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Abstract

Children’s overextension errors in word
usage can yield insights into the underly-
ing representation of meaning. We simu-
late overextension patterns in the domain
of color with two word-learning models,
and look at the contribution of three pos-
sible factors: perceptual properties of the
colors, typological prevalence of certain
color groupings into categories (as a proxy
for cognitive naturalness), and color term
frequency. We find that the perceptual fea-
tures provide the strongest predictors of
the error pattern observed during develop-
ment, and can effectively rule out color
term frequency as an explanation. Typo-
logical prevalence is shown to correlate
strongly with the perceptual dimensions of
color, and hence provides no effect over
and above the perceptual dimensions.

1 Overextensions in word learning

When learning their language, children often
overextend a word by erroneously using it to re-
fer to concepts similar to its actual meaning – e.g.,
a child learning English might refer to all round
things as ball. We can learn much about the mech-
anisms and representations the child uses to ar-
rive at an adult level of understanding by explor-
ing whether the proposed mechanisms lead to ob-
served patterns of such errors over the course of
development.

Several factors have been named as potential in-
fluences on early overextensions in word mean-
ing acquisition, including underspecification of
semantic representations (Clark, 1973), as well
as word frequency (mostly invoked as a zero-
hypothesis to be rejected; Gülzow and Gagarina
(2007), Goodman et al. (2008)).

Another possible factor is conceptual prior bi-
ases. Bowerman (1993) suggests that some se-

mantic features (or values of features) may be cog-
nitively more readily available than others, and ar-
gues that (crosslinguistic) semantic typology can
shed light on the degree of cognitive naturalness
of features in a domain. This idea was further ar-
ticulated by Gentner and Bowerman (2009), who
proposed the Typological Prevalence Hypothesis.
This proposal states that the more frequently lan-
guages make a certain semantic grouping – i.e.,
collect together a certain set of situational mean-
ings under a single term – the more likely this is
a cognitively natural grouping. The reasoning is
that if some conceptual categorization comes natu-
rally, languages are more likely to develop linguis-
tic categorization systems that follow these biases.
Gentner and Bowerman (2009) further argue that,
other things being equal, linguistic terms referring
to such cognitively more natural groupings will be
acquired more readily by children than terms in a
language that do not follow the typical conceptual
category boundaries.

The Typological Prevalence Hypothesis ex-
plains the error pattern Gentner and Bowerman
(2009) observed in the acquisition of Dutch topo-
logical spatial markers. Whereas English uses the
preposition on for all sorts of conceptual relations
of support between a figure object and a ground
object, Dutch distinguishes op ‘surface support’,
aan ‘tenuous support’, and om ‘surrounding (sup-
port)’. Gentner and Bowerman (2009) found ex-
perimentally that Dutch children overgeneralize
op to situations where adults would use aan or om,
but not vice versa. Gentner and Bowerman (2009)
note that it is crosslinguistically very common to
have a term like op that reflects a semantic group-
ing of various surface support relations, whereas
terms such as aan that denote ‘tenuous support’
are typologically rare. They suggest that this pat-
tern reflects a difference in cognitive naturalness
(surface support being the more prototypical case
of support than tenuous support), which in turn
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makes aan harder to acquire than op.
Beekhuizen et al. (2014) operationalized the Ty-

pological Prevalence Hypothesis within a word-
learning model by creating a semantic representa-
tion for topological situations that used the words
themselves from across a number of languages as
the features for representing spatial relations. In
such a representation, commonalities and differ-
ences in the way languages carve up the space of
topological relations is reflected in the way the
terms within each language group together vari-
ous situations. This approach yields a semantic
representation that can capture crosslinguistic nat-
uralness of the underlying spatial relations, with-
out the need for explicit identification of appropri-
ate semantic features. Situations that, within many
languages, are expressed with the same word are
closer in this semantic space than those that are
more often labelled by different terms within a
language. Beekhuizen et al. (2014) simulated the
above experimental results on Dutch children by
using this semantic space within a computational
model for learning Dutch prepositions, whose de-
velopmental trajectory displayed the same trends
as children.

Here we extend the method of Beekhuizen et
al. (2014) to the acquisition of color terms, an-
other domain in which children are known to make
overextension errors. Color terms form an inter-
esting test of the Typological Prevalence Hypoth-
esis, because we know reasonably well what the
perceptual dimensions of color are, and can test
if there is any effect of typological prevalence on
top of this. Specifically, we ask if crosslinguistic
consistency provides a good basis for the repre-
sentation of color in word learning, and if such a
semantic representation adds information beyond
the perceptual properties of color.1

Note that other work, such as Regier et al.
(2007) among others, has reasoned from the per-
ceptual features of color as well as general consid-
erations concerning category structure to propose
an explanation for the observed tendencies across

1For the latter question, the hypothesis is that a color c
may be at the same perceptual distance to c′ as it is to c′′, but
for some other reason, languages categorize c and c′ with the
same term more often than c and c′′. There could be various
reasons for this difference, such as a preference for certain
category structures, or communicative pressures concerning
disambiguation. We do not investigate here what those fac-
tors might be, but rather explore whether the typologically-
derived semantic space provides information in addition to
the perceptual features.

color lexicons. Instead, we explore whether the
typological tendencies among color lexicons re-
flect semantic information relevant to word learn-
ing, and especially whether that information goes
beyond that provided by perceptual features. We
refer to the typologically-based semantic represen-
tation as ‘conceptual’ features (in contrast to per-
ceptual ones) because they refer to the way color
concepts are (preferably) structured in the lexicons
of the various languages.2

Thus, here we explore three potential influences
on the error patterns observed in learning of color
terms: perceptual factors, conceptual factors, and
word frequency effects. We also take the op-
portunity to strengthen the evaluation method of
Beekhuizen et al. (2014) by here using a quantita-
tive measure of model deviation from the observed
pattern of word use in order to arrive at more com-
plete insights into the role of these factors.

2 Data on the acquisition of color terms

Across languages, children overextend certain
color terms at the cost of others, and there has
been a long tradition of research into this domain
(Bateman, 1915; Istomina, 1960; Harkness, 1973;
Bartlett, 1978; Davies et al., 1994; Davies et al.,
1998; Roberson et al., 2004). The case used for
our current study is Bateman (1915), who studied
591 English-speaking children in the age range 6-
11. Eight color chips of the ‘best’ examples3 of
the colors BLACK, BLUE, BROWN, GREEN, OR-
ANGE, PURPLE, RED, YELLOW were presented
to the subjects, who were then asked to name the
color.4 We use Bateman’s elicitation data in the
initial application of our approach to this domain
because, despite being a century old, it remains the
most comprehensive published error data on color
terms.

Bateman found that BLACK, WHITE, RED and

2A reviewer noted that ‘conceptual’ may be an inaccu-
rate term, since factors beyond strictly the conceptual bi-
ases of language users might influence color lexicons and
their crosslinguistic similarities and differences. In adopt-
ing the Typological Prevalence Hypothesis as a working hy-
pothesis, we consider that crosslinguistic patterns reflect cog-
nitively natural conceptual groupings, while acknowledging
that other factors need to be investigated as well.

3“Each color was of the purest tone and strongest satura-
tion obtainable”, p. 476.

4We adopt the convention of denoting the stimuli with
small capitals and the words with italics. The responses con-
tain all eleven English basic color terms (Berlin and Kay,
1969): black, white, red, yellow, green, blue, orange, purple,
pink, brown and grey.
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BLUE were learned (nearly) error-free (≤ 2% er-
roneous responses at age 6), but YELLOW (7% at
age 6), GREEN (6% at age 6), ORANGE (6% at
age 6), and especially PURPLE (11% at age 6) dis-
played errors. For YELLOW, the term orange is the
most frequent error. For ORANGE various errors
are found (yellow, red, blue, purple, brown, pink).
GREEN displays mostly errors in which blue is
used. For PURPLE, blue is the most frequent erro-
neous term. Whereas the errors for YELLOW and
GREEN have disappeared at age 7, the errors for
ORANGE and PURPLE are somewhat more persis-
tent, and are found until age 11 and 9 respectively.

In summary, this data yields the following five
phenomena that must be explained:
• BLACK, WHITE, BLUE, and RED display

hardly any errors;
• GREEN and YELLOW display some errors at

age 6 but none afterwards;
• ORANGE displays (somewhat haphazard)

persistent errors;
• PURPLE displays persistent errors, mostly

blue;
• However, purple is not overextended to

BLUE.
While previous accounts of the error patterns have
mainly focused on perceptual closeness of the var-
ious colors (Bartlett, 1978; Pitchford and Mullen,
2003), this cannot be the full explanation: If
the overextension of blue to PURPLE stimuli was
solely due to color similarity, we would expect
(contrary to observation) that purple would also
be incorrectly overextended to BLUE stimuli.

Here, we explore three potential factors that
might lead to the observed pattern of color
errors: perceptual features of color, concep-
tual/typological prevalence factors, and/or fre-
quency of the color terms.

3 Operationalizing the Three Factors

We simulate the acquisition of color terms by
training a word-learning model on a generated in-
put stream, in which each input item pairs a se-
mantic representation s ∈ S of a color, with a
color term t ∈ T used to refer to it. S is drawn
from the 330 chips of the Munsell color chart, and
T contains the eleven basic color terms that com-
prised the responses in Bateman (1915). We ex-
plore the impact of perceptual and/or conceptual
(typological) factors by varying the representation
of s, using one or both of the feature sets described

in Sections 3.1 and 3.2.5 The role of frequency of
t is examined by varying the way the input items
are generated, as in Section 3.3.

3.1 Perceptual features

As the perceptual dimensions, we use the CIELab
color space. The CIELab space describes all col-
ors visible to the human eye, and consists of three
dimensions, lightness (L∗), a red-green scale (a∗)
and a yellow-blue scale (b∗). Importantly, the Eu-
clidean distance between any pair of coordinates
in CIELab is thought to directly reflect the per-
ceptual similarity between colors. Since color
perception is thought to be adultlike before age
two (Pitchford and Mullen, 2003), we can assume
these perceptual features to be stable over devel-
opment.

3.2 Conceptual features

The conceptual dimensions reflect the crosslin-
guistic biases in categorizing the color space. To
capture these, we use the World Color Survey data
of Kay et al. (2009), which contains elicitations for
each of the 330 chips of the Munsell color chart,
for 110 typologically diverse languages, with on
average 24 participants per language. From this
data, we extract an n-dimensional conceptual
space by using the first n dimensions of a Princi-
pal Component Analysis (PCA, Hotelling (1933))
over the elicited color terms for a number of color
stimuli following the method of Beekhuizen et al.
(2014), as described below.

The elicitations for each language give us a
count matrix C containing a set of color stimuli S
on the rows, and a set of color terms T in that lan-
guage on the columns. Every cell is filled with the
count of participant responses to stimulus s that
use color term t. Matrix C captures the way that
the language carves up the space of color: stim-
uli s and s′ are treated similarly in the language
to the extent that the labels used to express them
are similar, reflected in rows s and s′ of C. As we
want to know how often stimuli are co-categorized
across languages, the procedure of Levinson et
al. (2003) is adapted: for every language l, an
|S| × |S| distance matrix Dl containing the Eu-
clidean distances between all pairs of situations is
extracted. By summing the distance matrices for
all languages, we arrive at a distance matrix Dall

5The values for the 330 chips on the two feature sets are
available from the first author upon request.
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whose elements dij are the summed distances be-
tween si and sj across all languages. A PCA was
applied to Dall, from which we use the 4 compo-
nents with an Eigenvalue ≥ 1 (Kaiser’s rule) as
our conceptual space to represent color semantics.

3.3 The role of frequency

In the input generation procedure, a pair of a color
term t ∈ T and a stimulus s ∈ S is sampled from
the distribution P (t, s) = P (s|t)P (t). The likeli-
hood P (s|t) is the relative frequency of a specific
color chip given a term (as given by the data for
English of Berlin and Kay (1969)):

P (s|t) =
n(t, s)∑

s′∈s

n(t, s′)
(1)

where P (s|t) = 0 for s not included in the elicita-
tion data.

To explore the role of term frequency in color
errors, we base the prior probability P (t) on the
relative frequency of t among the 11 primary color
terms in the Manchester corpus of child-directed
speech (Theakston et al., 2001). We then compare
this to holding frequency constant, i.e. with P (t)
a uniform distribution over T .

4 The Experimental Approach

4.1 The learning models

We model word-learning as a categorization prob-
lem by considering the 11 color terms as the “cat-
egories” to be learned over the various color se-
mantics (the representations of the color chips)
each is associated with in the input. Extending
Beekhuizen et al. (2014), we try two different
categorization models: a Gaussian Naı̈ve Bayes
learner (GNB, as in their work), and a Generalized
Context Model (GCM, Nosofsky (1987)), for two
reasons. First, if the same effects are found with
multiple models, the effect is more robust, and not
an effect of the model per se. Second, GCM is
an exemplar-based categorization model that has
been shown to simulate human categorization be-
havior well.

In the GNB approach, for a given amount of in-
put data of color-semantics/color-term pairs, the
model estimates Gaussian distributions over each
of the perceptual and/or conceptual feature dimen-
sions. The model is then presented with each of
Bateman’s 8 color stimuli as the test phase, and it

outputs the color term with the Maximal A Poste-
riori probability as the predicted category for each
color.

In the GCM model, the probability of categoriz-
ing a color stimulus si with category J (response
RJ , a color term) is given as the summed similar-
ity η between si and all instances of category J
(all colors referred to by the color term), divided
by the summed similarity between si and all ex-
emplars (colors) in the data set.

P (RJ |si) =

bJ
∑

j∈CJ

ηij∑
K

(bK
∑

k∈CK

ηik)
(2)

where b is the category bias, here set to uniform
for categories. ηij is given by:

ηij = e−dδij (3)

where δ is the decay function, here set to 1 (ex-
ponential). For d we use the Euclidean distance
between the coordinate vectors of i and j.

4.2 Experimental set-up

Each model is trained on successively larger
amounts of data, in blocks of 10 input pairs. Ev-
ery 10 input items, the model is presented with
the 8 colors of Bateman (1915) and predicts the
most likely category label from the set of 11 color
terms. As Bateman does not give values in a color
space for his stimuli, we assume that the focal
colors, as described by Berlin and Kay (1969),
were used.6 For each of the 12 parameter set-
tings (features = {perc, conc, perc&conc}×
frequency = {relative, uniform}×model =
{GCM, GNB}), we run 30 simulations of 1000 input
items each, each of which yields 100 test points.

4.3 Evaluating the model predictions

Assessing the accuracy of the model in simulating
the observed error data requires us to align the pre-
dictions P at the 100 test moments of the model
with Bateman’s observed data O in the 5 age bins
(6-, 7-, 8-, 9-, and 10-to-11-year-olds). We repre-
sent O as a 5×8 matrix in which each element oij

is the distribution of responses over the children
at age bin i to color stimulus j (where j is one of
the 8 stimulus colors). The matrix P contains the

6If multiple tokens were named as focal in the data of
Berlin and Kay (1969), we set coordinates of a test item to
the mean of each coordinate for all focal instances of that
category.
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models responses under a given parameter setting;
it is a 100 × 8 matrix in which each element pkj

is the distribution of responses over the 30 simula-
tions at test point i to color stimulus j. For exam-
ple, pkj for j the RED stimulus might look like:

pkj = [ red : 0.8, orange : 0.1, purple : 0.1, ... ]

indicating that of the 30 simulations at test point
k, 24 predicted red, 3 orange, and 3 purple, to
the stimulus j=RED (and 0 responses for all other
color terms). To recap, each row of O and P is
a vector of 8 elements, each of which is a dis-
tribution over the 11 color terms that comprises
the responses of the children/model at that age/test
point, respectively, to the 8 color stimuli.

To determine the degree to which the predic-
tions of the model given in P mimic the error
data in O, we need to map each row i of O (the
responses for that age bin) to some row k in P ,
such that each oi+1 maps to a higher k than oi.
(This constraint ensures that older age bins map
to later test points of the model.) To find this map-
ping between observed and predicted data, we find
the series of 5 (possibly discontiguous) rows in P
that minimize the average distance between those
5 rows and the 5 rows of O.

To compare rows oi and pk, we find (and aver-
age) the distance d between each paired distribu-
tion (e.g., RED in oi and RED in pk):7

∆(oi, pk) =
∑

s∈Stest

d(os
i , p

s
k)× 1

|Stest| (4)

where Stest is the set of 8 test colors. Using
∆(oi, pk), we compare all oi and pk (subject to
the ordering constraint on k) and find the series of
5 pki’s with the lowest distance to the oi’s they are
mapped to.

Now we can calculate the overall error of the
model’s predictions P with respect to the observed
data O as:

error(O,P ) =


∑

i∈[1...5],ki

∆(oi, pki)

5

 (5)

where the indices ki are given by the mapping that
minimizes the error, as explained above.

7The experiments reported below use Euclidean distance
for d, but the pattern of results is the same under cosine or
Canberra distance.

5 Results and discussion

5.1 Global fit and effect of parameters
In order to study the effect of the various param-
eters (features = {perc, conc, perc&conc}×
freq = {relative, uniform} × model =
{GCM, GNB}), we enter the error for the output
for each setting into a two-way ANOVA. As we
can see in Table 1, there are two main effects: the
features and the model. A post-hoc test (Tukey
HSD) shows that for the features variable, the
difference between perc and conc (p < 0.001)
as well as between perc&conc and conc (p <
0.001) are statistically significant, but not the dif-
ference between perc&conc and perc (n.s.). For
the model parameter, we observe a slightly better
fit for GCM than for GNB. For the freq parame-
ter, there is no difference between relative and
uniform.

The analysis shows that the perceptual features
perform better than the conceptual features, and
adding the conceptual features to the perceptual
ones gives no improvement. It seems that percep-
tual features play an important role in explaining
the overextensions and lack thereof in the develop-
ment of color terminology, but that the conceptual
features explain little on top of this.

The lack of an effect of the conceptual fea-
tures is unexpected, given that Beekhuizen et al.
(2014) found that using their typological concep-
tual space explained the errors in the acquisition
of Dutch spatial relation terms. One could ar-
gue that the domain of color is conceptually sim-
pler than space (pertaining to properties of enti-
ties rather than relations between them, cf. Gen-
tner (1982)), which is supported by the finding of
Majid et al. (2015) that, at least among Germanic
languages, space lexicons vary more crosslinguis-
tically than color lexicons. However, the fact that
children acquire color terms relatively late (com-
pared to spatial terms) goes against this analysis,
but then again, the late acquisition of color may
also be due to other factors (e.g., the difficulty of
disentangling color from other properties, cf. Soja
(1994)). Understanding the lack of an effect of the
conceptual features here ultimately requires us to
analyze the crosslinguistic data further, which we
plan to do in future work.

We also found no significant effect of the fre-
quency manipulation, suggesting that the observed
errors are not influenced by the varying frequen-
cies of color terms. This is surprising because
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parameter F p parameter setting mean error

perc&conc µ = 0.015
features F (2) = 2790.070 p = 0.000 perc µ = 0.020

conc µ = 0.354

frequency F (1) = 0.026 p = 0.887
relative µ = 0.130
uniform µ = 0.130

model F (1) = 11.208 p = 0.044
GCM µ = 0.120
GNB µ = 0.139

Table 1: Results of the ANOVA; see Section 5.1 for post-hoc analyses.

Beekhuizen et al. (2014) found that an interaction
of frequency and typological factors contributed to
the errors they modeled. Moreover, frequency has
been shown to correlate with acquisition of color
terms (Yurovsky et al., 2015), albeit for younger
children than the ones in the Bateman data.

This suggests that a possible explanation for the
lack of both frequency and typological prevalence
effects is that the error data we are modeling are
from older children (ages 6–11). Perhaps effects
of frequency and/or conceptual factors (on the ba-
sis of typological prevalence) are only found in
younger children. It may be that, by age 6, the
young language user has organized her semantic
space in accordance with her native language, thus
no longer displaying effects of typological preva-
lence. In the future we will need to look at ear-
lier error data to explore whether the factors in-
volved vary in their importance during the devel-
opment of a vocabulary: frequency and conceptual
biases may have certain effects early on, but fac-
tors pertaining to perceptual dimensions leading to
the overextension of category boundaries may be
more persistent.

5.2 Findings per color

Here we look at the results of the model per test
color, considering the role of the different feature
spaces, perc and conc, and of the different fre-
quency settings, uniform and relative, used for
calculating the prior probability of the color terms.
In addition to looking at the overall error of the
model’s predictions (Table 2), we also look at the
actual responses in some of the interesting cases.
Even though the frequency setting made no dif-
ference overall in the amount of error, we show
results for both settings, since it affects the pattern
of responses for some individual colors. All these
results use the GCM model, since it performed

slightly (but statistically significantly) better than
the GNB model.

Recall that the first two observed error patterns
to be explained (see Section 2) are that there are
no overextensions for BLACK, WHITE, RED, and
BLUE, and few, non-persistent overextensions for
YELLOW and GREEN. Regarding these color stim-
uli, we find that the model provides a good fit un-
der all settings for features and frequency. In
all cases, the error is caused by underestimation
of the model of the few overextensions that are
there, that is: the model predicts no overextensions
for these six stimuli, whereas there are some.

The next two phenomena concern the persistent
errors for ORANGE and PURPLE, where other color
terms are overextended by even older children to
these stimuli. For these two stimuli, the model fit
is slightly worse than for the other colors when
using the perc features, but the setting of conc
features alone worsens the fit with a dramatic in-
crease in the model error.

For ORANGE, the model behaves similarly as
with the previous 6: it predicts no overextensions
(for perc&conc and perc) or a complete overex-
tension of red (for conc). As such, we cannot ex-
plain the observed overextension pattern for OR-
ANGE well at this point. However, we can exclude
term frequency as an explanation: under both set-
tings for frequency, the model has the same fit
with the observed pattern.

The results for PURPLE, the other color with
persistent overextensions, display a number of
noteworthy effects. Here, in addition to the model
error in Table 2, we also show figures with the
proportion of responses to PURPLE over time, for
both the child data and for the model under several
interesting settings; see Figure 1.

First, the model under all settings does pre-
dict overextensions of other color terms to PUR-
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BLACK BLUE GREEN ORANGE PURPLE RED WHITE YELLOW

perc&conc, uniform 0.000 0.005 0.013 0.029 0.024 0.003 0.000 0.011
perc, uniform 0.000 0.005 0.013 0.029 0.026 0.003 0.000 0.011
conc, uniform 0.000 0.019 0.030 1.000 0.854 0.003 0.000 0.011
perc&conc, relative 0.000 0.005 0.013 0.029 0.036 0.003 0.000 0.011
perc, relative 0.000 0.005 0.013 0.029 0.015 0.003 0.000 0.011
conc, relative 0.000 0.028 0.013 1.000 0.852 0.003 0.000 0.011

Table 2: Mean error per stimulus, in the GCM model.

PLE. Focussing on the settings with a good fit
(perc&conc and perc), we find that the term
blue is in all cases persistently overextended to
PURPLE. However, the various settings do pro-
vide different overextension patterns, as can be
seen in Figure 1. The setting with the closest fit
(error = 0.014) is pred, relative (Fig. 1d):
here we see a pattern most similar to that found
in child data (Fig. 1a). From the fact that the
model error for this setting is about twice as low
as the settings with uniform frequency and with
conceptual dimensions we can infer two things.
First, we do find a frequency effect: blue being
more frequent than black in child-directed speech
explains why there are more overtextensions of
black given the setting perc, uniform (Fig. 1c)
than given perc, relative. Second, the concep-
tual dimensions hurt the prediction of the overex-
tension pattern. Including the conceptual dimen-
sions correctly predicts blue to be the most fre-
quent overextension, but underestimates the total
amount of errors (Fig. 1b).

The final phenomenon concerns the asymme-
try in overextensions between PURPLE and BLUE.
Whereas blue is overextended to the PURPLE stim-
ulus, purple is not overextended to BLUE. We can
rule out the frequency difference between blue and
purple as an explanation, despite that purple is
much less frequent: Under both frequency set-
tings, purple is not overextended to BLUE. Given
that the conceptual features do not help the model
fit, it is likely that the source of the asymmetry is
to be found in the perceptual feature space.

Looking more closely at the color stimuli and
the perceptual feature space, we can identify that
the reason for the observed asymmetry is the lo-
cation of the focal colors within each color cate-
gory. As Figure 2 shows, the BLUE and PURPLE

categories form a sphere in the three perceptual
dimensions. The focal exemplars of each cate-
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Figure 2: Positions of the various BLUE and PUR-
PLE exemplars in the CIELab space.

gory, however, are located at different values for
L∗, the luminance dimension. Focal PURPLE is
darker than focal BLUE, and hence closer (on the
dimensions a∗ and b∗) to BLUE exemplars with a
lower luminance. Focal BLUE is more luminant,
and hence further away from PURPLE exemplars
with the same luminance.

On the assumption that Bateman’s test items
were focal exemplars of the categories, this means
that the lack of overextension of purple to BLUE

can be attributed to the lay-out of the perceptual
dimensions, and to the position that the focal ex-
emplars have in that space. Thus, the model’s re-
sults suggest a new explanation for the asymmetry
in overextensions that goes beyond simple percep-
tual closeness and frequency of color terms.

5.3 The role of the conceptual features

If the conceptual dimensions have little additional
predictive power over the perceptual ones, two
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Figure 1: Observed and predicted responses to PURPLE over time.

L∗ a∗ b∗

PCA1 −0.01 0.80∗ −0.01
PCA2 −0.97∗∗∗ 0.40 −0.08
PCA3 0.16 −0.03 −0.88∗∗

PCA4 0.60 −0.86∗ 0.70

Table 3: Correlation matrix for the four used PCA
components and the three perceptual dimensions.
Stars indicate level of significance of the correla-
tion (* = p < .05, ** = p < .01, *** = p < .001).

scenarios are possible. The conceptual dimen-
sions may correlate with the perceptual ones, or
they may be independent from them. In the for-
mer case, it means that the crosslinguistic com-
monalities in structuring the domain of color mir-
ror the perceptual biases. This would mean that
adding the conceptual dimensions can be expected
to have no explanatory effect on top of the percep-
tual dimensions. In the latter scenario, it means
that there are other biases causing the commonali-
ties in the crosslinguistic data, but that these biases
do not affect language acquisition. This scenario
would imply a negative assessment of the Typo-

logical Prevalence Hypothesis.
As we can see in Table 3, the former scenario of

correlated features seems closer to the truth than
the latter. The luminance dimension L∗ displays
an almost perfect negative correlation with com-
ponent 2 of the PCA, whereas the red-green scale
a∗ has a strong positive correlation with compo-
nent 1 and a strong negative one with component
4. The yellow-blue scale, finally, has a strong neg-
ative correlation with component 3. That is: all
four features of our conc space (i.e., those PCA
components with Eigenvalues greater than 1) have
correlating perceptual dimensions. This means
that they can be seen as symptoms of these dimen-
sions and that the category structure of color terms
across languages depends to a large extent on the
perceptual dimensions of color.

What this means is that using crosslinguistic
data does lay bare an important part of the concep-
tual structure of the domain. If we did not know
of the perceptual properties of color, a Principal
Component Analysis on the basis of crosslinguis-
tic data would provide us with an insight in all
three dimensions of the perceptual space.

One concern remains, however. Even though
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the perceptual feature space by itself constitutes a
good predictor of the error terms, the use of only
conceptual dimensions does not explain as much
of the error pattern.

6 Conclusion

In this paper, we looked at overextensions in the
acquisition of the meaning of color terms. For this
initial study, we focused on the English data of
Bateman (1915) – the most comprehensive pub-
lished error data on color terms – in which we
identified five phenomena that characterize the
pattern of children’s errors, and that must be ex-
plained by a theory of word meaning acquisition.
We considered three factors that might play a role
in this domain: (1) the identified perceptual di-
mensions relating to the various exemplars of the
color terms; (2) the effect of typological preva-
lence (i.e., the more frequently a certain grouping
of color exemplars is crosslinguistically, the more
cognitively natural it is thought to be, and hence
the more readily/robustly acquirable, Gentner and
Bowerman (2009)); and (3) the frequency of color
terms.

We used an extension of the modeling approach
taken in Beekhuizen et al. (2014). In that work, the
effects of typological prevalence and frequency
were studied in the domain of spatial relations. In
this paper, we applied the same technique to the
crosslinguistic elicitation data of the World Color
Survey (Kay et al., 2009) to arrive at a set of fea-
tures (the ‘conceptual’ space) reflecting typologi-
cal frequency of semantic groupings. We consid-
ered in addition the possible impact of a perceptual
representation of color.

We find several notable effects within our set-
up. First, the perceptual influence provides the
best explanation of the errors: Including the per-
ceptual features gives the model a very good fit
with the developmental overextension pattern for
all five phenomena observed in the Bateman data,
and adding either or both of the conceptual (ty-
pological) features and the frequency information
does not improve the fit. This last finding is reveal-
ing, as it means that the overextensions cannot be
ascribed to the frequencies of the color terms.

We argued that the reason the conceptual fea-
tures do not improve the model fit is that the per-
ceptual and conceptual spaces are strongly corre-
lated. This suggests that the typological preva-
lence patterns in the crosslinguistic data follow

the perceptual dimensions. However, the model fit
is actually worse when only using the conceptual
features, an issue that we must explore further.

Furthermore, it may be that the conceptual fea-
tures do help for the acquisition of color words
in other languages. The lack of an effect of the
conceptual space on top of the perceptual features
may also be due to the (older) age of the children
in the data. Overextension patterns in younger
children may display effects of the conceptual di-
mensions, as well as frequency. We are currently
planning to extend this research to a variety of er-
ror data sets, both in English and other languages,
to see if similar results are found and to further
evaluate the role of the various perceptual, typo-
logical, and frequency factors.

Another issue we plan to work on is the fact
that the model performs ‘too well’: It predicts no
overextensions for 6 out of the 8 color stimuli, de-
spite children displaying a few errors on 4 of these
colors. Using our typologically-derived semantic
space within a fuller model of word learning, such
as that of Fazly et al. (2010) or Nematzadeh et al.
(2012), rather than using a simple categorization
model as we do here, might further our insight into
potential sources of overextensions.

Given our general methodological approach, re-
viewers noted other interesting possibilities and
suggested that alternative design choices are pos-
sible as well for the dimensionality reduction tech-
nique, the alignment method between predicted
model data and observed experimental data, and
the statistical evaluation procedure. We plan to
follow up on these suggestions in future research,
in addition to the exploration of a wider set of
crosslinguistic error patterns, the consideration of
earlier developmental stages, and the use of a more
realistic word-learning model.

Acknowledgments

We gratefully acknowledge NSERC of Canada for
the funding of both authors, as well as the four
anonymous reviewers for their comments and sug-
gestions.

References
Elsa Jaffe Bartlett. 1978. The acquisition of the mean-

ing of colour ters: a study of lexcal development.
pages 89–108.

W. G. Bateman. 1915. The Naming of Colors by

91



Children the Binet Test. The Pedagogical Seminary,
22(4):469–486, December.

Barend Beekhuizen, Afsaneh Fazly, and Suzanne
Stevenson. 2014. Learning Meaning without Primi-
tives: Typology Predicts Developmental Patterns. In
Proceedings of the 36th annual meeting of the Cog-
nitive Science Society.

Brent Berlin and Paul Kay. 1969. Basic color terms:
Their universality and evolution. University of Cal-
ifornia Press, Berkeley, CA.

Melissa Bowerman. 1993. Typological perspectives
on language acquisition: Do crosslinguistic patterns
predict development? In Eve V. Clark, editor, Pro-
ceedings of the Twenty-fifth Annual Child Language
Research Forum, pages 7–15, Stanford, CA. CSLI
Publications.

Eve V. Clark. 1973. What’s in a word? On the
child’s acquisition of semantics in his first language.
In Timothy E. Moore, editor, Cognitive Develop-
ment and the Acquisition of Language, pages 65–
110. New York: Academic Press.

Ian R. L. Davies, Greville Corbett, Harry McGurk, and
David Jerrett. 1994. A developmental study of he
acquisition of colour terms in Setswana. Journal of
Child Language, 21:693–712.

Ian R. L. Davies, Greville Corbett, Harry McGurk,
and Catriona MacDermid. 1998. A developmen-
tal study of the acquisition of Russian colous terms.
Journal of Child Language, 25:395–417.

Afsaneh Fazly, Afra Alishahi, and Suzanne Steven-
son. 2010. A probabilistic computational model of
cross-situational word learning. Cognitive Science,
34(6):1017–1063.

Dedre Gentner and Melissa Bowerman. 2009. Why
some spatial semantic categories are harder to learn
than others. The Typological Prevalence Hypothe-
sis. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp,
K. Nakamura, and S. Ozcaliskan, editors, Crosslin-
guistic approaches to the psychology of language.
Research in the tradition of Dan Isaac Slobin, chap-
ter 34, pages 465–480. Psychology Press, New York,
NY.

Dedre Gentner. 1982. Why Nouns are Learned Before
Verbs : Linguistic Relativity versus Natural Parti-
tioning. In Stan Kuczaj, editor, Language Develop-
ment. Volume 2: Language, Thought, and Culture,
volume 2, chapter 11, pages 301–334. Lawrence Erl-
baum Associates, Hillsale, New Jersey.

Judith C Goodman, Philip S Dale, and Ping Li. 2008.
Does frequency count? Parental input and the ac-
quisition of vocabulary. Journal of child language,
35(3):515–31, August.

Insa Gülzow and Natalia Gagarina, editors. 2007. Fre-
quency Effects in Language Acquisition. Defining
the Limits of Frequency as an Explanatory Concept.
De Gruyter Mouton, Berlin.

Sara Harkness. 1973. Universal Aspects of Learn-
ing Color Codes: A Study in Two Cultures. Ethos,
pages 175–200.

H. Hotelling. 1933. Analysis of a complex of statisti-
cal variables into principal components. Journal of
Educational Psychology, 24:417–441,498–520.

Z.M. Istomina. 1960. Perception and naming of color
in early childhood. Izvestiia Akademii Pedagogich-
eskikh, 113:37–45.

Paul Kay, Brent Berlin, Luisa Maffi, William R. Merri-
field, and Richard Cook. 2009. World Color Survey.
CSLI Publications, Stanford, CA.

Stephen C. Levinson, Sergio Meira, The Language
Group, and Cognition. 2003. ’Natural Concepts’
in the Spatial Topological Domain – Adpositional
Meanings in Crosslinguistic Perspective: An Exer-
cise in Semantic Typology. Language, 79(3):485–
516.

Asifa Majid, Fiona Jordan, and Michael Dunn. 2015.
Semantic systems in closely related languages. Lan-
guage Sciences, 49:1–18.

Aida Nematzadeh, Afsaneh Fazly, and Suzanne
Stevenson. 2012. A computational model of mem-
ory, attention, and word learning. In Proceedings
of the Third Workshop on Cognitive Modeling and
Computational Linguistics.

Robert M Nosofsky. 1987. Attention and Learning
Processes in the Identification and Categorization of
Integral Stimuli. Journal of Experimental Psychol-
ogy, 13(1):87–108.

Nicola J. Pitchford and Kathy J. Mullen. 2003. The
development of conceptual colour categories in pre-
school children: Influence of perceptual organiza-
tion. Visual Cognition, 10(1):51–57.

Terry Regier, Paul Kay, and Naveen Khetarpal. 2007.
Color naming reflects optimal partitions of color
space. PNAS, 104:1436–1441.

Debi Roberson, Jules Davidoff, Ian R L Davies, and
Laura R Shapiro. 2004. The development of
color categories in two languages: a longitudinal
study. Journal of experimental psychology. General,
133(4):554–71, December.

Nancy N. Soja. 1994. Young Children’s Concept of
Color and Its Relation to the Acquisition of Color
Words. Child Development, 65:918–937.

Anna L. Theakston, Elena V.M. Lieven, Julian M. Pine,
and Caroline M. Rowland. 2001. The role of
performance limitations in the acquisition of verb-
argument structure: An alternative account. Journal
of Child Languages, pages 127–152.

Daniel Yurovsky, Katie Wagner, David Barner, and
Michael C. Frank. 2015. Signatures of Domain-
General Categorization Mechanisms in Color Word
Learning. In Proceedings CogSci.

92


