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Abstract

Infant-directed speech (IDS) is thought to
play a key role in determining infant lan-
guage acquisition. It is thus important
to describe how computational models of
infant language acquisition behave when
given an input of IDS, as compared to
adult-directed speech (ADS). In this paper,
we explore how an acoustic motif discov-
ery algorithm fares when presented with
speech from both registers. Results show
small but significant differences in perfor-
mance, with lower recall and lower cluster
collocation in IDS than ADS, but a higher
cluster purity in IDS. Overall, these re-
sults are inconsistent with a view suggest-
ing that IDS is acoustically clearer than
ADS in a way that systematically facili-
tates lexical recognition. Similarities and
differences with human infants’ word seg-
mentation are discussed.

1 Introduction

The ability to learn words from continuous speech
is a crucial skill in language acquisition, since
only about 7% of words occur in isolation, and
thus infants must be able to segment, i.e. pull out
words from running speech. It has been proposed
that infant-directed-speech (IDS), the particular
register that parents use when addressing their
infant, could facilitate word segmentation when
compared to adult-directed-speech (ADS) (Singh
et al., 2009; Thiessen et al., 2005). Even though
a number of acoustic and linguistic studies have
documented systematic differences between these
registers (Cristia, 2013; Fernald and Morikawa,
1993), there is little computational work assessing
how precisely word segmentation performance is
affected by these differences. The present report
takes one step in this direction.

1.1 Computational model of word
segmentation

We model infant word learning using MODIS
(Catanese et al., 2013), a computational system
which attempts to discover spoken terms from the
raw speech signal. We think that this system is
cognitively plausible for several reasons. First,
the algorithm does not rely on labeled or pre-
segmented data. Instead, it takes as input spectral
features and looks for repetitions inside of a short
signal buffer (which thus resembles a short-term
memory). When the first repetition is found, two
acoustic stretches that are judged to be matched
are stored together as a cluster (represented as a
kind of average of the acoustic items it contains)
inside the library. Clusters can be thought of as
‘lexical entries’ in the context of this project and
the library as its long-term memory. It then con-
tinues parsing the speech looking for matches with
respect to the clusters in the long-term memory as
well as other close repetitions in the buffer. If a
match to an existing cluster is found, the cluster
model is updated, in order for it to also contain
information about the latest token.

Given its general features, this algorithm ap-
pears to be a reasonable approximation of word
segmentation strategies used by a naı̈ve learner (a
learner who has not yet extracted abstract phone-
mic categories). It is very likely that infants begin
to segment words before they have learned their
language’s phoneme inventory since, in certain sit-
uations, infants as young as 4 months of age can
recognize words in fluent speech (Johnson et al.,
2014), but there is little evidence that infants this
young have converged upon their native phonemes
(Tsuji and Cristia, 2014). Moreover, since young
infants can more easily recognize word tokens that
are similar acoustically, than tokens which are dis-
similar (Bortfeld et al., 2005; Singh et al., 2012), it
follows that an acoustic motif discovery algorithm
is not an unreasonable first approach.
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It is also very plausible that the patterns infants
discover in running speech will be constrained
to a short-term memory window, although we
do not know of evidence directly addressing this
(most work has investigated the limits of long-
term memory, e.g. (Houston and Jusczyk, 2003),
rather than how close in time two subsequent rep-
etitions must occur to be detectable). Finally, we
know that infants can store repeated words in some
form of long-term memory because this is pre-
cisely the type of design that typical word seg-
mentation studies have, whereby the child is fa-
miliarized with a word repeated and later tested
with novel instances of those wordforms.

1.2 Influencing factors and general
predictions

Properties of IDS Predictions for
compared to ADS word learning

Not tested in this paper
prosodic boundaries easier IDS>ADS
clearer referential situation IDS>ADS
simpler vocabulary IDS>ADS
more attention grabbing IDS>ADS

Tested in this paper
acoustically more variable IDS<ADS
more repetitions IDS>ADS
more bursty IDS>ADS

Table 1: Differences between IDS and ADS and
potential effects for word learning.

IDS is characterized by an array of proper-
ties (Cristia, 2013, see Table 1), some of which
could facilitate or hinder word segmentation. IDS
has been reported to contain shorter utterances
and clearer prosodic boundaries than ADS. To
test this would require a learner that extracts and
uses prosodic cues from the speech signal, which
is not the case in the current implementation of
MODIS (see also the Conclusions). The same
would also be true for referential and contextual
cues. The effect of vocabulary is neutralized in our
experiment, because the corpus used contained the
same keywords in both registers, and only these
keywords were considered for the evaluation of
word learning. Regarding attention, since MODIS
works by finding acoustic matches in the speech
signal, it does not have a cognitive component that
models the attention process.

Therefore, none of first 4 differences in Table

1 are tested here. Instead, our corpus and com-
putational model allows us to look at differences
in performance related to three other properties of
IDS: acoustic variability, repetitions, and bursti-
ness.

First and foremost, mounting evidence suggests
that sounds and words are more variable in IDS
than ADS. For instance, Martin and colleagues
have documented that phonemic categories are
significantly harder to classify in IDS than in ADS
(Martin et al., 2015). This may be due to an in-
crease in variability, which has been documented
in several studies (Cristia and Seidl, 2014; Kuhl et
al., 1997; McMurray et al., 2013). If the acoustic
implementation of phonemes is more variable in
IDS than ADS, it is possible that other linguistic
levels that build on sounds, such as words, might
also be significantly different across the registers.

To our knowledge, there is only one mod-
elling study that partially investigated this ques-
tion, although it was not a model of word learn-
ing, but rather of phoneme learning. Kirchhoff
and Schimmel (2005) trained a speech recognizer
with human-segmented and labeled tokens of three
minimally different target words (sheep, shoe and
shop) drawn either from IDS or ADS, and tested
the performance on a new set of IDS and ADS to-
kens. Results revealed a lower performance over-
all in the IDS-trained classifier, but a smaller gen-
eralization cost (i.e., the loss in performance in
switching from IDS to ADS was smaller than vice
versa). These results are consistent with the idea
that words are more variable in IDS, and suggest
that there could be learnability differences across
the two registers. It remains to be seen whether
such effects would also emerge in a model of
word learning in which there is no explicit human-
obtained segmentation and labels.

It is to be expected that acoustic variability
could be problematic to learners who find word-
forms using acoustic pattern matching, leading
them to posit too many or too few types (e.g., the
word dog is so variable that the learner posits two
different types, dog1 and dog2; or confuses them
with similar words such that dog and dock are
clustered together). Laboratory work in infancy
demonstrates that early on infants have difficulty
matching wordforms that are acoustically variable
(Bortfeld et al., 2005; Singh et al., 2012), as if
infants create separate lexical entries for e.g., the
word dog spoken by two different speakers. This
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is precisely what occurs with word segmentation
models that operate on the basis of acoustic motif
discovery, and thus we predict that our the model
would perform more poorly in IDS than ADS, be-
cause of its greater variability.

The second property of IDS that we address is
repetition. It has been reported that IDS is more
repetitive than ADS (Daland, 2013). We suspect
repetition is perceptually relevant to infants be-
cause most word segmentation experiments use
very repetitive stimuli, and this feature has even
been found to draw infants’ attention (McRoberts
et al., 2009). Some repetition is necessary for our
model learner, as this is a condition for incorpo-
rating an item into the lexicon (words that are not
repeated cannot be found). However, once the sec-
ond token of the same type is detected, it is unclear
whether any benefit is derived from additional rep-
etitions. MODIS will decide whether a pattern en-
countered matches one in the lexicon, by compar-
ing the new pattern to an average or prototype of
all the other patterns in that cluster. Hence, it is
possible that additional tokens of the same type
will simply compound the negative effects of in-
creased segmental variation.

A third property of IDS that we address is
burstiness, which characterizes the likelihood of
a word to re-appear in the same conversation once
it has been used. Thus, registers where one tends
to stay longer on a given topic will be more
bursty - for instance, news reports are more bursty
than spontaneous phone conversations. Daland
has hypothesized that burstiness should be higher
in IDS than ADS (Daland, 2013), although we
know of no systematic investigation of IDS cor-
pora or the effects of burstiness on infant per-
ception. Nonetheless, it is certain that bursti-
ness should improve the word segmentation per-
formance of our learner, since having a higher pro-
portion of repetitions of the same word inside the
short memory buffer would translate into a higher
chance of detecting that word.

2 Methods

2.1 Corpus
2.1.1 Speakers
The twenty speakers in this study were ten moth-
ers of 4-month-olds (M = 0;4.35, range: 0;3.95
-0;4.99) and ten mothers of 11-month-olds (M
= 0;11.40, range: 0;11.120;12.01). The moth-
ers were the child’s primary caregiver, and native

speakers of American English from a small Mid-
western city. Infants were healthy full-terms with
typical development and no known personal or fa-
milial history of hearing or language impairments,
according to parental report.

2.1.2 Recording and human coding
procedure

Full details on the corpus can be found
on: https://sites.google.com/
site/acrsta/Home/nsf_allophones_
corpora. The key information for the present
purposes is the following:

Speakers were provided with a set of objects
and photos, each labeled with a target word. They
were told that we were interested in how parents
talk to their children about objects. The words
containing the vowels did not constitute minimal
pairs, so as not to make the parents overly con-
scious of the contrasts under study. The IDS por-
tion was always carried out first, and during it,
the caregiver and child were left alone. When the
mother had finished going through all items, an ex-
perimenter returned accompanied by a confederate
adult. The mother then repeated the task with the
confederate.

The 20 speakers included in the present work
are a subset of 36 mothers whose speech (exclud-
ing sections with overlapping noise or speech) had
been analyzed in previous work (Cristia and Seidl,
2014). In that study, only one vowel per target
word was coded and analyzed. A subset of care-
givers was used for the present purposes because
their speech had also been coded to investigate
whether IDS and ADS differed to similar extents
in the weak and strong vowels of bisyllabic and
trochaic target word (Wang et al., 2015). This
meant that we had access to the temporal location
of both strong and weak vowels in some of the tar-
get words.

For the current study, since only the first two
vowels of some words were coded in the corpus,
we will use a proxy for words, which we call a
target segment. It is defined as being the stretch
of speech between the beginning of the first vowel
and the end of the second vowel of a coded word.
This definition is illustrated in Figure 1. We then
kept the target segments appearing in both speech
registers and collapsed all composed words classes
into the class containing the first word only (e.g.
picnic basket → picnic, peekaboo book → peek-
aboo), since the coded vowels actually belong to
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Figure 1: Example of target segment. The waveform and associated annotation of the utterance “Then
we have a teaspoon” is illustrated. The annotation codes the position of the two vowels of the word
“teaspoon”. Below the vowel annotation we illustrate the target segment considered, defined as the
stretch of speech between the beginning of the first vowel and the end of the second vowel of a given
word. For comparison, the entire word is represented above the waveform.

the first word (e.g. picnic, peekaboo), not to the
second one (e.g. basket, book). Composed words
whose first word contained only one vowel were
kept in their own separate class (e.g. tea-kettle,
best-in-show). This gave us a total of 2298 target
segments, 1300 in IDS and 998 in ADS. A com-
plete list of the target segments is presented in Ap-
pendix A. Note that this coding was used only for
evaluation purposes, as there is no training phase
for the algorithm.

As can be seen in the example in Figure 1,
the target segment only partially covers an actual
word. We have estimated this coverage to be be-
tween 80-90%, in the case of words starting with
a consonant-vowel (CV) sequence and ending in
a vowel (e.g. bamboo, pesto) and around 50%, in
the case of 4-syllable words (e.g. dictionary, tapi-
oca). Since most of the target segments, both in
terms of number of types and number of tokens,
belong to the words starting with a CV sequence
and ending with a vowel-consonant sequence (e.g.
bacon, picnic), we could conclude that the major-
ity of our target segments cover at least 2/3 of the
actual word.

2.1.3 Corpus characteristics

In previous analyses comparing IDS and ADS on
this subset of the corpus, pitch was found to be
higher (particularly in stressed vowels) in IDS and
there was also a trend for more peripherality in
IDS, but no stable differences in vowel duration
were seen (Wang et al., 2015). Also, an analysis
of the whole corpus has shown greater variabil-
ity in acoustic characteristics of stressed vowels in
IDS than ADS (weak vowels had not been marked
or analyzed) (Cristia and Seidl, 2014). Thus, the
corpus represents well the prosodic and segmental

characteristics of IDS alluded to in the introduc-
tion.

For the purposes of the present project, we fur-
ther investigated potential differences in repeti-
tion. As expected, parents produced more repeti-
tions of the target segments in IDS than ADS (sig-
nificant according to a Wilcoxon’s test, V (19) =
187, p = 0.001; mean for IDS = 3.358 repetitions
per target segment, SD = 1.358; mean for ADS =
2.147, SD = 0.564).

Besides computing a measure of repetition, we
have also attempted to measure differences in
burstiness between IDS and ADS. Burstiness was
defined as the reciprocal of the average distance
(in seconds) between the end of the nth occurrence
of a target segment and the beginning of the n+1th

occurrence of the same word, provided that these
two occurrences are not separated by another tar-
get segment. It was computed on a per-speaker ba-
sis and only for target segments appearing at least
twice, in both the IDS and ADS recordings of the
same speaker. About 4.618 seconds elapsed be-
tween two consecutive repetitions in ADS, com-
pared to 7.371 in IDS. This meant that the average
burst rate was 0.292 (SD = 0.186) in ADS, and
0.15 (SD = 0.065) in ADS. Thus, contrary to our
expectations, a higher burstiness was obtained for
ADS than for IDS.1

1We checked whether the difference in burstiness could
be explained by the speech rate difference between the two
registers. In order estimate speech rate, we calculated the
average duration of the target words, all of which were bi-
syllables and occurred in both registers.The average duration
was .311 s (SD = .042) in ADS and .362 (SD = .068) in
IDS, in line with the view that IDS is slower than ADS.The
speech rate difference (14%) does not seem to fully explain
the difference seen in the burstiness between the two registers
(48%). Nonetheless, this measure does not take into account
pauses, which are likely to be considerably longer in IDS.
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We have seen that the three IDS characteristics
that might affect the performance of the model
point in different directions. We lay out our pre-
dictions once our evaluation metrics have been in-
troduced.

2.2 Algorithm
We used the open-source spoken term discovery
system called MODIS (Catanese et al., 2013). Is it
based on the seed discovery principle: it searches
for matches of a short audio segment, referred to as
the seed, in a larger segment, called a buffer. The
search is performed by using a segmental variant
of the dynamic time warping (DTW) algorithm.
Once a match is found (decision taken based on a
similarity threshold between the two speech seg-
ments), the seed will be extended and the match
performed using the longer seed. This process will
continue as long as the dis-similarity between the
segments stays under the set threshold. When this
threshold is reached, the term candidate is checked
as to whether is complies with a minimum length
requirement and stored in the motif library. An ab-
straction of the matched segments is stored in the
library, represented by their median model. Next,
this library of terms is compared against any new
seed and only if no match is found in the library
will the DTW search explained earlier take place.
The match against the library terms employs also
a self similarity matrix check. After the entire data
set is searched, a post-processing of the obtained
terms is performed in order to merge all overlap-
ping segments into one single term.

The algorithm has several important parame-
ters that must be set: the seed size, the minimum
stretch of speech matched against the buffer, the
minimum term size the algorithm will find, the
buffer size in which the seed is searched and the
similarity threshold, εDTW . Since the latter pa-
rameter influences the level of similarity between
the members of the same term class, we have var-
ied it in our experiment, while keeping the rest of
the parameters constant. The seed length was set
to 0.25 s, while the buffer length was set to 90 s, in
order to model infants’ short-term memory. The
minimum term size considered was 0.5 s so as to
be able to contain the majority of the target seg-
ments.

The variation of the similarity threshold can be
seen as follows: When this parameter is low, even

We return to the potential limitations of our implementation
of burstiness in the discussion.

small deviances of similarity are rejected, repre-
senting a ‘conservative’ approach. When it is high,
even large dissimilarities are accepted, represent-
ing a ‘lax’ approach. Based on previous infant
word segmentation research, it appears that young
children are conservative early on (Singh et al.,
2012) – but how conservative? There is no prin-
cipled way to set this parameter, as any decision
we make would likely not have a clear basis in re-
search. However, in order to restrain the search
range of εDTW values on which we will perform
our analysis, we ran MODIS on the combined
ADS-IDS recordings of one speaker and we de-
cided to take an interval of [2.0, 4.0]. The mini-
mum value was the lowest threshold that returned
any term classes, while the maximum value was
the threshold value that gave a saturation point for
the evaluation metrics measured.

We use as input features for the spoken term dis-
covery system Mel frequency cepstral coefficients,
a standard spectral representation used in speech
applications. We compute the first 12 cepstral co-
efficients and the energy in a 20 ms window, every
10 ms, along with their delta (difference) and dou-
ble delta (acceleration) coefficients.

2.3 Evaluation

As noted in the Introduction, our conceptual goal
is to compare performance of this segmentation
algorithm between IDS and ADS. We have also
drawn several specific predictions. In this section,
we explain how these predictions map onto the de-
pendent variables used for the evaluation.

Since the corpus has not been exhaustively
coded, we did not penalize the algorithm for clus-
ters that do not include any target segments. In-
deed, there may be other words that are repeated
in the corpus (e.g., ‘baby’ or ‘mommy’) which
have not been coded, so clusters could have been
formed around these other words. Instead, we in-
spect only clusters that include at least one token
of a target segment.

Given that word edges for target segments are
not marked (only vowels), we consider a cluster
to include a given token if one of the acoustic
stretches included in that cluster covers the region
between the beginning of the first vowel of the
word and the end of the second vowel of that to-
ken. We derive a measure of recall as the number
of tokens that appear in any given cluster divided
by the total number of coded tokens. It is possible
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that the higher repetition found in IDS will lead
to higher coverage in this register as compared
to ADS. At the same time, the opposite outcome
could be expected if one would take into account
the higher burstiness found in ADS. Thus, a clear
prediction cannot be made.

As mentioned, there are target segments whose
vowels were not coded because they overlap with
speech or noise or were not produced with the in-
tended vowel, nonetheless, it is possible for the
algorithm to recognize matches for such uncoded
words. Therefore, it would be unfair to penal-
ize clusters that include target segments as well
as stretches of speech other than the target seg-
ments that have not been coded by humans. How-
ever, when one cluster contains tokens from two
or more different target segments, this will be pe-
nalized by our second dependent measure, namely
cluster purity. It is defined as being the number of
different target segments contained in a cluster, di-
vided by the number of target segment classes. On
the basis of our arguments above, we cannot make
any clear prediction regarding how IDS and ADS
will differ for this measure.

Third, we derive a measure that describes the
amount of fragmentation of the found motif clus-
ters. It is defined as being the percentage of
clusters into which a particular target segment is
found, out of the total number of clusters where
target segments have been found. We will report
the results in terms of collocation, defined as be-
ing equal to 1 - the amount of fragmentation. We
expect IDS, with its greater variability, to yield a
lower collocation.

3 Results

Analysis scripts and primary data and results files
are available for download from https://osf.
io/y7kfw/.

When no target segment is found by the algo-
rithm for the speech of one caregiver, this results
in missing data, as no recall, purity, or collocation
can be calculated in these conditions. Therefore,
we excluded from inspection all settings of the
similarity threshold that resulted in missing data
prior to carrying out statistical analyses. Data was
included for settings 2.9-4 (at .1 intervals).

In general terms, we observed that performance
is very good in terms of collocation and purity
(above .6 for all individual speakers and for both
registers), with performance for both of these de-

creasing and becoming more variable at the indi-
vidual level as εDTW is set to laxer criteria. In
contrast, recall performance is overall lower and
more variable, with coverage increasing as laxer
criteria are used.

Turning now to our key question, we calculated
the difference in performance in IDS and ADS, for
each measure and for each speaker. We tested for
significant differences across the two registers in
two ways: (1) keeping each εDTW value separate,
and (2) collapsing across all εDTW values.

To evaluate for significance in the separate case,
given that many such tests would have to be car-
ried out (there are 12 levels for the similarity
threshold in each evaluation measure), we wanted
to control for repeated testing to avoid alpha risk
inflation. Therefore, we used a step-down permu-
tation resampling test (N = 10,000) and estimated
the p-value for an observed t-statistic (from a one-
sample t-test) through the rank of that p-value
within the distribution of values for that statistic
found under the null hypothesis.2

For the analyses collapsing across this thresh-
old, we took the median across all threshold val-
ues within each caregiver, and used a Wilcoxon
one-sample test to assess whether this average
difference score was significantly different from
zero for each evaluation dimension separately.
We decided to employ the median followed by a
Wilcoxon’s non-parametric test based on the sum
of the signed ranks because there was not clear ev-
idence that such difference scores were normally
distributed (the distributions were kurtotic with
some outliers).

Both analyses revealed that there were some

2In the general permutation procedure, a distribution of
a test statistic under the null hypothesis can be generated as
follows: the sign of a random number and selection of in-
dividual difference scores is flipped (such that what used to
indicate higher performance in IDS than ADS becomes the
opposite) and the appropriate statistic (in this case, the t from
a one-sample t-test, following usual practice van der Laan
et al. (2004)) is calculated. The procedure is repeated many
times, to generate a distribution of p-values under the null hy-
pothesis. The adjusted p-value is then estimated as the rank
of the absolute of the statistic in question against the distribu-
tion of absolute values found when the null hypothesis is true.
The step-down version of the permutation procedure involves
two changes. First, flipping the difference scores is done for
all observations associated with the same individual together,
which preserves the correlational structure of the data. Sec-
ond, the distribution under the null is calculated once with all
the data, and then repeated removing the strand of data (in our
case, all the data associated with a given threshold parameter
value) whose adjusted p-value is significant. The procedure
stops when the adjusted value exceeds alpha.
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Figure 2: Performance (top panels; IDS in gray and ADS in black) and difference (IDS-ADS, bottom
panels) for each of the three evaluation dimensions as a function of the εDTW threshold. Each point
in the top panel represents a mother’s score, separately for IDS (gray circles) and ADS (black crosses).
The difference scores in the bottom represent the average difference and 95% confidence intervals across
parents. Stars represent cases where the difference is significant at the p < .05 level, corrected for
multiple comparison using a step-down permutation resampling test across parents.

significant differences across the registers for all
the evaluation metrics computed. As shown in
Figure 2, two of the εDTW values (both in the
“conservative” region) lead to significantly higher
performance in ADS than in IDS in terms of re-
call. This was replicated in our second analysis
(based on the median across all εDTW ): V(19)
= 9, p=.016, 95% confidence interval (-0.087;-
0.019), pseudo-median -0.050. As for purity, there
was a trend for better performance in IDS than
ADS that was significant for one εDTW value,
closer to the liberal end of our threshold contin-
uum. This advantage was replicated when look-
ing at median values: V(19) = 55, p = .006, 95%
confidence interval (.005;0.027), pseudo-median
0.016. As for collocation, performance was signif-
icantly better in ADS than IDS mostly in the same
conservative region as with recall, a result repli-
cated in the Wilcoxon’s t-test on median difference
scores: V(19) = 1, p=.003, 95% confidence inter-
val (-.012;-0.006), pseudo-median -0.010.

Next, we had wondered whether greater repeti-
tion and burstiness would lead to better recall. The

overall pattern of results appears to indicate this is
not the case because although IDS has more rep-
etitions, it has lower recall – although this could
possibly relate to burstiness. As a first approach,
we calculated Spearman correlations across speak-
ers between recall performance (averaged across
all parameters) and number of repetitions, on the
one hand, or rate of burstiness, on the other, within
each register separately.

As for repetitions, the estimate was moderate
and positive in both registers, albeit significant for
IDS r(18) = .549, p = .014, but only marginally in
ADS r(18) = .430, p = .060. Thus, there appears
to be some relationship between recall and repeti-
tion, but the greater number of repetitions in IDS
over ADS is not sufficient for there to be a boost
in recall in IDS over ADS overall.

Regarding burstiness, estimates were low, non-
significant and surprisingly negative: IDS r(18) =
-.159, p =.501; ADS r(18) = -.299, p =.199). The
negative correlation would indicate that the higher
burstiness is, the lower the recall – we return to
this issue in the discussion.
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4 Discussion

The first conclusion that must be drawn from the
results of running our naı̈ve learning algorithm on
these data is that the difference in performance
with IDS and ADS materials is subtle: Collapsing
across threshold parameter values, it only amounts
to absolute differences of between 1 and 5%.
Nonetheless, these differences are there, since they
surface in all three evaluation metrics, both when
we use a multiple comparisons correction proce-
dure, and when we average across all reasonable
settings of the similarity threshold.

We had stated several predictions based on pre-
vious work. We had no clear expectation regard-
ing recall, since the two factors that might affect
it, repetition and burstiness, seemed to favour dif-
ferent registers. Overall, we observed an ADS
advantage of about 5%, concentrated in the con-
servative regions of the similarity parameter. As
for the relationship between repetition and recall,
we found that while our IDS was more repetitious
than the ADS, recall was lower for the former than
the latter. However, the correlations in individ-
ual variation within each register were positive.
This pattern of results partially supports our in-
tuition: More repetition helps unsupervised mo-
tif discovery. However, the data go beyond our
hunch in that differences in repetitiousness do not
account for register differences. Regarding bursti-
ness, we failed to confirm the prediction that IDS
was more bursty, and we further found a negative
non-significant correlation with recall. This may
indicate that our corpus, elicited in a task where
speakers did not have much lexical choice, was not
ideal to measure burstiness differences. Addition-
ally, the precise implementation we used may have
confounded tempo differences, and an alternative
burstiness definition, in terms of number of inter-
vening words, could be more appropriate.

Turning to the second evaluation metric, purity,
we also had no specific hypothesis, however, we
found an overall advantage for IDS, with signifi-
cant results for only one parameter value (located
towards the liberal end of our continuum) as well
as in analysis over median scores. Overall, perfor-
mance with IDS was about 1.6% higher than that
for ADS in this metric, this effect being mainly
located in the more liberal region of the similarity
threshold. This indicates that, at least for those pa-
rameter values, clusters tend to straddle over lex-
ical categories slightly more in ADS than IDS,

or, put differently, that it is more often the case
that two targets are classified into a single motif
in ADS than IDS. This is unexpected but interest-
ing, because the target words studied in the present
corpus were not necessarily very similar to one an-
other (see Appendix A).

Finally, as we expected, target segments were
more often split into multiple clusters (reflected
in a lower collocation score) in IDS than ADS.
This corroborates our suspicion that the acous-
tic implementation of words is more variable in
IDS, which also explains why differences are par-
ticularly clear for conservative parameter values.
Nonetheless, the difference across registers was
small, only about 1%.

We provided results for all the values of the sim-
ilarity threshold because we believe it can yield
some insight into infants’ performance at different
points of development, since younger infants (7.5-
month-olds) have been found to be more conser-
vative than older ones (9-12 months of age, (Singh
et al., 2012)). Our computational model suggests
that, if they behave like our model learner, younger
infants should both fail to recognize words across
diverse instantiations (cf. our recall results) and
postulate too many lexical entries (cf. our collo-
cation results). In other words, our computational
model predicts that signal-related effects of reg-
ister on word segmentation performance will be
greatest, with an IDS disadvantage, for younger
rather than older infants. It is possible that our pu-
rity results suggest that the IDS disadvantage be
reversed in these older ages, who are supposedly
more liberal in their acoustic matching. Extant in-
fant work showing IDS advantages has looked at
7- and 8-month-olds (Singh et al., 2009; Thiessen
et al., 2005), so future work should test these spe-
cific predictions in even younger infants.

Together with (Kirchhoff and Schimmel, 2005),
which relied on hand-segmented words, the
present results are relevant to the interpretation
of infant performance in word segmentation tasks
which compare IDS and ADS. Specifically, since
neither classification of segmented words, nor mo-
tif discovery, are overall more successful in IDS
than ADS, then it follows that infants’ improved
segmentation performance for IDS is not due to
words being physically (or segmentally) easier to
find or classify in IDS than ADS. Instead, there
must be something else in the spoken signal that
boosts infant performance in IDS. This other fac-
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tor may be attention/arousal: Perhaps infants at-
tend more to IDS stimuli (which is clear in pref-
erential studies (Dunst et al., 2012)). Alterna-
tively, infant performance may reflect a more com-
plex cognitive bias, for instance if they apply dif-
ferent learning strategies when prompted by IDS
(as proposed in the Natural Pedagogy framework
(Csibra and Gergely, 2009)). Similar explanations
have been put forward to explain improved perfor-
mance for boosts in word-meaning mapping tasks
in IDS over ADS (Graf Estes and Hurley, 2013).

There are many open questions that need to be
revisited in other research, such as to what extent
motif discovery reflects meaningful features of the
algorithm that real infant utilize during word seg-
mentation in the lab and in the world, the integra-
tion of multimodal information, or the extent to
which specific predictions made from MODIS ver-
sus competing models are born out by infant data.

5 Conclusions

In this paper, we focused mainly on one docu-
mented difference between IDS and ADS, namely
phonetic variability, and considered two lexical
parameters, repetition and burstiness. We found
that performance was affected by register, with an
overall trend for lower performance in IDS than
ADS when three metrics was considered. The
impact of register was greatest when our model
learner, which relies on acoustic matching, was
conservative. We believe this result suggests that
register differences relate to the differences in pho-
netic variability that have been separately docu-
mented, although additional analyses (for instance
using regressions to explore individual variation)
are needed to confirm this hypothesis. Further-
more, it would be important to repeat these anal-
yses with other corpora, particularly those gath-
ered at home, which may vary more naturally
along other dimensions we also intended to ex-
plore, such as repetition and burstiness.

Additionally, other models are needed to gain
a more holistic understanding of how register
features affect learners’ performance, since we
only explored effects of a few IDS characteris-
tics, and others remain unexplored (see Table 1).
For example, IDS contains shorter utterances (Al-
bin and Echols, 1996; Aslin et al., 1996) and is
produced with more exaggerated prosodic edge
marking than ADS (Fernald and Mazzie, 1991;
Kondaurova and Bergeson, 2011). If there are

shorter utterances in IDS it means that more words
will occur at utterance edges which are, as men-
tioned above, also marked with increased acous-
tic salience in IDS. These utterance edges have
been shown to be hot-spots for word segmentation
(Seidl and Johnson, 2006), so much so that even
infants as young as 4 months are able to find words
at utterance edges using this strategy (Johnson et
al., 2014). Recent work on speech-based spoken-
term discovery has shown that the integration of
prosodic boundary information in such a system
improves segmentation performance (Ludusan et
al., 2014). Since this was found in corpora con-
taining ADS, we would like to explore whether
the prosodic structure would give a boost in per-
formance when IDS is given as input to MODIS,
compared to when ADS is employed.
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Appendix A. List of target words: baboon,
bacon, bamboo, basil, bassinet, beetle, Benji,
best-in-show, dancer, dancing, daycare, decker,
dictionary, disney, pansy, paper, pedal, peekaboo,
pegboard, pencil, pendant, pepsi, pesto, picnic,
piglet, shopping, tambourine, tapioca, tassel, tea-
kettle, teaspoon, teddy and tender.
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