE(currentEpisode)

e← currentEpisode
if rand(0, 1) < 0.5 then

p1, p2← GETCONSECUTIVESAMESTATES(e)
e.remove(p2)
p3← GETRANDOMSTATE(e)
e.insert(p3) ▷ at next p3

end if
if rand(0, 1) < 0.5 then

p1← GETRANDOMSTATE(e)
p2← GETADJACENTSTATE(p1)
e.insert(p2, p1) ▷ at next p1

end if
if rand(0, 1) < 0.5 then

p1, p2, p3← GETDETOUR(e) ▷ p1 = p3
e.remove(p2, p3)

end if
if rand(0, 1) < 0.5 then

loop← GETRANDOMLOOP(G) ▷ G is the graph
if loop contains some state in e then

e.reverseInLoop(loop)
end if

end if
return e ▷ as a neighbor episode

ond operation adds a detour to the episode. For
example, < Ankara → Tarsus > is changed to
< Ankara → Gordion → Ankara → Tarsus >. The
third operation removes a detour from the episode.
For example, < Ankara → Gordion → Ankara →
Tarsus > is changed to < Ankara→ Tarsus >. The
fourth operation alters the path from one location
to another. For example, < Caucasus → Aornos →
Nicaea > is changed to < Caucasus→ Arachosia→
Indus → Nicaea >. Each of these four operations
is performed with 50% probability.

4 Experiments

4.1 Corpus and Settings

We used the English Wikipedia dataset1 for the ex-
periments. In this data set, there were 482 sen-
tences which include the strings of “Alexander the
Great” and “BC”. Among them, 87 sentences in-
cluded a location name in our list, and they were
used to generate (noisy) constraint conditions. The
constraints which had the same time and location
conditions were treated as one constraint, so we
did not take into account the frequency of appear-
ance. As a result, 39 (noisy) constraints were
generated. We manually checked those 39 con-
straints and found that 32 of them correctly de-
scribe Alexander’s location at a particular time.

The simulation setting is as follows:

• The initial place is “Pella”, i.e., h0 = Pella.
1downloaded in November 2013.

85



Time Place (Ans)
331 BC Arbela
A century later, the “Men of the Mountain Land,” from

north of Kabul River, served in the army of Darius III of

Persia when he fought against Alexander the Great at Ar-
bela in 331 BC.
330 BC Persepolis
After invading Persia, Alexander the Great sent the main

force of his army to Persepolis in the year 330 BC by the

Royal Road.

Table 1: Examples of questions

• One time step corresponds to two months.

• At each time step, the agent (Alexander) ei-
ther stays at the same node or moves from the
current node to one of its adjacent nodes.

• Each episode consists of 72 steps (i.e.
T = 71), which correspond to Alexander’s
twelve-year expedition from 334 BC to 323
BC.

The values of α and maxR in Algorithm 1 were
set to 0.001 and 1,000 respectively.

4.2 Question Answering
First, we examine how accurately our system can
answer questions like “Where was Alexander the
Great in 325 BC?”, when the answer is not explic-
itly written in the text. We have created 32 ques-
tions from the aforementioned 32 constraints that
correctly describe Alexander’s locations. Table 1
shows examples of questions with the Wikipedia
sentences from which the questions were created.

When the system infers the answer to a ques-
tion, we make sure that the system has no ac-
cess to the sentences that convey the information
about the correct answer. In other words, we ex-
clude those sentences when generating the con-
straint conditions for the simulation.

For each question, the system calculates 1,000
episodes by simulated annealing and ranks the
places according to how many times they have
appeared during the time period specified in the
question. The system then returns the top N places
as the answer. We consider the answer to be cor-
rect if the correct place is included in the top N
places.

As a baseline method for comparison, we also
calculate the top N places according to their tem-
poral distance to the time specified by the ques-

Figure 2: The accuracy of the top-N answers

tion. For example, we prioritize the mention pair
(Tyre, 332 BC) over (Ankara, 333 BC) if the time
specified by the question is 331 BC.

Figure 2 shows the accuracy of the top-N an-
swers for the 32 questions. The dotted line shows
the result of the baseline method and the four solid
lines show the results of our inference-based ap-
proach when the maximum numbers of iterations
(maxIter) in Algorithm 1 are set to 100, 1,000,
10,000 and 100,000. As can be seen, the accu-
racy rate improves as the number of iterations in
simulated annealing increases. The accuracy rates
achieved by performing more than 10,000 iter-
ations are significantly higher than those of the
baseline. As for the computational cost, it took
about half an hour to obtain 1,000 episodes (with
maxIter = 100,000) for each question using eight
cores of Xeon X5680.

4.3 Coreference Resolution

We show an example of coreference resolution us-
ing our world model. Table 2 shows a paragraph
created from the Wikipedia text2, where the phrase
“the area” in the last sentence could refer to any of
the four difference places mentioned in the sen-
tences. Since there are few syntactic or lexical
clues for disambiguation, it is a difficult corefer-
ence resolution problem3.

When performing the inference for this prob-
lem, we did not use the constraints derived from
the sentences that contain the candidate places,

2We have replaced “It” at the beginning of the original
sentence with “Bela”.

3We tested two publicly available coreference resolution
systems (Stanford Core NLP and Illinois coreference Sys-
tem). Neither of them could not identify the correct an-
tecedent.

86



time 325 BC
anaphor the area

antecedent Bela
other candidates Arachosia, Carmania, Babylon
Bela is directly to the south of the ancient provinces of
Arachosia and Drangiana, to the east of Carmania and
due west of the Kingdoms of Ancient India. In 325 BC,
Alexander the Great crossed the area on his way back
to Babylon after campaigning in the east.

Table 2: Example of coreference resolution

candidates maxIter
1,000 10,000 100,000

Bela (Ans) 247/1,000 547/1,000 745/1,000
Carmania 210/1,000 454/1,000 640/1,000
Arachosia 154/1,000 404/1,000 651/1,000
Babylon 35/1,000 8/1,000 1/1,000

Table 3: Coreference resolution by inference

since we are interested in the situation where no
explicit information is available in the document.

The inference results are shown in Table 4.3.
The values in the table show how many times
the places appeared in the 1,000 episodes at the
times corresponding to 325 BC. The correct an-
tecedent, Bela, has the highest values, and the in-
feasible antecedent, Babylon, has very low values,
which demonstrate the usefulness of the inference
in coreference resolution.

4.4 Error Analysis

We discuss the constraint conditions which could
never be satisfied by any resulting episodes. Two
examples are shown below.

• Constraint: 334 BC, Alexandria
• Sentence: The port of Alexandria, founded

by Alexander the Great in 334 BC, was a
hub for Mediterranean trade for centuries.

• Constraint: 323 BC, Memphis
• Sentence: Arrhidaeus, one of Alexander the

Great’s generals, was entrusted with the con-
duct of Alexander’s funeral to Egypt in 323
BC.

The first constraint is problematic because, in
actual history, Alexander the Great was not in
Egypt in 334 BC. This seemingly erroneous con-
straint was created by the ambiguity of the word

“Alexandria”, because it can refer to many other
cities having the same name. The sentence of
the second constraint does not describe Alexan-
der the Great—it describes Arrhidaeus, who was
one of his generals. However, our simplistic co-
occurrence-based method wrongly created a con-
straint from it. These results suggest that our
world model could help us to detect and suppress
wrong interpretations of text since the constraints
derived from wrong interpretations are unlikely to
be satisfied in the simulation.

5 Conclusion

We have presented a toy world model that allows
us to simulate the movement history of a historical
figure and perform inference about his locations.
Experimental results using Wikipedia text demon-
strate its inference ability and potential usefulness
in high-level NLP applications such as question-
answering and coreference resolution.

In future work, we plan to develop a more ro-
bust environment on which we can quantitatively
evaluate the level of document understanding by
using a world model. We aim to build an evalua-
tion method for comparing different approaches.

Our future work should also encompass extend-
ing the toy world model. Currently, the agent only
moves on the graph, and thus the historical events
that can be represented by the model is limited.
Increasing the variety of actions that the agent
can perform and the number of historical figures
should be an interesting direction of future work.

Acknowledgments

We thank the anonymous reviewers for their help-
ful comments and suggestions.

References
Jonathan Berant, Noga Alon, Ido Dagan, and Ja-

cob Goldberger. 2015. Efficient global learning
of entailment graphs. Computational Linguistics,
41(2):221–264.

Nathanael Chambers and Dan Jurafsky. 2008. Unsu-
pervised learning of narrative event chains. In Pro-
ceedings of ACL-08, pages 789–797.

Angel X Chang, Manolis Savva, and Christopher D
Manning. 2014. Learning spatial knowledge for
text to 3D scene generation. In Proceedings of Em-
pirical Methods in Natural Language Processing,
EMNLP, pages 2028–2038.

87



Abraham Fowler, Bob Hauser, Daniel Hodges, Ian
Niles, Adrian Novischi, and Jens Stephan. 2005.
Applying cogex to recognize textual entailment. In
Proceedings of the PASCAL Challenges Workshop
on Recognising Textual Entailment, pages 69–72.

Scott Kirkpatrick, MP Vecchi, et al. 1983. Op-
timization by simmulated annealing. Science,
220(4598):671–680.

Jayant Krishnamurthy and Thomas Kollar. 2013.
Jointly learning to parse and perceive: Connecting
natural language to the physical world. Transac-
tions of the Association for Computational Linguis-
tics, 1:193–206.

Changsong Liu, Lanbo She, Rui Fang, and Joyce Y
Chai. 2014. Probabilistic labeling for efficient ref-
erential grounding based on collaborative discourse.
In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 13–18.

Haoruo Peng, Daniel Khashabi, and Dan Roth. 2015.
Solving hard coreference problems. In Proceed-
ings of the 2015 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
809–819.

Altaf Rahman and Vincent Ng. 2011. Corefer-
ence resolution with world knowledge. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies-Volume 1, pages 814–824.

Roger Schank and Robert P Abelson. 1977. Scripts,
plans, goals and understanding: An inquiry into hu-
man knowledge structures. Lawrence Erlbaum.

Marta Tatu and Dan Moldovan. 2005. A seman-
tic approach to recognizing textual entailment. In
Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural Lan-
guage Processing, pages 371–378.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomas Mikolov. 2015. Towards ai-complete ques-
tion answering: a set of prerequisite toy tasks. arXiv
preprint arXiv:1502.05698.

Terry Winograd. 1971. Procedures as a representation
for data in a computer program for understanding
natural languages. Ph.D. thesis, Massachusetts In-
stitute of Technology, Project Mac.

88


