
MoL 2015

The 14th Meeting on the Mathematics of Language

Proceedings

July 25–26, 2015
Chicago, USA

c©2015 The Association for Computational Linguistics

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-941643-56-3

ii

Introduction

We are pleased to introduce the proceedings of the 14th Meeting on Mathematics of Language, MoL,
to be held at the University of Chicago on July 25–26, 2015.

This volume contains eleven regular papers and two invited papers. The regular papers, which were
selected by the Program Committee from a total of twenty-two submissions, feature a broad variety
of work on mathematics of language, including phonology, formal language theory, natural language
semantics, and language learning. The invited papers are presented by two distinguished researchers in
the field: David McAllester, Professor and Chief Academic Officer at the Toyota Technological Institute
at Chicago, and Ryo Yoshinaka, Assistant Professor at Kyoto University.

We would like to express our sincere gratitude to our colleagues on the Program Committee for the
time and effort that they put into the reviewing of the papers, and to Min-Yen Kan for his help with the
publishing of these proceedings in the ACL Anthology.

We wish you all a fruitful meeting.

Marco Kuhlmann, Makoto Kanazawa and Gregory M. Kobele (editors)

iii

Program Chairs:

Marco Kuhlmann (Linköping University, Sweden)
Makoto Kanazawa (National Institute of Informatics, Japan)

Local Chair:

Gregory M. Kobele (University of Chicago, USA)

Program Committee:

Henrik Björklund (Umeå University, Sweden)
David Chiang (University of Notre Dame, USA)
Alexander Clark (King’s College London, UK)
Shay Cohen (University of Edinburgh, UK)
Carlos Gómez-Rodríguez (University of A Coruña, Spain)
Jeffrey Heinz (University of Delaware, USA)
Gerhard Jäger (University of Tübingen, Germany)
Aravind Joshi (University of Pennsylvania, USA)
András Kornai (Hungarian Academy of Sciences, Hungary)
Giorgio Magri (CNRS, France)
Andreas Maletti (University of Stuttgart, Germany)
Jens Michaelis (Bielefeld University, Germany)
Gerald Penn (University of Toronto, Canada)
Carl Pollard (The Ohio State University, USA)
Jim Rogers (Earlham College, USA)
Mehrnoosh Sadrzadeh (Queen Mary University of London, UK)
Sylvain Salvati (INRIA, France)
Ed Stabler (University of California, Los Angeles, USA)
Mark Steedman (Edinburgh University, UK)
Anssi Yli-Jyrä (University of Helsinki, Finland)

Invited Speakers:

David McAllester (Toyota Technological Institute at Chicago, USA)
Ryo Yoshinaka (Kyoto University, Japan)

v

Table of Contents

A Refined Notion of Memory Usage for Minimalist Parsing
Thomas Graf, Brigitta Fodor, James Monette, Gianpaul Rachiele, Aunika Warren and Chong

Zhang . 1

Abstract Categorial Parsing as Linear Logic Programming
Philippe de Groote . 15

Topology of Language Classes
Sean A. Fulop and David Kephart . 26

Individuation Criteria, Dot-types and Copredication: A View from Modern Type Theories
Stergios Chatzikyriakidis and Zhaohui Luo . 39

Lexical Semantics and Model Theory: Together at Last?
András Kornai and Marcus Kracht . 51

A Frobenius Model of Information Structure in Categorical Compositional Distributional Semantics
Dimitri Kartsaklis and Mehrnoosh Sadrzadeh. .62

A Synopsis of Morphoid Type Theory
David McAllester .75

General Perspective on Distributionally Learnable Classes
Ryo Yoshinaka . 87

Canonical Context-Free Grammars and Strong Learning: Two Approaches
Alexander Clark . 99

Output Strictly Local Functions
Jane Chandlee, Rémi Eyraud and Jeffrey Heinz . 112

How to Choose Successful Losers in Error-Driven Phonotactic Learning
Giorgio Magri and René Kager . 126

A Concatenation Operation to Derive Autosegmental Graphs
Adam Jardine and Jeffrey Heinz . 139

Syntactic Polygraphs. A Formalism Extending Both Constituency and Dependency
Sylvain Kahane and Nicolas Mazziotta . 152

vii

Program

Saturday, July 25

09:30–10:15 A Refined Notion of Memory Usage for Minimalist Parsing
Thomas Graf, Brigitta Fodor, James Monette, Gianpaul Rachiele, Aunika Warren
and Chong Zhang

10:15–11:00 Abstract Categorial Parsing as Linear Logic Programming
Philippe de Groote

11:00–11:15 Coffee Break

11:15–12:00 Topology of Language Classes
Sean A. Fulop and David Kephart

12:00–14:00 Lunch Break

14:00–14:20 S.-Y. Kuroda Prize Ceremony

14:20–15:05 Individuation Criteria, Dot-types and Copredication: A View from Modern Type
Theories
Stergios Chatzikyriakidis and Zhaohui Luo

15:05–15:50 Lexical Semantics and Model Theory: Together at Last?
András Kornai and Marcus Kracht

15:50–16:35 A Frobenius Model of Information Structure in Categorical Compositional Distri-
butional Semantics
Dimitri Kartsaklis and Mehrnoosh Sadrzadeh

16:35–16:50 Coffee Break

16:50–17:50 Invited Talk: A Synopsis of Morphoid Type Theory
David McAllester

ix

Sunday, July 26

09:30–10:30 Invited Talk: General Perspective on Distributionally Learnable Classes
Ryo Yoshinaka

10:30–10:45 Coffee Break

10:45–11:30 Canonical Context-Free Grammars and Strong Learning: Two Approaches
Alexander Clark

11:30–12:15 Output Strictly Local Functions
Jane Chandlee, Rémi Eyraud and Jeffrey Heinz

12:15–13:00 How to Choose Successful Losers in Error-Driven Phonotactic Learning
Giorgio Magri and René Kager

13:00–15:00 Lunch Break

15:00–15:45 A Concatenation Operation to Derive Autosegmental Graphs
Adam Jardine and Jeffrey Heinz

15:45–16:30 Syntactic Polygraphs. A Formalism Extending Both Constituency and Dependency
Sylvain Kahane and Nicolas Mazziotta

16:30–17:30 Business Meeting

x

Proceedings of the 14th Meeting on the Mathematics of Language (MoL 14), pages 1–14,
Chicago, USA, July 25–26, 2015. c©2015 Association for Computational Linguistics

A Refined Notion of Memory Usage for Minimalist Parsing

Thomas Graf Brigitta Fodor James Monette
Gianpaul Rachiele Aunika Warren Chong Zhang

Stony Brook University, Department of Linguistics
mail@thomasgraf.net, {firstname.lastname}@stonybrook.edu

Abstract

Recently there has been a lot of interest in
testing the processing predictions of a spe-
cific top-down parser for Minimalist gram-
mars (Stabler, 2013). Most of this work relies
on memory-based difficulty metrics that relate
the shape of the parse tree to processing be-
havior. We show that none of the difficulty
metrics proposed so far can explain why sub-
ject relative clauses are more easily processed
than object relative clauses in Chinese, Ko-
rean, and Japanese. However, a minor tweak
to how memory load is determined is suffi-
cient to fully capture the data. This result
thus lends further support to the hypothesis
that very simple notions of resource usage are
powerful enough to explain a variety of pro-
cessing phenomena.

1 Introduction

One of the great advantages of mathematical linguis-
tics is that its formal rigor allows for the exploration
of ideas and questions that could not even be pre-
cisely formulated otherwise. A promising project
along these lines is the investigation of syntactic pro-
cessing from a computationally informed perspec-
tive (Joshi, 1990; Rambow and Joshi, 1995; Steed-
man, 2001; Hale, 2011; Yun et al., 2014). This
requires I) an articulated theory of syntax that has
sufficient empirical coverage to be applicable to a
wide range of constructions, II) a sound and com-
plete parser for the syntactic formalism, and III)
a linking theory that derives psycholinguistic pre-
dictions from these two components. A successful

model along these lines provides profound insights
into the mechanisms of linguistic performance, and
it can also rule out certain syntactic proposals as psy-
cholinguistically inadequate. Unfortunately there
are multiple choices for each one of the three com-
ponents, which raises the question of which combi-
nations are empirically adequate.

This paper explores this issue for Minimalist
grammars (MGs), a formalization of the Chomskyan
variety of generative grammar that informs a lot of
psycholinguistic research nowadays. Taking as our
vantage point Kobele et al. (2012; henceforth KGH)
and their method for deriving structure-sensitive
processing predictions from Stabler’s (2013) MG
top-down parser, we evaluate how well the parser
captures the processing difficulty of relative clauses
in Chinese, Japanese, and Korean — a phenomenon
that escapes many processing models in the litera-
ture. By carefully modulating the set of syntactic
assumptions as well as the linking hypotheses, we
show that none of the memory-based proposals in
the tradition of KGH yield the right predictions. The
correct results are obtained, however, if the size of
parse items also counts towards their memory usage.
Our paper thus serves a dual purpose: it provides a
positive result in the form of a more refined notion of
memory usage that explains the observed processing
behavior, and a negative one by eliminating many
combinations of the three factors listed above.

Our discussion starts with two introductory sec-
tions that familiarize the reader with the research
this paper follows up on. We first discuss MGs,
the MG top-down parser, and how this parser has
been used to model processing phenomena in re-

1

cent years. This is followed by a brief review of a
long standing problem in syntactic processing: the
preference for subject relative clauses (SRCs) over
object relative clauses (ORCs) irrespective of cross-
linguistic word order differences. We present two
prominent relative clause analyses from the syntac-
tic literature, and we discuss why the preference for
SRCs over ORCs is surprising given current psy-
cholinguistic models. In Sec. 4 we finally demon-
strate that the MG parser cannot make the right pre-
dictions with any of the proposed metrics unless one
refines their conception of memory load.

2 Minimalist Grammars for Processing

2.1 Minimalist Grammars

MGs (Stabler, 1997) are a formalization of the most
recent iteration of transformational grammar, known
as Minimalism. Since they formalize ideas that form
the underpinning for the majority of contemporary
research in theoretical syntax and syntactic process-
ing, they act as a form of glue that makes these ideas
amenable to more rigorous study. The main purpose
of MGs in this paper is to provide a specific type of
structure for the parser to operate on — derivation
trees. Consequently the technical machinery is of
interest only to the extent that it illuminates the con-
nection between derivations and MG parsing, and
we thus omit formal details where possible.

An MG is a finite set of lexical items (LIs), where
every LI consists of a phonetic exponent and a finite,
non-empty string of features. Each feature has a pos-
itive or negative polarity, and it is either a Merge fea-
ture (written in upper caps) or a Move feature (writ-
ten in lower caps). MGs assemble LIs into trees via
the structure-building operations Merge and Move
according to the feature specifications of the LIs.
Intuitively, Merge may combine two LIs if their re-
spective first unchecked features are Merge features
and differ only in their polarity. The LI with the pos-
itive polarity feature acts as the head of the assem-
bled phrase. Move, on the other hand, removes a
phrase from an already assembled tree and puts it in
a different position; see Stabler (2011) for a formal
definition. Figure 1 shows a simplified tree for John,
the girl likes, with dashed lines indicating which po-
sitions certain phrases were displaced from.

The structure of a sentence is also fully encoded

by its derivation tree, i.e. the record of how its phrase
structure tree was assembled from the LIs via appli-
cations of Move and Merge. Every derivation tree
corresponds to exactly one phrase structure tree, but
the reverse does not necessarily hold. The main dif-
ference between the two types of tree is that moving
phrases remain in their base position in the deriva-
tion tree — compare, for instance, the positions of
John and the girl in the two trees in Fig. 1 (for the
sake of clarity interior nodes have the same label as
their counterpart in the phrase structure tree). As
a result, derivation trees do not directly reflect the
word order of a sentence, which must be derived by
carrying out the movement steps.

In addition, an MG’s set of well-formed deriva-
tion trees forms a regular tree language thanks to
a specific restriction on Move that is known as the
Shortest Move Constraint (Michaelis, 2001; Kobele
et al., 2007; Salvati, 2011; Graf, 2012). The set
of well-formed phrase structure trees, on the other
hand, is supra-regular — a corollary of MGs’ weak
equivalence to MCFGs (Harkema, 2001; Michaelis,
2001). The fact that derivation trees do not need to
directly encode linear order thus reduces their com-
plexity significantly in comparison to phrase struc-
ture trees. Since derivation trees offer a complete
regular description of the structure of a sentence,
and because regular tree languages can be viewed as
context-free grammars (CFGs) with an ancillary hid-
den alphabet (Thatcher, 1967), MGs turn out to be
close relatives of CFGs with a more complex map-
ping from trees to strings. It is this close connec-
tion to CFGs that forms the foundation of Stabler
(2013)’s top-down parser.

2.2 MG Parsing as Tree Traversal

Stabler (2013)’s parser for MGs builds on standard
depth-first, top-down parsing strategies for CFGs
but modifies them in three important respects: I)
the parser is equipped with a search beam that dis-
cards the most unlikely analyses, thus avoiding the
usual problems with left recursion, II) the parser
constructs derivation trees rather than phrase struc-
ture trees, and III) since derivation trees do not di-
rectly reflect linear order, the parser moves through
them in a particular fashion that would approximate
a left-most, depth-first search in the corresponding
phrase structure trees.

2

CP

C′

TP

T′

vP

vP

v′

VP

likes :: D+ V−

ε :: V+ D+ acc+ v−

ε :: v+ nom+ T−

DP

girl :: N−the :: N+ D− nom−

ε :: T+ top+ C−

John :: D− acc− top−

CP

C′

TP

T′

vP

vP

v′

VP

John :: D− acc− top−likes :: D+ V−

ε :: V+ D+ acc+ v−

DP

girl :: N−the :: N+ D− nom−

ε :: v+ nom+ T−

ε :: T+ top+ C−

Figure 1: MG phrase structure tree and derivation tree for John, the girl likes; dashed branches indicate movement

We completely ignore the beam in this paper and
instead adopt KGH’s assumption that the parser is
equipped with a perfect oracle so that it never makes
any wrong guesses during the construction of the
derivation tree. While psychologically implausible,
this idealization is meant to stake out a specific re-
search goal: processing effects must be explained
purely in terms of the syntactic complexity of the
involved structures, rather than the difficulty of find-
ing these structures in a large space of alternatives.
More pointedly, we assume that parsing difficulty
modulo non-determinism is sufficient to account for
the processing phenomena under discussion.

With non-determinism completely eliminated
from the picture, the parse of some sentence s re-
duces to a specific traversal of the derivation tree of
s. In general, the parser follows a left-most, depth-
first strategy, where a node is left-most if it is a spec-
ifier or if it is a head with a complement. However,
when a Move node is encountered, two things can
happen, depending on whether the Move node is an
intermediary landing site or a final one. Let p be
a moving phrase and m1, . . . ,mn the Move nodes
that denote an instance of Move displacing p. Then
mi is a final landing site (or simply final) iff there is

no mj , 1 ≤ j ≤ n, that properly dominates mi in
the derivation tree. A Move node is an intermediary
landing site (or intermediary) iff there is no phrase
in the derivation tree for which it is a final landing
site. An intermediary Move node does not affect the
parser’s tree traversal strategy. A final Move node,
on the other hand, causes the parser to take the short-
est path to the phrase that will be displaced by this
instance of Move. Once the root of that phrase has
been reached, the parser traverses its subtree in the
usual fashion and then returns to the point where it
veered off the standard path.

The traversal is made fully explicit via a notation
adopted from KGH where each node in the deriva-
tion tree has a superscripted index and a subscripted
outdex. The index lists the point at which the parse
item corresponding to the node is inserted into the
parser’s memory queue, whereas the outdex gives
the point at which said parse item is removed from
the queue. Both values can be computed in a purely
tree-geometric fashion. Let s[urface]-precedence be
the relation that holds between nodes m and n in
a derivation tree iff their counterparts m′ and n′ in
the corresponding phrase structure tree stand in the
precedence relation (if m undergoes movement, its

3

counterpart m′ is the final landing site rather than
its base position). Then indices and outdices can be
inferred without knowledge of the parser by the fol-
lowing procedure (cf. Fig. 2 on page 7):

• The index of the root is 1. For every other node,
its index is identical to the outdex of its mother.

• If nodes n and n′ are distinct nodes with index
i, and n reflexively dominates a node that is not
s-preceded by any node reflexively dominated
by n′, then n has outdex i+ 1.

• Otherwise, the outdex of node n with index i
is max(i + 1, j + 1), where j ≥ 0 is greatest
among the outdices of all nodes that s-precede
n but are not reflexively dominated by n.

2.3 Parsing Metrics

In order to allow for psycholinguistic predictions,
the behavior of the parser must be related to pro-
cessing difficulty via a parsing metric. There is no a
priori limit on the complexity of metrics one may
entertain, but the methodologically soundest posi-
tion is to explore simple metrics before moving on
to more complicated ones.

Extending KGH, Graf and Marcinek (2014;
henceforth GM) evaluate a variety of memory-based
metrics that measure I) how long a node is kept in
memory (tenure), or II) how many nodes must be
kept in memory (payload), or III) specific combi-
nations of these two factors. Tenure and payload
are easily defined using the node indexation scheme.
A node’s tenure is the difference between its index
and outdex, and the payload of the derivation tree is
equal to the number of nodes with a tenure strictly
greater than 2 (in the derivation trees in Figs. 2–5,
these nodes are boxed to highlight their contribution
to the payload).

GM define three metrics, the first of which is
adopted directly from KGH. Depending on the met-
ric, the difficulty of a parse is given by

Max max({t | t is the tenure of some node n})

Box | {n | n is a node with tenure > 2} |

Sum
∑

n has tenure >2 tenure-of(n)

GM define an additional six variants by restricting
the choice of nodes n to LIs and pronounced LIs,
respectively. They then compare the predictions of
these nine metrics with respect to right embedding
VS center embedding, and nested dependencies VS
crossing dependencies (both of which were origi-
nally analyzed in KGH), as well as two phenomena
involving relative clauses: I) sentential complements
containing a relative clause VS a relative clause con-
taining a sentential complement, and II) the prefer-
ence for subject relative clauses (SRCs) over object
relative clauses (ORCs) in English. They conclude
that the only metric that makes the right predictions
in all four constructions is Max restricted to pro-
nounced LIs.

Irrespective of the choice of metric, though, the
psycholinguistic predictions of the MG parser vary
with the choice of syntactic analysis. KGH use this
fact for a persuasive demonstration of how process-
ing data can be brought to bear on the distinction be-
tween so-called phrasal movement and head move-
ment. It is unclear, however, whether this should be
interpreted as support for a specific movement anal-
ysis or as evidence against the assumed difficulty
metric. GM’s comparison sheds little light on this
because it presupposes a specific syntactic analysis
for each phenomenon. A more elaborate comparison
is required that varies both the parsing metric and
the choice of syntactic analysis, ideally resulting in
only a few empirically adequate combinations. The
processing contrast between prenominal SRCs and
ORCs is exactly such a case.

3 Surveying Relative Clauses

3.1 Syntax

The main idea of this paper is that the space of pos-
sible combinations of syntactic analyses and parsing
metrics can be narrowed down quite significantly by
looking at processing phenomena that have proven
difficult to account for. As we will see next, the
fact that SRCs are easier to parse than ORCs in
Chinese, Korean, and Japanese constitutes such a
problem. We first discuss how the two have been
analyzed in the syntactic literature, while the next
section explains why many well-known processing
models have a hard time capturing the data.

Relative clauses (RCs) can be categorized accord-

4

ing to two parameters. First, the head noun, i.e. the
noun modified by the RC, may be the subject or the
object of the RC, in which case we speak of an SRC
and an ORC, respectively. Second, an RC is post-
nominal if it is linearly preceded by its head noun,
and prenominal otherwise. Note that in prenomi-
nal languages the complementizer (if it is realized
overtly) usually occurs at the right edge of the RC
rather than the left edge. Whether RCs have such an
overt complementizer is an ancillary parameter.

Most analyses of RCs were developed for lan-
guages like English, French, and German, where
RCs are postnominal and have overt complementiz-
ers (which might be optional). The general template
is [DP Det head-noun [RC complementizer subject
verb object]], with either the subject or the object
unrealized and the position of the verb depending
on language-specific word order constraints.

(1) a. [DP The mayor [RC who _ invited the ty-
coon]] likes wine.

b. [DP The mayor [RC who the tycoon in-
vited _]] likes wine.

The canonical account is the wh-movement analy-
sis, according to which the complementizer fills the
subject or object position, depending on the type of
RC, and then moves into Spec,CP (Chomsky, 1965;
Heim and Kratzer, 1998). Alternatively, the comple-
mentizer starts out as the C-head and instead a silent
operator undergoes movement from the base posi-
tion to Spec,CP. For the purposes of this paper the
two variants of the wh-movement analysis are fully
equivalent.

The promotion analysis is a well-known compet-
ing proposal (Vergnaud, 1974; Kayne, 1994). It
combines the ideas above and posits that the com-
plementizer starts out as the C-head, but instead of
a silent operator it is the head noun that moves from
the embedded subject/object position into Spec,CP.
In contrast to the wh-movement analysis, the head
noun is thus part of the RC. Crucially, though,
all three proposals involve an element that fills the
seemingly empty argument position of the verb and
subsequently moves to Spec,CP.

Languages with prenominal RCs, such as Chi-
nese, Japanese, and Korean, can be analyzed along
these lines, but differences in word order lead to a
significant increase in analytic complexity. Below is

an example of the English sentence in (1) with Chi-
nese word order.

(2) a. [DP [RC _ invited the tycoon who] the
mayor] likes wine.

b. [DP [RC the tycoon invited _ who] the
mayor] likes wine.

On a theoretical level, there are two major com-
plications. First, while Chinese is an SVO language
like English, Japanese and Korean are SOV lan-
guages, which requires movement of the object to
Spec,vP, thereby adding at least one more move-
ment step within each RC in these two languages.
More importantly, the prenominal word order must
be derived from the postnominal one via movement,
which causes the wh-movement analysis and the
promotion analysis to diverge more noticeably.

In the promotion analysis, the RC is no longer a
CP, but rather a RelP that contains a CP (see also
Yun et al., 2014). The head noun still moves from
within the RC to Spec,CP, but this is followed by
the TP moving to Spec,RelP so that one gets the de-
sired word order with the complementizer between
the rest of the RC in Spec,RelP and the head noun
in Spec,CP. In the wh-movement analysis, the head
noun is once again outside the RC, which is just a
CP instead of a RelP. The complementizer starts out
in subject or object position depending on the type
of RC, and then moves into a right specifier of the
CP. The CP subsequently moves to the specifier of
the DP of the head noun, once again yielding the de-
sired word order with the complementizer between
the RC and the head noun.

In sum, the promotion analysis needs to posit
a new phrase RelP but all movement is leftward
and takes place within this phrase, whereas the
wh-movement analysis sticks with a single CP but
invokes one instance of rightward movement and
moves the RC into Spec,DP, a higher position than
Spec,RelP. Both accounts are fairly complicated due
to the sheer number and intricate timing of move-
ment steps — the reader is advised to carefully study
the derivations in Figures 2 through 5.

Involved as they might be, both the promotion
analysis and the wh-movement analysis are work-
able solutions for the kind of prenominal SRCs and
ORCs found in Chinese, Korean, and Japanese. The
latter two only add an additional movement step for

5

each object to Spec,vP, and Japanese differs from
Chinese and Korean in that the RC complementizer
is never pronounced.

3.2 Psycholinguistics

SRCs and ORCs have been the subject of extensive
psycholinguistic research, with overwhelming evi-
dence pointing towards SRCs being easier to process
than ORCs irrespective of whether RCs are prenom-
inal or postnominal in a given language (Mecklinger
et al., 1995; Gibson and Pearlmutter, 1998; Mak
et al., 2002; Miyamoto and Nakamura, 2003; Gor-
don et al., 2006; Kwon et al., 2006; Mak et al.,
2006; Ueno and Garnsey, 2008; Kwon et al., 2010;
Miyamoto and Nakamura, 2013). The data is less
clear-cut in Chinese (Lin and Bever, 2006), but it has
recently been argued that this is only because of cer-
tain structural ambiguities (Gibson and Wu, 2013).
Yun et al. (2014) even show how such an ambiguity-
based account can be formalized via the MG parser.
Recall, though, that we deliberately ignore ambigui-
ties in this paper in an effort to find the simplest em-
pirically adequate linking between derivations and
processing behavior. For this reason, we assume that
Chinese would also exhibit a uniform preference for
SRCs over ORCs if it were not for the confound of
structural ambiguity.

That language-specific differences in word order
have no effect on the difficulty of SRCs relative to
ORCs is unexpected under a variety of psycholin-
guistic models. Dependency Locality Theory (Gib-
son, 1998) and the Active-Filler strategy (Frazier,
1987), for example, contend that parsing difficulty
increases with the distance between a filler and its
gap due to a concomitant increase in memory load
— an idea that is also implicit in KGH’s Max met-
ric. However, both models calculate distance over
strings rather than trees. Since prenominal RCs put
the object position (i.e. the gap) linearly closer to
the head noun (the filler), while the subject is farther
away, ORCs should be easier than SRCs.

The failure of string-based memory load models
can be remedied in two ways. One is to abandon the
notion that the SRC-ORC asymmetry derives from
structural factors, replacing it by functional con-
cepts such as Keenan and Comrie’s (1977) accessi-
bility hierarchy, which claims that objects are harder
to manipulate than subjects irrespective of the con-

struction involved. While certainly a valid hypothe-
sis, a computationally informed perspective has little
light to shed on it. We thus discard this option and
focus instead on how a more elaborate concept of
sentence structure may interact with memory-based
concepts of parsing difficulty. More precisely: can
the MG parser, when coupled with a suitable RC
analysis and one of the metrics discussed in Sec. 2.3,
explain why SRCs are easier to parse than ORCs?

4 Parser Predictions

4.1 Overview of Data

The annotated derivation trees for Chinese and Ko-
rean RCs are given in Figures 2 through 5. Japanese
is omitted since it has exactly the same analysis as
Korean except that the RC complementizer remains
unpronounced. Interior nodes are labeled with pro-
jections instead of Merge and Move for the sake of
increased readability, and a dashed branch spanning
from node m to node n indicates movement of the
whole subtree rooted in m to the specifier of n. For
the wh-analysis, we use a dotted line instead of a
dashed one if movement is to a right specifier rather
than a left one. Since these notational devices make
features redundant, they are omitted completely.

The tenure values for Chinese and Korean are
summarized in Tables 1 and 2, respectively. The
table subgroups nodes according to whether they
are pronounced LIs, unpronounced LIs, or interior
nodes. It also includes the summed tenure values for,
respectively, pronounced LIs, all LIs, and all listed
nodes. Once again we omit Japanese since it shows
exactly the same behavior as Korean, except that the
complementizer would be grouped under “lexical”
and not “pronounced”.

4.2 Evaluation of Metrics

All the metrics discussed in Sec. 2.3 fail insofar as
they do not predict a consistent preference for SRC
over ORC. On the other hand, some metrics fare
worse than others because they predict the very op-
posite, ORC being easier than SRC. This is the case
for Sum, which adds the tenure of all nodes that con-
tribute to the derivation’s payload. The problem is
that ORCs have a smaller total tenure than SRCs in
Korean and Japanese irrespective of the choice of
analysis. Furthermore, if the tenure of phrasal nodes

6

1CP2

2TP4

4T′
5

5vP6

6v′ 26

26VP28

28wine30
28likes29

26v27

6DP7

7RelP9

9Rel′10

10CP11

11C′
12

12TP13

13T′
14

14vP16

16v′17

17VP19

19tycoon21
19invite20

17v18

16mayor 23

14T15

12C 24

10who 22

7D8

5T 25

2C3

1CP2

2TP4

4T′
5

5vP6

6v′ 26

26VP28

28wine30
28likes29

26v27

6DP7

7RelP9

9Rel′10

10CP11

11C′
12

12TP13

13T′
14

14vP15

15v′ 18

18VP20

20tycoon 23
20invite21

18v19

15mayor16

14T 17

12C 24

10who 22

7D8

5T 25

2C3

Figure 2: SRC and ORC in Chinese, promotion analysis

is ignored, then Sum also makes the wrong predic-
tions for Chinese. This shows that all variants of
Sum are completely unsuitable to account for the
observed processing differences, corroborating pre-
vious findings by GM.

A more complicated picture emerges with pure
payload, formalized as Box. Depending on the
choice of analysis and which nodes count towards
payload, Box predicts a preference for SRC, for
ORC, or a tie. The unwanted preference for ORCs
emerges I) with the wh-movement analysis in Ko-
rean if all nodes are taken into consideration, II) with
both analyses in Korean if only LIs matter, and III)
with both analyses in Korean and the wh-movement
analysis in Chinese if only pronounced LIs are taken
into account. The only defensible variant of Box,
then, is the one that considers the full payload rather
than its restriction to lexical or pronounced nodes. In
combination with the promotion analysis, this pre-
dicts an SRC preference in Chinese and a tie in Ko-
rean.

Unfortunately, it has been shown by GM that Box
fails to make a distinction in processing difficulty

for crossing and nested dependencies, the latter of
which are harder to parse despite their reduced com-
putational complexity (Bach et al., 1986). Unless
the relative ease of crossing dependencies can be
explained by some other mechanism, an MG parser
with Box cannot model all the phenomena that were
already accounted for in KGH and GM.

Crossing dependencies were actually one of
KGH’s main arguments in support of Max— the
maximum tenure among all nodes determines over-
all parsing difficulty — so if this metric fares just
as well as Box for SRCs and ORCs, it is the prefer-
able choice. Unfortunately, Max is ill-suited for the
problem at hand. If one simply looks at the highest
tenure value, Max predicts ties for SRCs and ORCs
no matter which analysis or type of node is consid-
ered. If the metric is applied recursively such that
derivation d is easier than d′ iff they agree on the n
highest tenure values and the n + 1-th value of d is
lower than the n + 1-th value of d′, then Max pre-
dicts ORC preferences under all combinations. So
recursive application of Max leads from universal
ties to a universal ORC preference.

7

1CP2

2TP4

4T′
5

5vP6

6v′ 26

26VP28

28wine30
28likes29

26v27

6DP7

7D′
8

8NP9

9CP10

10C′
11

11TP13

13T′
14

14vP16

16v′17

17VP19

19tycoon21
19invite20

17v18

16who 22

14T15

11C12

9mayor 24 ;

8D 23

5T 25

2C3

1CP2

2TP4

4T′
5

5vP6

6v′ 26

26VP28

28wine30
28likes29

26v27

6DP7

7D′
8

8NP9

9CP10

10C′
11

11TP13

13T′
14

14vP15

15v′ 18

18VP20

20who22
20invite21

18v19

15mayor16

14T 17

11C12

9tycoon 24

8D 23

5T 25

2C3

Figure 3: SRC and ORC in Chinese, wh-movement analysis

It seems, then, that we have a choice between
an unrestricted version of Box, which works only
with the promotion analysis and treats crossing and
nested dependencies the same, and a non-recursive
unrestricted version of Max, which treats prenom-
inal SRCs and ORCs the same irrespective of the
chosen analysis. Either metric needs to be supple-
mented by some additional principle to handle these
cases. Recall, though, that Box predicts a tie for
Korean under the promotion analysis. Furthermore,
GM showed that the non-recursive version of Max
is also unsuitable for postnominal RCs and fails to
make a clear distinction between the easy case of
a sentential complement containing an RC and the
much harder case of an RC containing a sentential
complement. So whatever additional principle one
might propose, it must establish parsing preferences
for a diverse range of phenomena.

4.3 A Refined Tenure Metric
On an intuitive level it is rather surprising that no
metric grants a clear advantage to SRCs across the
board. After all, SRC and ORC derivations differ
only in the movement branch to the CP, which is

much longer for ORCs than for SRCs as subjects oc-
cupy a higher structural position than objects. Since
all the metrics home in on some aspect of memory
load, one would expect at least one of them to pick
up on this difference. That this does not happen is
due to the very nature of tenure.

A node has high tenure if its corresponding parse
item enters the parser’s queue early but cannot be
worked on for a long time. In the case of RCs,
the complementizer (or alternatively the head noun
in the wh-movement analysis) occupies a very high
structural position, so that it is encountered early
during the construction of the RC. At the same
time, it cannot be removed from the queue until the
full RC has been constructed, which means that the
parser has to move all the way down to the verb and
the object. But as long as the complementizer has
not been removed from the queue, none of the nodes
following it can be removed, either. The result is
a “parsing bottle neck” that leads to high tenure on
a large number of nodes. The difference between
SRCs and ORCs has no effect because it does not
change the need for the parser to build the entire RC

8

1CP2

2TP4

4T′
5

5vP6

6vP7

7v′ 28

28VP29

29money30
29loves 32

28v 31

7DP8

8RelP10

10Rel′11

11CP12

12C′
13

13TP14

14T′
15

15vP17

17vP18

18v′19

19VP20

20tycoon21
20invited 23

19v 22

18mayor 25

15T16

13C 26

11who 24

8D9

5T 27

2C3

1CP2

2TP4

4T′
5

5vP6

6vP7

7v′ 28

28VP29

29money30
29loves 32

28v 31

7DP8

8RelP10

10Rel′11

11CP12

12C′
13

13TP14

14T′
15

15vP16

15vP17

17v′ 20

20VP22

22tycoon 25
22invited23

20v21

17mayor18

15T 19

13C 26

11who 24

8D9

5T 27

2C3

Figure 4: SRC and ORC in Korean, promotion analysis

before it can work on the complementizer, which is
the actual cause for the bottle neck.

The central problem, then, is that the structural
differences between SRC and ORC are too marginal
to outweigh the effects of their shared structure on
tenure. There are many conceivable ways around
this, e.g. by combining payload and tenure so that
each node’s tenure from steps i to j is scaled relative
to the overall payload from i to j. The most natural
idea of multiplying tenure and payload leads to an
ORC preference, but division seems to produce the
correct results, even for the phenomena discussed in
KGH and GM. However, such a step would take us
away from the ideal of a simple metric. A less in-
volved solution is to refine the granularity of tenure
in a particular way.

Tenure measures how long a parse items remains
in memory, but it does not take into account how
much memory a given parse item consumes. Con-

sider the parse item corresponding to the embedded
CP of the SRC derivation in Fig. 2 on page 7. The
step from CP to C′ corresponds to a specific infer-
ence rule in the parser that constructs the C′ parse
item from the one for CP by adding a movement
feature f− to the list of movers that still need to be
found. From here on out, f− has to be passed around
from parse item to parse item until it is finally in-
stantiated on the object. All the parse items along
this path would have been smaller if they did not
have to carry along f− in the list of movers. There-
fore movement dependencies increase memory load
to the extent that they increase the size of parse items
(and thus the number of bits that are required for the
encoding of said items).

From this perspective, the processing difference
between SRCs and ORCs is due to the fact that the
longer movement branch in ORCs means that some
parse items are bigger in the ORC than their SRC

9

1CP2

2TP4

4T′
5

5vP6

6vP7

7v′ 28

28VP29

29money30
29loves 32

28v 31

7DP8

8D′
9;

9NP10

10CP11

11C′
12

12TP14

14T′
15

15vP17

17vP18

18v′19

19VP20

20tycoon21
20invited 23

19v 22

18who 24

15T16

12C13

10mayor 26

9D 25

5T 27

2C3

1CP2

2TP4

4T′
5

5vP6

6vP7

7v′ 28

28VP29

29money30
29loves 32

28v 31

7DP8

8D′
9;

9NP10

10CP11

11C′
12

12TP14

14T′
15

15vP16

16vP17

17v′ 20

20VP22

22who24
22invited23

20v21

17mayor18

15T 19

12C13

10tycoon 26

9D 25

5T 27

2C3

Figure 5: SRC and ORC in Korean, wh-movement analysis

counterparts. One must be careful, though, because
only the features of final landing sites are passed
along in this fashion — as defined in Stabler (2013),
the parser handles the features of intermediary land-
ing sites without increased memory usage. Once one
controls for the fact that some final landing sites in
the SRC are intermediate in the ORC, and the other
way round, there still remains a small advantage for
the SRC even in Korean. In both the SRC and the
ORC in Figs. 4 and 5, all the interior nodes inside
the embedded CP have to pass along at least one fea-
ture. More precisely, C′, TP, v′ and VP pass along
exactly one feature, while both vPs carry exactly two
features. Only T′ shows a difference: in the SRC it
hosts only the negative feature that triggers move-
ment of the subject, whereas in the ORC it must also
pass along the feature for the object.

This comparison is rather involved, but it can be
approximated via the index-based metric Gap (in-

spired by filler-gap dependencies), where ip is the
index of moving phrase p and fp the index of the
final landing site:

Gap
∑

p a moving phrase fp − ip
Both Box and non-recursive Max as discussed
above now make the right predictions in conjunction
with Gap as a secondary metric to resolve ties (this
includes also the constructions investigated in KGH
and GM). Such a system will grant an advantage to
SRCs as long as subjects occur in a higher position
than objects. Consequently, it argues against pro-
posals where subjects start out lower than objects
(Sigurðsson, 2006). Box furthermore favors the pro-
motion analysis over wh-movement, while Max re-
mains agnostic.

Conclusion

We showed that the MG parser does not make the
right predictions for prenominal SRCs and ORCs

10

Language Analysis RC Type Node Type Node Index Outdex Tenure

Chinese Promotion SRC pronounced who 10 22 12
mayor 16 23 7

lexical matrix T 5 25 20
C 12 24 12

interior matrix v′ 6 26 20

Summed tenure: 19 51 71

ORC pronounced who 10 22 12
mayor 20 23 3

lexical matrix T 5 25 20
C 12 24 12
embedded T 14 17 3

interior matrix v′ 6 26 20
embedded v′ 15 18 3

Summed tenure: 15 50 73

Wh SRC pronounced mayor 9 24 15
who 16 22 6

lexical matrix T 5 25 20
D 8 23 15

interior matrix v′ 5 25 20

Summed tenure: 21 56 76

ORC pronounced mayor 9 24 15
lexical matrix T 5 25 20

D 8 23 15
embedded T 14 17 3

interior matrix v′ 6 26 20
embedded v′ 15 18 3

Summed tenure: 15 53 76

Table 1: Tenure of nodes for Chinese, grouped by analysis; maximum tenure values are in italics

under any of the tree-geometric metrics that have
been proposed in the literature so far. However,
the observed processing effects can be explained if
one also take the memory requirements of move-
ment dependencies into account, formalized via the
metric Gap. The next step will be to test this hy-
pothesis against recent data from Basque (Carreiras
et al., 2010), where a uniform preference for ORCs
has been observed. Basque is an ergative language,
for which it has been argued that subject and ob-
ject might occur in different positions. If so, the ob-
served behavior may fall out naturally from slightly
different movement patterns and their effect on the
size of parse items.

A more pressing concern, though, is the mathe-
matical investigation of the parser — a sentiment
that is also expressed by KGH. The current method
of testing various metrics against numerous con-

structions is essential for mapping out the space of
empirically pertinent alternatives, but it is needlessly
labor intensive due to the usual pitfalls of combi-
natorial explosion. Nor does it enjoy the elegance
and generality of a proof-based approach. We be-
lieve that true progress in this area hinges on a so-
phisticated understanding of the tree traversal algo-
rithm instantiated by the parser and how exactly this
tree traversal interacts with specific metrics to pre-
fer particular tree shapes over others. Our insistence
on simple metrics, free from complicating aspects
like probabilities, stems from this desire to keep the
parser as open to future mathematical inquiry as pos-
sible.

Acknowledgments

We are greatly indebted to John Drury, Jiwon Yun,
and the three anonymous reviewers for their com-

11

Language Analysis RC Type Node Type Node Index Outdex Tenure

Korean Promotion SRC pronounced who 11 24 13
tycoon 18 25 7
invited 20 23 3
loves 29 32 3

lexical matrix T 5 27 22
C 13 26 13
embedded v 19 22 3
matrix v 28 31 3

interior matrix v′ 7 28 21

Summed tenure: 26 67 88

ORC pronounced who 11 24 13
mayor 22 25 3
loves 29 32 3

lexical matrix T 5 27 22
C 13 26 13
embedded T 15 19 4
matrix v 28 31 3

interior embedded v′ 17 20 3
matrix v′ 7 28 21

Summed tenure: 19 61 85

Wh SRC pronounced tycoon 10 26 16
who 18 24 6
loves 28 31 3
invited 20 23 3

lexical matrix T 5 27 22
D 9 25 16
embedded v 19 22 3
matrix v 27 30 3

interior matrix v′ 7 28 21

Summed tenure: 28 72 93

ORC pronounced tycoon 10 26 16
loves 29 32 3

lexical matrix T 5 27 22
D 9 25 16
embedded T 15 19 4
matrix v 28 31 3

interior embedded v′ 17 20 3
matrix v′ 7 28 21

Summed tenure: 19 64 88

Table 2: Tenure of nodes for Korean, grouped by analysis; maximum tenure values are in italics

ments and remarks that allowed us to streamline es-
sential parts of this work and improve the presenta-
tion of the material.

12

References
Emmon Bach, Colin Brown, and William Marslen-

Wilson. 1986. Crossed and nested dependencies in
German and Dutch: A psycholinguistic study. Lan-
guage and Cognitive Processes, 1:249–262.

Manuel Carreiras, Jon Andoni Duñabeitia, Marta Ver-
gara, Irene de la Cruz-Pavía, and Itziar Laka. 2010.
Subject relative clauses are not universally easier to
process: Evidence from Basque. Cognition, 115:79–
92.

Noam Chomsky. 1965. Aspects of the Theory of Syntax.
MIT Press, Cambridge, Mass.

Lyn Frazier. 1987. Sentence processing: A tutorial re-
view.

Edward Gibson and Neal J. Pearlmutter. 1998. Con-
straints on sentence comprehension. Trends in Cog-
nitive Sciences, 2(7):262–268.

Edward Gibson and H.-H. Iris Wu. 2013. Processing
Chinese relative clauses in context. Language and
Cognitive Processes, 28(1-2):125–155.

Edward Gibson. 1998. Linguistic complexity: Locality
of syntactic dependencies. Cognition, 68:1–76.

Peter C. Gordon, Randall Hendrick, Marcus Johnson, and
Yoonhyoung Lee. 2006. Similarity-based interfer-
ence during language comprehension: Evidence from
eye tracking during reading. Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition,
32(6):1304.

Thomas Graf and Bradley Marcinek. 2014. Evaluating
evaluation metrics for minimalist parsing. In Proceed-
ings of the 2014 ACL Workshop on Cognitive Modeling
and Computational Linguistics, pages 28–36.

Thomas Graf. 2012. Locality and the complexity of min-
imalist derivation tree languages. In Philippe de Groot
and Mark-Jan Nederhof, editors, Formal Grammar
2010/2011, volume 7395 of Lecture Notes in Com-
puter Science, pages 208–227, Heidelberg. Springer.

John Hale. 2011. What a rational parser would do. Cog-
nitive Science, 35:399–443.

Henk Harkema. 2001. A characterization of minimalist
languages. In Philippe de Groote, Glyn Morrill, and
Christian Retoré, editors, Logical Aspects of Compu-
tational Linguistics (LACL’01), volume 2099 of Lec-
ture Notes in Artificial Intelligence, pages 193–211.
Springer, Berlin.

Irene Heim and Angelika Kratzer. 1998. Semantics in
Generative Grammar. Blackwell, Oxford.

Aravind Joshi. 1990. Processing crossed and nested
dependencies: An automaton perspective on the psy-
cholinguistic results. Language and Cognitive Pro-
cesses, 5:1–27.

Richard S. Kayne. 1994. The Antisymmetry of Syntax.
MIT Press, Cambridge, Mass.

Edward L. Keenan and Bernard Comrie. 1977. Noun
phrase accessiblity and universal grammar. Linguistic
Inquiry, 8:63–99.

Gregory M. Kobele, Christian Retoré, and Sylvain Sal-
vati. 2007. An automata-theoretic approach to mini-
malism. In James Rogers and Stephan Kepser, editors,
Model Theoretic Syntax at 10, pages 71–80.

Gregory M. Kobele, Sabrina Gerth, and John T. Hale.
2012. Memory resource allocation in top-down min-
imalist parsing. In Proceedings of Formal Grammar
2012.

Nayoung Kwon, Maria Polinsky, and Robert Kluender.
2006. Subject preference in Korean. In Proceedings
of the 25th West Coast Conference on Formal Lin-
guistics, pages 1–14. Cascadilla Proceedings Project
Somerville, MA.

Nayoung Kwon, Peter C. Gordon, Yoonhyoung Lee,
Robert Kluender, and Maria Polinsky. 2010. Cog-
nitive and linguistic factors affecting subject/object
asymmetry: An eye-tracking study of prenominal rel-
ative clauses in Korean. Language, 86(3):546–582.

Chien-Jer Charles Lin and Thomas G. Bever. 2006. Sub-
ject preference in the processing of relative clauses in
Chinese. In Proceedings of the 25th West Coast Con-
ference on Formal Linguistics, pages 254–260. Cas-
cadilla Proceedings Project Somerville, MA.

Willem M. Mak, Wietske Vonk, and Herbert Schriefers.
2002. The influence of animacy on relative clause pro-
cessing. Journal of Memory and Language, 47(1):50–
68.

Willem M. Mak, Wietske Vonk, and Herbert Schriefers.
2006. Animacy in processing relative clauses: The
hikers that rocks crush. Journal of Memory and Lan-
guage, 54(4):466–490.

Axel Mecklinger, Herbert Schriefers, Karsten Steinhauer,
and Angela D. Friederici. 1995. Processing relative
clauses varying on syntactic and semantic dimensions:
An analysis with event-related potentials. Memory &
Cognition, 23(4):477–494.

Jens Michaelis. 2001. Transforming linear context-free
rewriting systems into minimalist grammars. Lecture
Notes in Artificial Intelligence, 2099:228–244.

Edson T. Miyamoto and Michiko Nakamura. 2003. Sub-
ject/object asymmetries in the processing of relative
clauses in Japanese. In Proceedings of WCCFL, vol-
ume 22, pages 342–355.

Edson T. Miyamoto and Michiko Nakamura. 2013.
Unmet expectations in the comprehension of relative
clauses in Japanese. In Proceedings of the 35th An-
nual Meeting of the Cognitive Science Society.

Owen Rambow and Aravind Joshi. 1995. A processing
model for free word order languages. Technical Re-
port IRCS-95-13, University of Pennsylvania.

13

Sylvain Salvati. 2011. Minimalist grammars in the light
of logic. In Sylvain Pogodalla, Myriam Quatrini, and
Christian Retoré, editors, Logic and Grammar — Es-
says Dedicated to Alain Lecomte on the Occasion of
His 60th Birthday, number 6700 in Lecture Notes in
Computer Science, pages 81–117. Springer, Berlin.

Halldór Ármann Sigurðsson. 2006. The nominative puz-
zle and the low nominative hypothesis. Linguistic In-
quiry, 37:289–308.

Edward P. Stabler. 1997. Derivational minimalism. In
Christian Retoré, editor, Logical Aspects of Compu-
tational Linguistics, volume 1328 of Lecture Notes in
Computer Science, pages 68–95. Springer, Berlin.

Edward P. Stabler. 2011. Computational perspectives on
minimalism. In Cedric Boeckx, editor, Oxford Hand-
book of Linguistic Minimalism, pages 617–643. Ox-
ford University Press, Oxford.

Edward P. Stabler. 2013. Two models of minimalist, in-
cremental syntactic analysis. Topics in Cognitive Sci-
ence, 5:611–633.

Mark Steedman. 2001. The Syntactic Process. MIT
Press, Cambridge, Mass.

James W. Thatcher. 1967. Characterizing derivation
trees for context-free grammars through a generaliza-
tion of finite automata theory. Journal of Computer
and System Sciences, 1:317–322.

Mieko Ueno and Susan M Garnsey. 2008. An ERP
study of the processing of subject and object relative
clauses in Japanese. Language and Cognitive Pro-
cesses, 23(5):646–688.

Jean-Roger Vergnaud. 1974. French Relative Clauses.
Ph.D. thesis, MIT.

Jiwon Yun, Zhong Chen, Tim Hunter, John Whitman, and
John Hale. 2014. Uncertainty in processing relative
clauses across East Asian languages. Journal of East
Asian Linguistics, pages 1–36.

14

Proceedings of the 14th Meeting on the Mathematics of Language (MoL 14), pages 15–25,
Chicago, USA, July 25–26, 2015. c©2015 Association for Computational Linguistics

Abstract Categorial Parsing as
Linear Logic Programming

Philippe de Groote
Inria Nancy - Grand Est

France
Philippe.deGroote@inria.fr

Abstract

This paper shows how the parsing problem for
general Abstract Categorial Grammars can be
reduced to the provability problem for Multi-
plicative Exponential Linear Logic. It follows
essentially a similar reduction by Kanazawa,
who has shown how the parsing problem for
second-order Abstract Categorial Grammars
reduces to datalog queries.

1 Introduction

Kanazawa (2007; 2011) has shown how parsing
and generation may be reduced to datalog queries
for a class of grammars that encompasses mildly
context-sensitive formalisms. These grammars,
which he calls context-free λ-term grammars, cor-
respond to second-order abstract categorial gram-
mars (de Groote, 2001).

In this paper, we show how Kanazawa’s reduction
may be carried out in the case of abstract categorial
grammars of a degree higher than two. The price to
pay is that we do not end up with a datalog query, but
with a provability problem in multiplicative expo-
nential linear logic (Girard, 1987). This is of course
a serious difference. In particular, it is not known
whether the multiplicative exponential fragment of
linear logic is decidable.

The paper is organized as follows. Section 2
presents some mathematical preliminaries concern-
ing the linear λ-calculus. We then introduce, in Sec-
tion 3, the notion of abstract categorial grammar.
Section 4 is the core of the paper, where we ex-
plain Kanazawa’s reduction. To this end, we proceed

by stepwise refinement. We first introduce an obvi-
ously correct but inefficient parsing algorithm. We
then improve it by successive correctness-preserving
transformations. Finally, we conclude in Section 5.

2 Linear λ-calculus

We assume from the reader some acquaintance with
the basic concepts of the (simply typed) λ-calculus.
Nevertheless, in order to fix the terminology and the
notations, we briefly reminds the main definitions
and properties that will be needed in the sequel. In
particular, we review the notions linear implicative
types, higher-order linear signature, and linear λ-
terms built upon a higher-order linear signature.

Let A be a set of atomic types. The set T (A) of
linear implicative types built upon A is inductively
defined as follows:

1. if a ∈ A, then a ∈ T (A);

2. if α, β ∈ T (A), then (α−◦ β) ∈ T (A).

Given two sets of atomic types, A and B, a map-
ping h : T (A) → T (B) is called a type homo-
morphism (or a type substitution) if it satisfies the
following condition:

h(α−◦ β) = h(α)−◦ h(β)

A type substitution that maps atomic types to atomic
types is called a relabeling.

In order to save parentheses, we use the usual
convention of right association, i.e., we write α1 −◦
α2−◦· · ·αn−◦α for (α1−◦(α2−◦· · · (αn−◦α) · · ·)).

A higher-order linear signature consists of a triple
Σ = 〈A,C, τ〉, where:

15

1. A is a finite set of atomic types;

2. C is a finite set of constants;

3. τ : C → T (A) is a function that assigns to
each constant in C a linear implicative type in
T (A).

Given, a higher-order linear signature Σ, we write
AΣ , CΣ , and τΣ , for its respective components.

The above notion of linear implicative type is iso-
morphic to the usual notion of simple type. Conse-
quently, there is no technical difference between a
higher-order linear signature and a higher-order sig-
nature. The only reason for using the word linear
is to emphasize that we will be concerned with the
typing of the linear λ-terms, i.e., the λ-terms whose
typing system corresponds to the implicative frag-
ment of multiplicative linear logic (Girard, 1987).

Let X be a infinite countable set of λ-variables.
The set Λ(Σ) of linear λ-terms built upon a higher-
order linear signatureΣ is inductively defined as fol-
lows:

1. if c ∈ CΣ , then c ∈ Λ(Σ);

2. if x ∈ X , then x ∈ Λ(Σ);

3. if x ∈ X , t ∈ Λ(Σ), and x occurs free in t
exactly once, then (λx. t) ∈ Λ(Σ);

4. if t, u ∈ Λ(Σ), and the sets of free variables of
t and u are disjoint, then (t u) ∈ Λ(Σ).

Λ(Σ) is provided with the usual notions of capture-
avoiding substitution, α-conversion, β-reduction,
and η-reduction (Barendregt, 1984). Let t and u be
linear λ-terms. We write t→→β u and t =β u for the
relations of β-reduction and β-conversion, respec-
tively, We use similar notations for the relations of
reduction and conversion induced by η and βη.

Let Σ1 and Σ2 be two signatures. We say that a
mapping h : Λ(Σ1) → Λ(Σ2) is a λ-term homo-
morphism if it satisfies the following conditions:

h(x) = x
h(λx. t) = λx. h(t)
h(t u) = h(t) (h(u))

Given a higher-order linear signature Σ, each lin-
ear λ-term in Λ(Σ) may possibly be assigned a lin-
ear implicative type in T (AΣ). This type assign-
ment obeys the following typing rules:

−Σ c : τΣ(c) (CONS)

x : α −Σ x : α (VAR)

Γ, x : α −Σ t : β

Γ −Σ (λx. t) : (α−◦ β)
(ABS)

Γ −Σ t : (α−◦ β) ∆ −Σ u : α

Γ,∆ −Σ (t u) : β
(APP)

where dom(Γ) ∩ dom(∆) = ∅.
We end this section by reviewing some properties

that will turn out to be useful in the sequel.
The set of linear λ-terms being a subset of the

set of simply typed λ-terms, it inherits the universal
properties of the latter (e.g., strong normalization, or
existence of a principal type scheme). It also satis-
fies the usual subject-reduction property.

Proposition 1 Let Σ, t, u, Γ , and α be such that
Γ −Σ t : α and t→→β u. Then Γ −Σ u : α. ut

The set of simply typed λ-terms, which is not
closed in general under β-expansion, is known to be
closed under linear β-expansion. Consequently, the
set of linear λ-terms satisfies the subject-expansion
property.

Proposition 2 Let Σ, t, u, Γ , and α be such that
Γ −Σ u : α and t→→β u. Then Γ −Σ t : α. ut

The subject-reduction property also holds for the
relation of βη-reduction. This is not the case, how-
ever, for the subject-expansion property. This pos-
sible difficulty may be circumvented by using the
notion of η-long form.

A linear λ-term is said to be in η-long form when
every of its sub-terms of functional type is either a
λ-abstraction or the operator of an application. The
set of linear λ-terms in η-long forms is closed under
both β-reduction and β-expansion. Consequently,
the following proposition holds.

Proposition 3 Let t and u be λ-terms in η-long
forms. Then, t =βη u if and only if t =β u. ut
In the sequel, we will often assume that the linear λ-
terms under consideration are in η-long forms. This

16

will allow us to only consider β-reduction and β-
expansion, while using the relation of βη-conversion
as the notion of equality between linear λ-terms.

Finally, it is known from a categorical coherence
theorem that every balanced simple type is inhab-
ited by at most one λ-term up to βη-conversion (see
(Babaev and Solov’ev, 1982; Mints, 1981)). It is
also known that the principal type of a pure linear λ-
term is balanced (Hirokawa, 1991). Consequently,
the following property holds.

Proposition 4 Let t be a pure linear λ-term (i.e., a
linear λ-term that does not contain any constant),
and let Γ − t : α be its principal typing. If u is
a pure linear λ-term such that Γ − u : α, then
t =βη u. ut

3 Abstract Categorial Grammar

This section gives the definition of an abstract cate-
gorial grammar (ACG, for short) (de Groote, 2001).

We first define a lexicon to be a morphism be-
tween higher-order linear signatures. Let Σ1 =
〈A1, C1, τ1〉 and Σ2 = 〈A2, C2, τ2〉 be two higher-
order signatures. A lexicon L : Σ1 → Σ2 is a
realization of Σ1 into Σ2, i.e., an interpretation of
the atomic types of Σ1 as types built upon A2, to-
gether with an interpretation of the constants of Σ1

as linear λ-terms built upon Σ2. These two inter-
pretations must be such that their homomorphic ex-
tensions commute with the typing relations. More
formally, a lexicon L from Σ1 to Σ2 is defined to
be a pair L = 〈F,G〉 such that:

1. F : A1 → T (A2) is a function that inter-
prets the atomic types of Σ1 as linear implica-
tive types built upon A2;

2. G : C1 → Λ(Σ2) is a function that interprets
the constants ofΣ1 as linear λ-terms built upon
Σ2;

3. the interpretation functions are compatible with
the typing relation, i.e., for any c ∈ C1, the
following typing judgement is derivable:

−Σ2 G(c) : F̂ (τ1(c)) (1)

where F̂ is the unique homomorphic extension
of F .

Remark that Condition (1) compels G(c) to be
typable with respect to the empty typing environ-
ment. This means that G interprets each constant
c as a closed linear λ-term. Now, defining Ĝ to be
the unique homomorphic extension of G, Condition
(1) ensures that the following commutation property
holds for every t ∈ Λ(Σ1):

if −Σ1 t : α then −Σ2 Ĝ(t) : F̂ (α)

In the sequel, given such a lexicon L = 〈F,G〉,
L (a) will stand for either F̂ (a) or Ĝ(a), according
to the context.

We now define an abstract categorial grammar as
quadruple, G = 〈Σ1, Σ2,L , S〉, where:

1. Σ1 and Σ2 are two higher-order linear signa-
tures; they are called the abstract vocabulary
and the object vocabulary, respectively;

2. L : Σ1 → Σ2 is a lexicon from the abstract
vocabulary to the object vocabulary;

3. S is an atomic type of the abstract vocabulary;
it is called the distinguished type of the gram-
mar.

Every ACG G generates two languages: an ab-
stract language, A(G), and an object language
O(G).

The abstract language, which may be seen as a
set of abstract parse structures, is the set of closed
linear λ-terms built upon the abstract vocabulary and
whose type is the distinguished type of the grammar.
It is formally defined as follows:

A(G) = {t ∈ Λ(Σ1) : −Σ1 t : S is derivable}

The object language, which may be seen as the set of
surface forms generated by the grammar, is defined
to be the image of the abstract language by the term
homomorphism induced by the lexicon.

O(G) = {t ∈ Λ(Σ2) : ∃u ∈ A(G). t =βη L (u)}

Both the abstract language and the object lan-
guage generated by an ACG are sets of linear λ-
terms. This allows more specific data structures such
as strings, trees, or first-order terms to be repre-
sented. A string of symbols, for instance, can be
encoded as a composition of functions. Consider an

17

MAN : N

WOMAN : N

WISE : N −◦N
As : N −◦ (NPs −◦ S)−◦ S
Ao : N −◦ (NPo −◦ S)−◦ S

SEEK : ((NPo −◦ S)−◦ S)−◦NPs −◦ S
INJ : S −◦ S

Figure 1: The abstract vocabulary Σ1

MAN := man : σ

WOMAN := woman : σ

WISE := λx.wise + x : σ −◦ σ
As := λxp. p (a + x) : σ −◦ (σ −◦ σ)−◦ σ
Ao := λxp. p (a + x) : σ −◦ (σ −◦ σ)−◦ σ

SEEK := λpx. p (λy. x+ seeks + y) : ((σ −◦ σ)−◦ σ)−◦ σ −◦ σ
INJ := λx. x : σ −◦ σ

Figure 2: The lexicon L : Σ1 → Σ2

arbitrary atomic type s, and define σ 4
= s −◦ s to

be the type of strings. Then, a string such as ‘abbac’
may be represented by the linear λ-term:

λx. a (b (b (a (c x)))),

where the atomic strings ‘a’, ‘b’, and ‘c’ are declared
to be constants of type σ. In this setting, the empty
word is represented by the identity function:

ε
4
= λx. x

and concatenation is defined to be functional com-
position:

+
4
= λα. λβ. λx. α (β x),

which is indeed an associative operator that admits
the identity function as a unit.

We end this section by giving a fragment of a cate-
gorial grammar that will serve as a running example

throughout the rest of this paper.1

The abstract vocabulary, which specifies the ab-
stract parse structures, is given in Fig. 1. In this
signature, the atomic types (N , NPs, NPo, S,
S) must be thought of as atomic syntactic cate-
gories. The lexicon, which is given in Fig. 2, al-
lows the abstract structures to be transformed in sur-
face forms. These surface forms are strings that are
built upon an object vocabulary, Σ2, which includes
the following atomic strings as constants of type σ:
man,woman,wise, a, seeks.

For such a grammar, the parsing problem consists
in deciding whether a possible surface form (i.e.,

1This grammar, which follows the categorial type-logical
tradition (Moortgat, 1997), has been devised in order to present
the main difficulties encountered in ACG parsing: it is higher
order (it assigns third-order types to the quantified noun phrases,
and a fourth-order type to an intensional transitive verb such as
seek); it is lexically ambiguous (it assigns two different lexi-
cal entries to the indefinite determiner); and it includes a non-
lexicalized entry (the coercion operator INJ).

18

term t ∈ Λ(Σ2)) belongs to the object vocabulary
of the grammar. Spelling it out, is there an abstract
parse structure (i.e., a term u ∈ Λ(Σ1) of type S)
whose image through the lexicon is the given sur-
face form (i.e., L (u) = t).

Consider, for instance, the following string:

a + wise + woman + seeks + a + wise + man (2)

One can show that it belongs to the object language
of the grammar. Indeed, when applying the lexicon
to the following abstract term:

As (WISE WOMAN)
(λx. INJ (SEEK (λp. Ao (WISE MAN)

(λy. INJ (p y)))
x)) (3)

one obtains a λ-term that is βη-convertible to (2). In
fact, it is even the case that (2) is ambiguous in the
sense that there is another abstract term, essentially
different from (3), whose image through the lexicon
yields (2).2 This abstract term is the following:

As (WISE WOMAN)
(λx. Ao (WISE MAN)

(λy. INJ (SEEK (λp. INJ (p y))
x))) (4)

4 Development of the parsing algorithm

In this section, we develop a parsing algorithm based
on proof-search in the implicative fragment of linear
logic. We start with a simple non-deterministic algo-
rithm, which is rather inefficient but whose correct-
ness and semi-completeness are obvious. Then, we
proceed by stepwise refinement, preserving the cor-
rectness and semi-completeness of the algorithm.

By correctness, we mean that if the parsing algo-
rithm answers positively then it is indeed the case
that the input term belongs to the object language of
the grammar. By semi-completeness, we mean that
if the input term belongs to the object language of
the grammar, then the parsing algorithm will even-
tually give a positive answer.

In the present state of knowledge, semi-
completeness is the best we may expect. Indeed,

2If the grammar was provided with a Montague semantics,
the abstract parse structures (3) and (4) would correspond to the
de dicto and de re readings, respectively.

the ACG membership problem is known to be
equivalent to provability in multiplicative exponen-
tial logic (de Groote et al., 2004; Yoshinaka and
Kanazawa, 2005), the decidability of which is still
open.

4.1 Generate and test

Our starting point is a simple generate and test algo-
rithm:

1. derive S using the rules of implicative linear
logic with the types of the abstract constants
(Fig. 3) as proper axioms;

2. interpret the obtained derivation as a linear
λ-term (through the Curry-Howard isomor-
phism);

3. apply the lexicon to the resulting λ-term, and
check whether it yields a term βη-convertible
to the input term.

N (MAN)
N (WOMAN)
N −◦N
N −◦ (NPs −◦ S)−◦ S
N −◦ (NPo −◦ S)−◦ S
((NPo −◦ S)−◦ S)−◦NPs −◦ S
S −◦ S

Figure 3: The type of the abstract constants as proper
axioms

The above algorithm is obviously correct. It is
also semi-complete because it enumerates all the
terms of the abstract language. Now, if the input
term belongs to the object language of the grammar
then its abstract parse structure(s) will eventually ap-
pear in the enumeration.

4.2 Type-driven search

The generate and test algorithm proceeds by trial
and error without taking into account the form of the
input term. In order to improve our algorithm, we
must focus on the construction of an abstract term

19

whose image by the lexicon would be the input term.
To this end, we take advantage of Proposition 4.

In general, the input term is not a pure λ-term.
Consequently, in order to apply Proposition 4, we
must consider each occurrence of a constant in the
input term as a fresh free variable. Applying this
idea to our example, we obtain the following prin-
cipal typing that characterizes uniquely the input
string (in η-long β-normal form):

a1 : s1 −◦ s0, wise1 : s2 −◦ s1,
woman : s3 −◦ s2, seeks : s4 −◦ s3,
a2 : s5 −◦ s4, wise2 : s6 −◦ s5, man : s7 −◦ s6
− λz. a1 (wise1 (woman

(seeks (a2 (wise2 (man z))))))) : s7 −◦ s0

The types assigned to the constant occurrences of
the input term induce a new specialized object vo-
cabulary, which we will call ΣS

2 . We take for
granted the definition of the forgetful homomor-
phism

| · | : ΣS
2 → Σ2

that allows to project ΣS
2 on Σ2. Roughly speak-

ing, this forgetful homomorphism consists simply in
identifying the several occurences of a same object
constant. Remark that at the level of the types, this
forgetful homomorphism is a relabeling because the
input string has been given in η-long form. In our
case, this relabeling is the following one:

|si| = s (0 ≤ i ≤ 7)

The next step is to adapt the abstract vocabulary
and the lexicon to this specialized object vocabulary.
We start with the abstract atomic types. Let a ∈
AΣ1 , and define the set ξ(a) as follows:

ξ(a) = {α ∈ T (AΣS
2
) : |α| = L(τΣ1(a))}

For instance, we have:

ξ(N) = {si −◦ sj : 0 ≤ i ≤ 7 & 0 ≤ j ≤ 7}

Then we define the set of atomic types of the spe-
cialized abstract signature as follows:

AΣS
1
= {aα : a ∈ AΣ1 & α ∈ ξ(a)}

and we let
LS(aα) = α

Back to our example, it means that the specialised
abstract signature contains 64 copies of N :

Ns0−◦s0 , Ns0−◦s1 , . . . Ns0−◦s7 ,
...

...
. . .

...
Ns7−◦s0 , Ns7−◦s1 , . . . Ns7−◦s7 .

In order to accommodate the abstract constants, we
look at the lexicon. Consider the first two lexical
entries. Their typing, according to the specialized
object vocabulary, is as follows:

MAN := λz.man z : s7 −◦ s6
WOMAN := λz.woman z : s3 −◦ s2

Accordingly, we let the specialized abstract vocabu-
lary contain the following two constants:

MAN : Ns7−◦s6
WOMAN : Ns3−◦s2

Consider now the third entry:
WISE := λxz.wise (x z) : (s−◦ s)−◦ s−◦ s

There are two ways of specializing it. On the one
hand, the object constant wise may be replaced by its
first occurrence (wise1) or by its second one (wise2).
On the other hand, each occurrence of the atomic
type s may be instantiated by one of s0, s1, ..., s7.
This give rise to 8,192 a priori possibilities. These
possibilities, however, do not all correspond to ac-
tual typing judgements. Filtering out the ill-typed
ones (which is effective since typing is decidable),
we are left with 16 new lexical entries which obey
the following schemes:

WISE1i := λxz.wise1 (x z) :
(si −◦ s2)−◦ si −◦ s1 (0 ≤ i ≤ 7)

WISE2i := λxz.wise2 (x z) :
(si −◦ s6)−◦ si −◦ s5 (0 ≤ i ≤ 7)

and we add the following 16 constants to the spe-
cialized abstract vocabulary:

WISE1i : Nsi−◦s2 −◦Nsi−◦s1 (0 ≤ i ≤ 7)
WISE2i : Nsi−◦s6 −◦Nsi−◦s5 (0 ≤ i ≤ 7)

By proceeding in the same way with the other lex-
ical entries, we obtain a new specialized abstract sig-
nature ΣS

1 together with a new specialized lexicon:

L S : ΣS
1 → ΣS

2

Clearly, there exists a forgetful homomorphism be-
tween ΣS

1 and Σ1, and the specialized abstract sig-
nature and specialized lexicon are such that the fol-
lowing diagram commutes:

20

Σ2

ΣS
2

|·|

��
Σ1

L //

ΣS
1

L S
//

|·|

��

We may now use the specialized grammar to drive
the proof-search on which the generate and test algo-
rithm is based. Remember that the specialized object
type assigned to the input string is s7−◦s0. Our pars-
ing problem is then reduced to the following proof-
search problem:

derive Ss7−◦s0 using the rules of implicative
linear logic with the types of the specialized ab-
stract constants as proper axioms.

Now, suppose that we derive Ss7−◦s0 , and that
t ∈ Λ(ΣS

1) is the specialized abstract linear λ-term
corresponding to this derivation. By construction of
the specialized grammar, we have that:

−ΣS
2

L s(t) : s7 −◦ s0 (5)

Then, by Proposition 4, we have that

L s(t) =βη λz. a1 (wise1 (woman (seeks
(a2 (wise2 (man z)))))) (6)

because

−ΣS
2
λz. a1 (wise1 (woman (seeks

(a2 (wise2 (man z)))))) : s7 −◦ s0 (7)

amounts to a principal typing. Finally, by taking
t′ = |t|, we obtain a term t′ ∈ Λ(Σ1) such that:

L (t′) =βη λz. a (wise (woman (seeks
(a (wise (man z)))))) (8)

This shows the correctness of the algorithm.
To establish its semi-completeness, suppose that

there exists an abstract linear λ-term t′ ∈ Λ(Σ1)
such that (8). From this, one can easily construct
a term t ∈ Λ(ΣS

1) of type S such that |t| = t′

and Equation (6) holds. Since the lexical entries are
given in η-long forms, so is L s(t). Then, because
the specialized input term is in η-long β-normal
form, by Proposition 3, we have that:

L s(t)→→β λz. a1 (wise1 (woman (seeks
(a2 (wise2 (man z)))))) (9)

Then, (5) follows from (7) and (9) by Proposition 2.
From this, it is not too difficult to establish that t is
of type Ss7−◦s0 .

4.3 Proof-search in the implicative fragment of
linear logic

The type-driven algorithm that we have sketched
presents two serious defects. On the one hand, the
construction of the specialized grammar is both time
and space consuming. For our simple running exam-
ple, for instance, we would obtain 6,226 specialized
lexical entries. On the other hand, the reduction de-
pends upon the input string.

In order to circumvent these difficulties, consider
again the specialized lexical entries corresponding
to the third lexical entry of the original grammar:

WISE10 := λxz.wise1 (x z) :
(s0 −◦ s2)−◦ s0 −◦ s1

WISE11 := λxz.wise1 (x z) :
(s1 −◦ s2)−◦ s1 −◦ s1

...
WISE17 := λxz.wise1 (x z) :

(s7 −◦ s2)−◦ s7 −◦ s1
WISE20 := λxz.wise2 (x z) :

(s0 −◦ s6)−◦ s0 −◦ s5
WISE21 := λxz.wise2 (x z) :

(s1 −◦ s6)−◦ s1 −◦ s5
...

WISE27 := λxz.wise2 (x z) :
(s7 −◦ s6)−◦ s7 −◦ s5

In fact, all the specialized object types assigned to
these lexical entries are instances of the principal
typing of the corresponding lexical entry of the orig-
inal lexicon:

wise : j −◦ i − λxz.wise (x z) : (k −◦ j)−◦ k −◦ i

This means that if the specialized object vocabulary
assigns the constant wise with the following type:

wise : j −◦ i (10)

then the specialized abstract vocabulary should con-
tain abstract constants obeying the following type
scheme:

Nk−◦j −◦Nk−◦i (11)

21

man[i, j] − N [i, j]

woman[i, j] − N [i, j]

wise[i, j] − N [j, k]−◦N [i, k]

a[i, j] − N [j, k]−◦ (NPs[i, k]−◦ S[l,m])−◦ S[l,m]

a[i, j] − N [j, k]−◦ (NPo[i, k]−◦ S[l,m])−◦ S[l,m]

seeks[i, j] − ((NPo[j, k]−◦ S[l, k])−◦ S[m,n])−◦NPs[l, i]−◦ S[m,n]
− S[i, j]−◦ S[i, j]

Figure 4: The lexicon as a linear logic program

Γ − man[i, j]
Γ − N [i, j]

(M)
Γ − woman[i, j]
Γ − N [i, j]

(W)
Γ − wise[i, j] ∆ − N [j, k]

Γ,∆ − N [i, k]
(WI)

Γ − a[i, j] ∆ − N [j, k] Θ,NPs[i, k] − S[l,m]

Γ,∆,Θ − S[l,m]
(As)

Γ − a[i, j] ∆ − N [j, k] Θ,NPo[i, k] − S[l,m]

Γ,∆,Θ − S[l,m]
(Ao)

Γ − seeks[i, j] ∆,NPo[j, k]−◦ S[l, k] − S[m,n] Θ − NPs[l, i]

Γ,∆,Θ − S[m,n]
(S)

Γ − S[i, j]
Γ − S[i, j]

(I)

Figure 5: The lexicon as a set of inference rules

Writing N [j, k] for Nk−◦j and representing (10) by
the predicate wise[i, j], we may represent the depen-
dence between 10 and 11 by the following linear
logic sequent:3

wise[i, j] − N [j, k]−◦N [i, k]

Applying the same process to the other lexical en-
tries, we end up with the set of sequents given in Fig.
4. Our parsing problem amounts then to a proof-
search problem in linear logic:

3Following (Kanazawa, 2011) and (Kanazawa, 2007), when
writing N [j, k] for Nk−◦j , we write the variables in the reverse
order.

derive

a[0, 1],wise[1, 2],woman[2, 3], seeks[3, 4],
a[4, 5],wise[5, 6],man[6, 7] − S[0, 7]

using the rules of implicative linear logic with
the set of sequents of Fig. 4 as proper axioms.

We give in Fig. 6 and Fig. 7 (in the annex) the
derivations corresponding to the de dicto parsing (3)
and to the de re parsing (4). These two derivations
use the inference rules given in Fig. 5, which are
equivalent to the sequents of Fig. 4.

Acknowledgments

I am grateful to Makoto Kanazawa for fruitful
discussions about his work on parsing as datalog

22

queries. A preliminary version of the results re-
ported in this paper has been presented in a talk
given in June 2007 at the Colloquium in Honor
of Gérard Huet on the occasion of his 60th birth-
day. This work has been supported by the French
agency Agence Nationale de la Recherche (ANR-
12-CORD-0004).

References

A.A. Babaev and S.V. Solov’ev. 1982. A coherence the-
orem for canonical morphisms in cartesian closed cat-
egories. Journal of Soviet Mathematics, 20(4):2263–
2279. Original in Russian: Zapiski Nauchnykh Semi-
narov Leningradskogo Otdeleniya Matematicheskogo
Instituta imeni V. A. Steklova Akademii Nauk SSSR
(LOMI), 88:3–29, 1979.

H.P. Barendregt. 1984. The lambda calculus, its syntax
and semantics. North-Holland, revised edition.

Ph. de Groote, B. Guillaume, and S. Salvati. 2004. Vec-
tor addition tree automata. In Proceedings of the 19th
annual IEEE symposium on logic in computer science,
pages 64–73.

Ph. de Groote. 2001. Towards abstract categorial gram-
mars. In Association for Computational Linguistics,
39th Annual Meeting and 10th Conference of the Eu-
ropean Chapter, Proceedings of the Conference, pages
148–155.

J.-Y. Girard. 1987. Linear logic. Theoretical Computer
Science, 50:1–102.

J.R. Hindley. 1969. The principal type-scheme of an
object in combinatory logic. Transaction of the Amer-
ican Mathematical Society, 146:29–60.

S. Hirokawa. 1991. Principal type-schemes of bci-
lambda-terms. In T. Ito and A.R. Meyer, editors, The-
oretical Aspects of Computer Software, TACS’91, vol-
ume 526 of Lecture Notes in Computer Science, pages
633–650. Springer-Verlag.

M. Kanazawa. 2007. Parsing and generation as datalog
queries. In Proceedings of the 45th Annual Meeting of
the Association for Computational Linguistics, pages
176–183. Association for Computational Linguistics.

M. Kanazawa. 2011. Parsing and generation as datalog
query evaluation. Last revised August 26, 2011. 74
pages. (Under review).

G.E. Mints. 1981. Closed categories and the theory
of proofs. Journal of Soviet Mathematics, 15(1):45–
62. Original in Russian: Zapiski Nauchnykh Semi-
narov Leningradskogo Otdeleniya Matematicheskogo
Instituta imeni V. A. Steklova Akademii Nauk SSSR
(LOMI), 68:83–114, 1977.

M. Moortgat. 1997. Categorial type logics. In J. van
Benthem and A. ter Meulen, editors, Handbook of
Logic and Language, chapter 2. Elsevier.

R. Yoshinaka and M. Kanazawa. 2005. The complexity
and generative capacity of lexicalized abstract catego-
rial grammars. In Philippe Blache, E. Stabler, J. Bus-
quets, and R. Moot, editors, Logical Aspects of Com-
putational Linguistics, LACL 2005, volume 3492 of
Lecture Notes in Computer Science, pages 330–346.
Springer-Verlag.

23

w
is

e[
5
,6

]
−

w
is

e[
5
,6

]

m
an

[6
,7

]
−

m
an

[6
,7

]

m
an

[6
,7

]
−
N
[6
,7

]
(M

)

w
is

e[
5
,6

],
m

an
[6
,7

]
−
N
[5
,7

]
(W

I)

    
(1
)

N
P
o
[4
,7

]
−◦

S
[0
,7

]
−

N
P
o
[4
,7

]
−◦

S
[0
,7

]
N
P
o
[4
,7

]
−

N
P
o
[4
,7

]

N
P
o
[4
,7

]
−◦

S
[0
,7

],
N
P
o
[4
,7

]
−
S
[0
,7

]
(A

P
P
)

N
P
o
[4
,7

]
−◦

S
[0
,7

],
N
P
o
[4
,7

]
−
S
[0
,7

]
(I
)

    
(2
)

se
ek

s[
3
,4

]
−

se
ek

s[
3
,4

]

a[
4
,5

]
−

a[
4
,5

]

. . . .
(1
)

w
is

e[
5
,6

],
m

an
[6
,7

]
−
N
[5
,7

]

. . . .
(2
)

N
P
o
[4
,7

]
−◦

S
[0
,7

],
N
P
o
[4
,7

]
−
S
[0
,7

]

a[
4
,5

],
w

is
e[
5
,6

],
m

an
[6
,7

],
N
P
o
[4
,7

]
−◦

S
[0
,7

]
−
S
[0
,7

]
(
A
o
)

N
P
s
[0
,3

]
−

N
P
s
[0
,3

]

se
ek

s[
3
,4

],
a[
4
,5

],
w

is
e[
5
,6

],
m

an
[6
,7

],
N
P
s
[0
,3

]
−
S
[0
,7

]
(S

)

            

(3
)

a[
0
,1

]
−

a[
0
,1

]

w
is

e[
1
,2

]
−

w
is

e[
1
,2

]

w
om

an
[2
,3

]
−

w
om

an
[2
,3

]

w
om

an
[2
,3

]
−
N
[2
,3

]
(W

)

w
is

e[
1
,2

],
w

om
an

[2
,3

]
−
N
[1
,3

]
(W

I)

. . . .
(3
)

se
ek

s[
3
,4

],
a[
4
,5

],
w

is
e[
5
,6

],
m

an
[6
,7

],
N
P
s
[0
,3

]
−
S
[0
,7

]

se
ek

s[
3
,4

],
a[
4
,5

],
w

is
e[
5
,6

],
m

an
[6
,7

],
N
P
s
[0
,3

]
−
S
[0
,7

]
(I
)

a[
0
,1

],
w

is
e[
1
,2

],
w

om
an

[2
,3

],
se

ek
s[
3
,4

],
a[
4
,5

],
w

is
e[
5
,6

],
m

an
[6
,7

]
−
S
[0
,7

]
(A

s
)

Fi
gu

re
6:

T
he

de
riv

at
io

n
co

rr
es

po
nd

in
g

to
A
s
(W

IS
E

W
O

M
A

N
)
(λ
x
.I

N
J
(S

E
E

K
(λ
p
.A

o
(W

IS
E

M
A

N
)
(λ
y
.I

N
J
(p
y
))
)
x
))

24

se
ek

s[
3
,4

]
−

se
ek

s[
3
,4

]

N
P
o
[4
,7

]
−◦

S
[0
,7

]
−

N
P
o
[4
,7

]
−◦

S
[0
,7

]
N
P
o
[4
,7

]
−

N
P
o
[4
,7

]

N
P
o
[4
,7

],
N
P
o
[4
,7

]
−◦

S
[0
,7

]
−
S
[0
,7

]
(A

P
P
)

N
P
o
[4
,7

],
N
P
o
[4
,7

]
−◦

S
[0
,7

]
−
S
[0
,7

]
(I
)

N
P
s
[0
,3

]
−

N
P
s
[0
,3

]

se
ek

s[
3
,4

],
N
P
s
[0
,3

],
N
P
o
[4
,7

]
−
S
[0
,7

]
(S

)

        
(1
)

a[
4
,5

]
−

a[
4
,5

]

w
is

e[
5
,6

]
−

w
is

e[
5
,6

]

m
an

[6
,7

]
−

m
an

[6
,7

]

m
an

[6
,7

]
−
N
[6
,7

]
(M

)

w
is

e[
5
,6

],
m

an
[6
,7

]
−
N
[5
,7

]
(W

I)

. . . .
(1
)

se
ek

s[
3
,4

],
N
P
s
[0
,3

],
N
P
o
[4
,7

]
−
S
[0
,7

]

se
ek

s[
3
,4

],
N
P
s
[0
,3

],
N
P
o
[4
,7

]
−
S
[0
,7

]
(I
)

se
ek

s[
3
,4

],
a[
4
,5

],
w

is
e[
5
,6

],
m

an
[6
,7

],
N
P
s
[0
,3

]
−
S
[0
,7

]
(
A
o
)

              

(2
)

a[
0
,1

]
−

a[
0
,1

]

w
is

e[
1
,2

]
−

w
is

e[
1
,2

]

w
om

an
[2
,3

]
−

w
om

an
[2
,3

]

w
om

an
[2
,3

]
−
N
[2
,3

]
(W

)

w
is

e[
1
,2

],
w

om
an

[2
,3

]
−
N
[1
,3

]
(W

I)

. . . .
(2
)

se
ek

s[
3
,4

],
a[
4
,5

],
w

is
e[
5
,6

],
m

an
[6
,7

],
N
P
s
[0
,3

]
−
S
[0
,7

]

a[
0
,1

],
w

is
e[
1
,2

],
w

om
an

[2
,3

],
se

ek
s[
3
,4

],
a[
4
,5

],
w

is
e[
5
,6

],
m

an
[6
,7

]
−
S
[0
,7

]
(A

s
)

Fi
gu

re
7:

T
he

de
riv

at
io

n
co

rr
es

po
nd

in
g

to
A
s
(W

IS
E

W
O

M
A

N
)
(λ
x
.A

o
(W

IS
E

M
A

N
)
(λ
y
.I

N
J
(S

E
E

K
(λ
p
.I

N
J
(p
y
))
x
))
)

25

Proceedings of the 14th Meeting on the Mathematics of Language (MoL 14), pages 26–38,
Chicago, USA, July 25–26, 2015. c©2015 Association for Computational Linguistics

Topology of Language Classes

Sean A. Fulop
Dept. of Linguistics

California State University Fresno
sfulop@csufresno.edu

David Kephart
Link-Systems International

dkephart@link-systems.com

Abstract

The implications of a specific pseudometric on
the collection of languages over a finite alpha-
bet are explored. In distinction from an ap-
proach in (Calude et al., 2009) that relates to
collections of infinite or bi-infinite sequences,
the present work is based on an adaptation
of the “Besicovitch” pseudometric introduced
by Besicovitch (1932) and elaborated in (Cat-
taneo et al., 1997) in the context of cellular
automata. Using this pseudometric to form
a metric quotient space, we study its proper-
ties and draw conclusions about the location of
certain well-understood families of languages
in the language space. We find that topolo-
gies, both on the space of formal languages
itself and upon quotient spaces derived from
pseudometrics on the language space, may of-
fer insights into the relationships, and in par-
ticular the distance, between languages over a
common alphabet.

1 Introduction

The question of distance between languages, and
comparison of possible definitions, has relatively
less consideration in the literature than other lan-
guage issues, with notable exceptions being (Bers-
tel, 1973) and (Salomaa and Soittola, 1978). This
may seem surprising, considering that the current
digital climate necessitates the measurement of like-
ness between texts and languages, for instance in
search engine entries and results. Ad hoc measures
of differences exist based upon rooted tree distances,
but these are more like attempts to incorporate the
intuitive notion of differences between words than
overall differences between languages. In Linguis-

tics, as well, there is as yet no accepted way of mea-
suring the distance between two dialects of a lan-
guage, with each employing the same vocabulary.

This paper borrows a pseudometric from cellular
automata theory to use language density and form
a topology on the set of languages (consisting of
words of finite length over a fixed alphabet). A
similar pseudometric is discussed in (Cattaneo et
al., 1997). Our goal is to continue a systematic re-
view and categorization of language distances, with
a view to determining what gives rise to apparent
weaknesses and strengths of each. As seen in (Sa-
lomaa and Soittola, 1978) and (Yu, 1997) language
density is understood as the number of words in a
language, conceived of as a function ̺(n) of word
length n. This is shown to convey information about
the nature of a language. Analysis of language den-
sity over finite words may be confined to the treat-
ment of regular languages (Yu, 1997; Kozik, 2005),
or seen as a probability density of distance between
infinite sequences (Kozik, 2006).

Herein we continue the approach of (Kozik, 2006)
of capturing distances between arbitrary languages,
specifically by looking at features of the topology
generated by each. We consider that languages—
natural or formal—are most beneficially understood
as potential or actually infinite objects. As such, lan-
guage patterns may or may not be adequately de-
fined syntactically. We continue the work of Kozik
in grasping language differences as word density of
distinctions at the limit. Since such a limit may not
exist, we look at a pseudometric inspired by Besi-
covitch (1932) that captures, in fact, the upper den-
sity limit of language differences.

Next, we consider “where,” in the resulting “Besi-
covitch” topology of the language space, individual

26

languages lie. We also look at how this relates to the
Chomsky hierarchy of languages. We find that the
pseudometric space of languages is not complete,
and look at the lifting of the pseudometric to a quo-
tient metric space. The hope is that this considera-
tion may contribute to a list of relative advantages
and disadvantages associated with various candidate
language topologies. Our contribution is thus con-
ceived as a part of a broader exploration in search of
the most useful topology of language spaces, with
eventual application to linguistic problems like mea-
suring the distance between dialects over a common
vocabulary. We have tried to study the Besicovitch
topology and its quotients in some detail, but some
proofs have been condensed to outlines due to space
limitations.

1.1 Early approaches

Nelson (Nelson, 1980) elaborated work by Wal-
ter (Walter, 1975) which constructed a topologi-
cal space from a space of rewriting grammars by
means of successive divisors of grammatical deriva-
tions. The resulting topologies of both languages
and grammatical derivations are equivalent to quasi-
ordered sets, and have the property that each point
has a smallest open neighborhood. If such a topol-
ogy is T1 then it is discrete.

An equivalence relation between languages was
suggested by Marcus (Marcus, 1966; Marcus, 1967)
based on equivalence of word contexts. Improved
and elaborated by Dincǎ (Dincǎ, 1976), this ap-
proach treats the space of languages as a semigroup
over the alphabet, and a distance in the quotient
space (dividing by context equivalence) measures
the distance between context classes of strings with
respect to some chosen language.

The above described approaches, while not with-
out interest where linguistic applications are in view,
do not yield a “sufficiently smooth” topology of a
language space. The first approach similar in spirit
to our main thread was published by Vianu (1977),
who applied the metric proposed earlier by Bod-
narchǔk (1965). This approach has a number of vari-
ants, but we will point out the most important con-
clusions to be drawn from them as well as possible
limitations of this approach.

1.2 Current literature on language topologies
and distances

Language spaces allowing infinitary words, on the
other hand, can be more easily endowed with ad-
equate topologies arising out of the word topology
(Calude et al., 2009), but this will not be a topic of
discussion here because there seems to be no appli-
cation of infinitary word languages to the study of
natural human languages.

2 Preliminaries

In this section we review some basic definitions
from formal language theory and review the best-
known approach to language distance, namely, what
we will call the Cantor metric.

2.1 Notation and Definitions

For the most part, we adopt notation common to for-
mal language theory. There are a few modifications
in the interest of brevity and, hopefully, clarity of ex-
pression. We consider a language as a set of words
which are concatenated from symbols in an alpha-
bet Σ with finite cardinality α. We will deal only
with words of finite length (as opposed to the words
discussed, for instance, in (Calude et al., 2009)). By
a language space we mean the collection of all pos-
sible languages, namely, 2Σ∗

.
Sets. We frequently employ the symmetric set dif-

ference of sets A and B, denoted A△B.
Words. The length of word w will be denoted

|w| and will always be non-negative. The empty
word, which is the unique word of length zero, will,
as usual, be denoted λ. When we need to refer to
the ith symbol of the word w, we will denote this
by w[i], preserving ordinary subscripts for the enu-
meration of words. The fundamental operation on
symbols is (non-commutative) concatenation, which
is represented multiplicatively. We use the Kleene-
∗ (-star) and -+ (-plus) operations in the usual way.
Moreover, Σn denotes the set of all words of length
n, and Σ<n denotes the set of all words of lengths
up to n− 1.

Languages. The empty language is simply the
null set, ∅. Concatenation extends from words to
languages. That is, if L and M are languages, then
LM = {uv : u ∈ L, v ∈ M}. Suppose L is a
language over Σ and n ∈ N ∪ {0}. Then we de-

27

note by Ln (respectively L<n, for n > 0) the set
L ∩ Σn (respectively,

⋃n−1
i=0 L

i). For example, L0 is
either ∅ or {λ}. The density of language L is the se-
quence {̺n}n∈N such that ̺i = |Li|. Then |L<n| is
the nth partial sum of the series

∑
̺. Finally, given

languages L and M , we denote by L△nM (respec-
tively, L △<n M) the symmetric set difference be-
tween words of length n (respectively, less than n)
in the two languages.

Remark 1. Note that

|Σ<n| =
αn − 1

α− 1
. (1)

2.2 Language norms, metrics and the Cantor
space

In setting out to find ways to adequately express
the “distance” between two languages, we consider
how to adapt the notions of size and separation into
the realm of formal symbols. We already observe
that the first defined language distance, i.e., the dis-
tance between two languages, in the literature, de-
rives from the density of their symmetric set dif-
ference. The metric mentioned by (Vianu, 1977) is
based on the shortest word in L △ M . Indeed, this
leads to a full metric, and a metric topology on 2Σ∗

.
By analogy to the norm in a normed space represent-
ing distance from a zero point, and hence magnitude,
a “language norm” can be elaborated from a pseudo-
metric.

The reader will recall that a pseudometric d on
space X is a function that maps X × X to R≥0,
such that d(x, x) = 0, d(x, y) = d(y, x) and
d(x, y) + d(y, z) ≥ d(x, z). We call a pseudomet-
ric a language distance just in case it additionally
is such that, if L ∩ N = ∅ and M ⊆ N , then
d(L,M) ≤ d(L,N).

Then, to every language distance we may asso-
ciate a function ‖·‖d : 2Σ∗ → R≥0 by defining
‖L‖d = d(L, ∅). Note that ‖·‖d has the following
properties:

‖∅‖d = 0 (2)

‖L ∪M‖d ≤ ‖L‖d + ‖M‖d (3)

L ⊆ M =⇒ ‖L‖ ≤ ‖M‖ (4)

We define a language norm as any such function on
languages.

Lemma 2. To each language norm ‖·‖ there cor-
responds a unique language distance d such that
d(L,M) = ‖L△M‖.

The contrapositive of Lemma 2 also holds. That
is, for any language distance d on 2Σ∗

, the function
‖·‖ : 2Σ∗ → R≥0 such that ‖L‖ = d(L, ∅) defines a
unique language norm.

2.3 The Cantor language metric and topology
on 2Σ∗

A Cantor language space
Two languages can be compared by beginning

with the shortest word in each language and pro-
ceeding to longer words. A first notion of distance
is obtained using the word-length of the first distinc-
tion between languages so observed. To this end,
let the language space then be normed by assigning
the norm 0 to ∅ and by associating each non-empty
language to a power of 1/2, as follows.

Definition 3. The language norm ‖·‖1 : 2Σ∗ → R
is as follows: for L ∈ 2Σ∗

,

‖L‖1 =

{
0 if L = ∅,
2− min{|w|:w∈L} otherwise.

(5)

Observe that − log2‖L‖1 ∈ N for all non-empty
L.

To this language norm corresponds the following
language metric.

Definition 4. The function d1 : 2Σ∗ × 2Σ∗ → R is
a metric, where, for L and M in 2Σ∗

, d1(L,M) =
‖L△M‖1

To see that d1 is in fact not only a pseudomet-
ric but a metric, consider that d1(L,M) = 0 iff
L △ M = ∅, i.e., iff L = M . Let τ1 be the metric
topology induced on 2Σ∗

by d1. For reasons to be
made clear below, we call ‖·‖1, d1, and τ1 the Can-
tor norm, distance, and topology, respectively, on a
language space.

The open neighborhoods of radius ǫ > 0 around
some language L ∈ 2Σ∗

, denoted Bǫ(L) = {M ∈
2Σ∗

: d1(L,M) < ǫ}, form the standard basis for
τ1. Since distances between distinct languages are
powers of 1/2, it follows that elements of the stan-
dard metric basis for (2Σ∗

, τ1) form the collection

C = {B2−n(L) : n ∈ N, L ∈ 2Σ∗}. (6)

28

Definition 5 ((Vianu, 1977; Genova and Jonoska,
2006)). The language cylinder set CL,k of length
k ∈ N around language L ∈ 2Σ∗

is:

CL,k
def
= {M ∈ 2Σ∗

: L ∩ Σ≤k = M ∩ Σ≤k}. (7)

Now let Ck
def
= {CL,k : L ∈ 2Σ∗} be the col-

lection of all language cylinder sets of length k.
From (6) and (7) it follows that the collection C

def
=⋃

k∈N Ck, comprising all language cylinder sets, is
the standard basis for (2Σ∗

, τ1).

Cantor topology on a language space
As it turns out, τ1 is equivalent to the topology of

the Bodnarchǔk metric space discussed in (Vianu,
1977). We quickly recap the properties of this topol-
ogy on a language space, as proven in (Vianu, 1977)
and (Genova and Jonoska, 2006).

Lemma 6. In (2Σ∗
, τ1), every cylinder set is both

closed and open.

Lemma 7. A sequence {Li}i∈N ⊂ 2Σ∗
converges to

language L in (2Σ∗
, τ1) iff for all m ∈ N, |(Li △m

L)| = 0 for all but finitely many i. In this case we
write Li → L.

From this and the fact L∩Σ≤i → L we also have:

Corollary 8. The finite languages are dense in a
space of languages under the τ1 topology.

Lemma 9. The topological space (2Σ∗
, τ1) is home-

omorphic to the Cantor space.

Thus the terminology “Cantor language space,
topology,” etc.1

Corollary 10. (2Σ∗
, τ1) is compact, perfect, and to-

tally disconnected.

3 Besicovitch pseudometric, language
norm and topology

We now consider a language distance that is in many
respects more satisfactory than the Cantor distance

1As pointed out by an anonymous reviewer, the Cantor
topology can be understood as the profinite completion of an
algebra of recognizable languages (Gehrke, 2009). While this
does not modify the topological characteristics of the space, it
does raise the interesting point that the Besicovitch topology,
the main subject of this paper, likely cannot be so conceived: the
Besicovitch metric (quotient) space is not complete, by Corol-
lary 31.

d1, by exploiting the general philosophy of compar-
ing languages by comparing finite sections of lan-
guages. We then show several results, including that
neither finite nor locally testable languages are dense
in the topology induced. We call this alternative
pseudometric the Besicovitch distance, denoted by
dζ . Under the topology induced, a language space
is not compact. Rather, it has a geometry which be-
comes apparent from the vantage point of a metric
quotient space.

The original Besicovitch pseudometric expressed
the distance between two almost-periodic real-
valued functions (Besicovitch, 1932) φ,ψ ∈ ℓ1 as

dBp(φ,ψ)
def
= lim sup

n→∞

1

2n+ 1

n∑

−n

|φ(x) − ψ(x)|.

Because this pseudometric depends on the evalu-
ation of the two functions only at discrete inter-
vals, it is naturally adaptable to expressing distances
between objects with a bound proportion of dif-
ferences, as with the distance between cellular au-
tomata (Cattaneo et al., 1997); our adaptation to lan-
guages is in some sense a generalization thereof.

3.1 A Besicovitch pseudometric on language
spaces

We begin by defining a Besicovitch-style language
norm. Rather than halting at a particular term of the
density of the symmetric set difference between two
languages, this norm considers the derived infinite
series |L△<nM | in ratio to the total possible words
over Σ∗ (given by (1)) as n goes to infinity.

Definition 11. Let ‖·‖ζ for fixed alphabet Σ be the
function defined:

‖L‖ζ
def
= lim sup

k→∞

|(L ∩ Σ<k)|
|Σ<k| (8)

We call ‖·‖ζ the Besicovitch language norm.
Then let dζ be the function mapping (L,M) to

‖L△M‖ζ , and call it the Besicovitch language dis-
tance.

By Lemma 2, distance dζ is a language pseudo-
metric.

Remark 12. The Besicovitch distance dζ between
languages

29

1. can be described as the upper density of their
set-difference;

2. turns out to constitute (like the Besicovitch lan-
guage norm) a continuous, surjective mapping
of 2Σ∗

into the unit interval [0, 1];

3. for a language and its complement is 1, since
(L ∩ Σk) △ (¬L ∩ Σk) = Σk for every k ∈ N;

4. constitutes a strict pseudo-metric if |Σ| > 1,
since, for instance, ‖M‖ζ = 0 where M =
{a}, so dζ(M, ∅) = 0 even though M 6= ∅;

5. given languages L,M ∈ 2Σ∗
, can be written

as follows:

dζ(L,M) = lim sup
k→∞

∣∣∣L△<k M
∣∣∣
(
α− 1

αk − 1

)

We present the following without proof.

Lemma 13. If L and M are disjoint languages in
2Σ∗

, then ‖L‖ζ + ‖M‖ζ = ‖L ∪M‖ζ .

Corollary 14. For L,M ∈ 2Σ∗
, ‖L‖ζ + ‖M‖ζ =

‖L ∪M‖ζ if and only if ‖L ∩M‖ζ = 0.

Corollary 15. For all L,M ∈ 2Σ∗
, ‖L‖ζ+‖M‖ζ ≥

‖L ∪M‖ζ .

The conclusion here is that ‖·‖ζ is truly “norm-
like.” For the remainder of this section, we drop
most subscripts ζ .

To establish surjectivity, we first need a way to
construct a language with a specified arbitrary norm.

Definition 16. Given 0 ≤ r ≤ 1, consider the se-
quence ř〈α〉

def
= {⌊rαk⌋}k∈N. Then we call Lr the set

of r-simple languages in 2Σ∗
, defined as follows:

Lr
def
=

{
L ∈ 2Σ∗

: {|(L ∩ Σi)|}i∈N = ř〈α〉
}
.

Lemma 17. For r ∈ [0, 1] there is at least one
r-simple language; moreover for each particular
value r, every r-simple language has norm r.

Proof. By construction, for each r ∈ [0, 1] the se-
quence ř〈α〉 exists. We can select řk words in Σk for
all k. This amounts to the construction of a language
L in Lr for each r ∈ [0, 1]. But then ‖L‖ = r, which
establishes the claim.

Now we have established our hoped-for result.

Corollary 18. The Besicovitch language norm is a
surjective mapping from 2Σ∗

onto [0, 1].

In addition, it is relatively easy to see that diag-
onalization yields that there are uncountably many
r-simple languages for each r ∈ [0, 1].

3.2 Besicovitch distance quotient space

The Besicovitch distance equivalence induces a
quotient space on 2Σ∗

We next form collections of languages at distance
zero from each other and map each such collection
to a point in a quotient space, which can then be
metrized. So, given L,M ∈ 2Σ∗

, let L ∼ζ M if
dζ(L,M) = 0.

Proposition 19. The relation ∼ζ is an equivalence
on 2Σ∗

.

Proof. Reflexivity and symmetry are apparent and,
if L,M,N ∈ 2Σ∗

such that L ∼ M and M ∼ N ,
then 0 = d(L,M) + d(M,N) ≥ d(L,N). From
Remark 12(1), L ∼ N .

The collection of ∼ equivalence classes will be
called the Besicovitch quotient space over 2Σ∗

, de-
noted QΣ

ζ . Here we will drop the ζ subscript for
notational clarity and assume the language space
2Σ∗

unless otherwise noted. Elements of the quo-
tient space (points in Q) will be denoted with sans-
serif letters L,M,N, . . ., while collections of such
points will be denoted with corresponding bold let-
ters L,M,N, Let η : 2Σ∗ → QΣ

ζ denote the quo-
tient mapping which takes a language to its ∼ equiv-
alence class.

Remark 20. As a partition of 2Σ∗
, the mapping η is

well-defined and surjective, but not injective since it
is a quotient mapping. The set operations of union,
intersection and complementation are preserved by
mappings from collections of points in Q to the sets
of languages of which they are equivalence classes.
In particular, every topology on QΣ

ζ is the quotient
of a topology on 2Σ∗

.

When language L is a member of language family
L, and every member of L is contained in an equiv-
alence class in the collection of points L ⊆ Qζ , we
will write L ∈ L and L ⊆ L instead of the more
tedious η(L) = L and η(L) ⊆ L.

30

Lemma 21. For languages L,M ∈ 2Σ∗
, L ≁ M

iff there exists a positive integer m such that, for
infinitely many word-lengths n, |(L △<n M)| ≥
|Σ<n−m|.

Proof. (⇒) Suppose there is no suchm. That would
mean that, for each m ∈ N, there is a word length
nm such that k > nm implies |(L △<k M)| <
|Σk−m|. We can then construct an increasing se-
quence {ki}i∈N where k0 = 0 and ki (i > 0) is the
least integer greater than ki−1 such that |(L △<k′

M | > |Σ<k′−i| =
∑k′−i−1

j=0 |Σj | = αk′−i−1
α−1 if

k′ > ki. But, if this were true, then the Besicov-
itch distance between the two languages would be
0, since a straightforward calculation shows that, for
each m ∈ N, dζ(L,M) is bounded above by α−m.

(⇐) Assume that, for some m ∈ N and for n
sufficiently large, |(L △<n M)| ≥ |Σn−m|. Then
a similarly straightforward calculation shows that
‖L △ M‖ = lim supk→∞

|L△<kM |
|Σ<k| is bounded be-

low by, for instance, α−m/2. Thus, L ≁ζ M .
Note that when two languages are similar, the se-

quence used in the first part of the proof is finite.

Definition 22. Given languages L,M ∈ 2Σ∗
, we

will denote by Kζ(L,M) the (possibly finite) in-
creasing integer sequence {ki}i∈N in accord with
the above lemma. Indeed, Kζ(L,M) is infinite pre-
cisely when L ∼ M .

We note that ifKζ(L,M) has at least i terms, then
ki > i and, by considering the words in L △ M of
length greater than mi, we have a first estimate of
the distance between two languages, namely, α−i.

By Lemma 21, the unique sequence Kζ(L,M)
expresses the relative location of languages in the
quotient space Qζ .

The quotient space has a natural metric quotient
topology

We define the metric dζ on the Besicovitch quo-
tient space as the lifting of Besicovitch distance d.

Definition 23. Let the distance dζ be-
tween points L and M in Qζ be set equal to
inf

{
d(L,M) : L ∈ η−1(L),M ∈ η−1(M)

}
.

Lemma 24. For L,M ∈ Qζ , dζ(L,M) = 0 iff L =
M.

Proof. Only the implication left to right requires a
proof. Suppose that d(L,M) = 0. Now suppose,
contrary to the claim, that there is some language
L ∈ L but not M. We conclude from the preced-
ing definition 23 that there exists M ∈ M such that
d(L,M) = ǫ > 0. But then, for arbitrary languages
L′ ∈ L and M ′ ∈ M, the triangle inequality provides
us that

ǫ ≤ d(L,M) ≤ d(L,L′) + d(L′,M ′) + d(M ′,M)

≤ d(L′,M ′). (9)

Thus d(L,M) ≥ ǫ/2 > 0 by the preceding defini-
tion, Q.E.A.

Corollary 25. For L,M ∈ 2Σ∗
the diagram below

commutes, showing the isometry between Besicov-
itch language space and quotient space.

2Σ∗ × 2Σ∗ η×η //

d %%❏❏
❏❏

❏❏❏
❏❏❏

Qζ × Qζ

dzz✈✈✈
✈✈✈

✈✈✈

R≥0

It is by now evident that the Besicovitch quotient
space is a metric space under distance d. Moreover
we have:

Corollary 26. If languages L,M are in point L ∈
Qζ , then ‖L‖ = ‖M‖.

This just means that the d metric topology on
Qζ is the quotient of the pseudo-metric topology in-
duced by d on 2Σ∗

. Let τ̃ζ denote the collection of
open sets in Qζ under the d metric topology, and let
τζ denote the collection of language sets in 2Σ∗

such
that η(τζ) = τ̃ζ . We will call τζ the Besicovitch lan-
guage topology.

Convergence has a novel interpretation in the
quotient space

From Remark 12, the Besicovitch language topol-
ogy is not T1, and so convergence to a language is
not well-defined in (2Σ∗

, τζ). But there is no such
difficulty with the quotient space.

Lemma 27. A sequence {Li}i∈N in Qζ converges to
the point L ∈ Qζ iff the following: ∀m ∈ N ∃km ∈
N such that i > km means that, if language Li ∈ Li

and L ∈ L then there exists integer Ni for which
k > Ni implies |(L△k Li)| < αk−m.

31

Note that, unlike the case of the Cantor space, in
the Besicovitch language (quotient) topology, a con-
vergent sequence of points converges to ∼ equiva-
lence with the (languages in the) limit point.

The quotient space is perfect but not compact
We can next address the compactness question for

the Besicovitch quotient space, since it is a met-
ric space, by determining whether every infinite se-
quence of points has a convergent subsequence. We
ultimately show here that neither Qζ nor 2Σ∗

is com-
pact, although Qζ is a perfect set.

We first establish the latter property using the fol-
lowing fact.

Lemma 28. Every point in (Qζ , τ̃) is a condensation
point.

Proof. Every open set M in (Qζ , τ̃) includes the
image of an open interval in the subset topology
of [0, 1] and, by a diagonalization, is uncountable.
Each number in M has a distinct open inverse im-
age in (Qζ , τ̃).

It then follows immediately that Qζ is perfect.
To make progress on the compactness question,
we construct a family of two-sided word ideals in
Σ∗ which, when split into non-disjoint right ideals,
yields an infinite sequence in the quotient space with
no convergent subsequence. We will call I a right,
left, or two-sided word ideal of the monoid Σ∗ just
in case there is a word w ∈ Σ∗ such that I = wΣ∗,
I = Σ∗w, or I = Σ∗wΣ∗ respectively. Note this is
just like the definition of ideal in a monoid (Howie,
1995) except we are restricting the reference to a sin-
gleton set containing particular word w. Now let Jw

denote the two-sided word ideal Σ∗wΣ∗. Then for
k ∈ N, the kth section of Jw is ΣkwΣ∗ (Jw, which
is denoted Jw,k.

Lemma 29. For i, j ∈ N and where |w| = l,

d(Jw,i, Jw,j) = 2α−l. (10)

We can also compute the norm of Jw,i when
|w| = l:

‖Jw,i‖ = lim sup
k→∞

|ΣiwΣ<k−i−l|
|Σ<k|

= lim sup
k→∞

∑k−i−l−1
s=0 αi+s

|Σ<k|

= lim sup
k→∞

αk−l−αi

α−1

αk−1
α−1

= lim sup
k→∞

α−l

[
αk − 1

αk − 1
− αi+l − 1

αk − 1

]

= α−l. (11)

From Lemma 29 and the above calculation, taking
Jw,i

def
= η(Jw,i), the sequence {Jw,i}i∈N is such that

no subsequence can converge, yet every language in
each point of the sequence has the same norm.

Lemma 30. The Besicovitch quotient space Qζ is
not compact.

Proof. It is sufficient to display an infinite sequence
of languages belonging to distinct ∼ equivalence
classes separated from each other by a distance
greater than some fixed ǫ > 0. Then the η-images of
these languages will form an infinite sequence in Qζ

which has no convergent subsequence.
To this end, consider the language sequence

Ja
def
= {Ja,i}i∈N where a ∈ Σ. Two distinct

terms Ja,i and Ja,j are at distance 2α−1, from the
previous lemma, so consider the sequence L =
{Li}i∈N, where Ja,i ∈ Li for all i ∈ N. By Corol-
lary 25, there is no convergent subsequence of L,
since d(Li, Lj) > α−1 if i 6= j.

Since sequential compactness is not defined in the
pseudo-metric language space, we exhibit the fol-
lowing result to clear up any remaining doubts about
compactness there.

Corollary 31. The metric d is not complete.

Proof. (Outline) It suffices to exhibit a sequence
of points which are Cauchy convergent in Qζ , but
which do not converge to any point in Qζ . We then
produce a sequence, Cauchy in Q, but containing
the non-convergent sequence L from the proof of
Lemma 30 as a subsequence.

Corollary 32. A language space is not compact un-
der the Besicovitch topology.

Proof. Let O be an open cover of 2Σ∗
defined by

O = {{M : d(L,M) < α−1} : L ∈ 2Σ∗}.

32

We then have by Lemma 30 that any finite subset of
O contains at most finitely many languages in Ja.
Therefore O has no finite subcover.

While establishing noncompactness has been im-
portant, it will also be useful to establish a relation
to a known compact space. This is the subject of the
next subsection.

3.3 A second lifting of the quotient space

To obtain a compact space for exploring the most
general features of the Besicovitch topology on lan-
guage spaces, we define the language norm ‖·‖ζ as
a quotient map from Qζ into [0, 1]. This will result
in a total of three spaces: the non-T1 language space
under the topology induced by Besicovitch distance,
the quotient space topologized by the metric quo-
tient topology, and a compact upper quotient space
with a well-known topology. We proceed as with
the definition of Qζ by defining an equivalence re-
lation, the equivalence classes, and the quotient map
which takes points in Qζ to their equivalence classes.
We call the collection of equivalence classes the up-
per Besicovitch quotient space, denoted Nζ . We ul-
timately show that the topological space Nζ under
the quotient topology is homeomorphic to the unit
interval.

Take points L,M ∈ Qζ . Let L ≡ζ M if ‖L‖ζ =
‖M‖ζ for all L ∈ L and M ∈ M; let 〈L〉ζ = {M ∈
Qζ : M ≡ζ L}, and denote by Nζ the collection
{〈L〉ζ : L ∈ Qζ}, write elements of Nζ in calligraphy
font L,M,N , . . ., and denote collections of such el-
ements in corresponding bold letters L,M,N , . . .;
let κ be the map from Qζ to Nζ which takes L to its
equivalence class 〈L〉ζ . Finally, for r ∈ [0, 1], let rζ

denote {L ∈ Qζ : ‖L‖ζ = r ∀L ∈ L}.

Remark 33. It is obvious that ≡ is an equivalence
relation. Moreover, the quotient map κ is well-
defined, by Corollary 26. Since rζ = 〈M〉ζ for each
M ∈ rζ , this implies by Remark 12 that rζ = M for
precisely one M ∈ Nζ .

We next equip the upper quotient space with a
metric. Let the distance function ρ : Nζ × Nζ →
[0, 1] be defined such that, if L = rζ and M = sζ

for some r, s ∈ [0, 1], then ρ(L,M) = |r − s| as a
metric on Nζ . The collection U of basis sets under

the induced topology equals:

{{L ⊂ Nζ : rζ ∈ L if |r−s| < ǫ > 0} : s ∈ [0, 1]}.
(12)

Remark 34. The set U is apparently equivalent to
the subset topology on the unit interval. To wit, there
is a homeomorphism between Nζ and [0, 1] if the
function ρ induces the quotient topology on Nζ .

We continue to abuse the notation as was done
with languages and the quotient space, and write
L ∈ rζ or equivalently L ∈ L to mean language L is
found in points of the equivalence class rζ . We write
L ⊆ rζ to mean that each language in the class L is
in a point (not necessarily all in the same point) in
the equivalence class rζ . We write L ⊆ L to mean
that the image κ(η(L)) is a subset of the collection
of elements L ⊆ Nζ . We will next show that, with
exactly two exceptions, rζ is always an uncountable
subset of Qζ .

Lemma 35. The ≡ equivalence classes 0ζ and 1ζ

are singletons in Qζ .

Proof. The ≡ class 0ζ contains only the ∼ class
η(∅), since ‖L‖ = d(L, ∅). Thus, L ∈ 0ζ implies
d(L, ∅) = 0, which implies L ∼ ∅.

On the other hand, suppose languages L and M
and points L and M are such that L ∈ L and M ∈ M
and L,M ∈ 1ζ . By Remark 12, ‖¬L‖ = ‖¬M‖ =
0, which we have just seen means ¬L ∼ ¬M . But
since L\M = ¬M\¬L, it is true that L △ M =
¬L △ ¬M . Therefore d(L,M) = ‖L △ M‖ =
‖¬L △ ¬M‖ = d(¬L,¬M) = 0. Hence, L ∼
M . Since L,M were arbitrary, it follows that L =
M and that 1ζ contains just a single point, viz. the
equivalence class η(Σ∗).

Since 1 is a singleton, given a point L there is ex-
actly one point in Qζ at distance 1. If L,M ∈ Qζ

and d(L,M) = 1, then points L,M will be called
antipodes, which we denote as L = ¬M.

Lemma 36. Every point L ∈ Qζ has a unique an-
tipode in the Besicovitch quotient space.

Proof. From Corollary 25 this is the same as claim-
ing that, if two languages are at distance 1 from the
same language L ∈ L, then they are ∼-equivalent.
But this is a consequence of the identity

(L△M1) △ (L△M2) = M1 △M2. (13)

33

We can show this because if d(L,M1) = 1 and
d(L,M2) = 1, it follows that L△M1 and L△M2

are in 1 (from Def. 11), implying by Lemma 35 that
d(L△M1, L△M2) = 0, requiring M1 ∼ M2.

Corollary 37. For L ∈ 2Σ∗
, ‖¬L‖ = 1 − ‖L‖.

In addition we note that L ∈ 0 iff ¬L ∈ 1, and
also that 〈¬L〉 = 〈L〉 if and only if ‖L‖ = 1

2 for any
language L ∈ L.

For each point L ∈ Qζ , the L-rotation of point
M ∈ Qζ , denoted ηL(M), is defined as the point
η(L△M) for some language L ∈ L. The L-rotation
of the Besicovitch quotient space, denoted Q

Σ,L
ζ , is

then the collection {ηL(M) : M ∈ Qζ}. The L-
rotation of the ≡-equivalence class r, denoted rL,
is defined as the set {M ∈ Qζ : d(M, L) = r}. The
L-rotation of the upper Besicovitch quotient space,
meaning the collection {rL : r ∈ [0, 1]}, will be
denoted Nζ,L.

Lemma 38. Q
Σ,L
ζ is equivalent as a set to Qζ , and

L-rotation is a bijection of the quotient space onto
itself. Moreover, Nζ,L is a bijection with Nζ .

There are uncountably many ≡ equivalence
classes, because the norm ‖·‖ is surjective onto the
unit interval. In addition, we now proceed to show
that no open set in Qζ is contained in a single ≡
equivalence class. This is the essential condition for
the proof that ρ is the quotient of d. We begin with
a straightforward proposition.

Proposition 39. For L ∈ 2Σ∗
where ‖L‖ = r and

0 ≤ s ≤ r(≤ 1), there exists language M ⊂ L such
that ‖M‖ = s.

Proof. For s = 0, let M = ∅, Q.E.D. For s = r, let
M = L, Q.E.D. Now assume s ∈ (0, r). Note that
s/r > 0; form language sequence L = {L∩Σi}i∈N,
and using this define the integer sequence {mi}i∈N
such that

mi = ⌊(s/r)|(L ∩ Σi)|⌋. (14)

There exists a language sequence {Mi}i∈N such that
Mi ⊆ L∩Σi and |Mi| = mi. Then we can calculate
that 0 ≤ (s/r)|(L ∩ Σ<k)| = |(M ∩ Σ<k)| < k, so
‖M‖ = (s/r)‖L‖ = s, and M ⊆ L; Q.E.D.

Remark 40. The above result can be reversed, in
that if 0 ≤ r ≤ s ≤ 1, then for any language L ∈ r

there exists language M ⊇ L such that M ∈ s. The
target language is L in case 0 = r = s, Σ∗ in case
s = 1, and in case s ∈ (0, 1) may be constructed as
in Proposition 39 by inverting the fractions in (14)
et seq.

Lemma 41. No open set in Qζ is a subset of a ≡
equivalence class.

Proof. Since Qζ is perfect, this follows for the
classes 0ζ and 1ζ directly from Lemmas 35 and 28.
Otherwise, suppose L ∈ 2Σ∗

and L ∈ Qζ such that
L ∈ L ∈ r. For any open set L ⊂ Qζ containing
L, there is a number ǫ′ > 0 such that d(L,M) < ǫ′

implies M ∈ L.
It is sufficient to exhibit a language M ∈ M such

that ‖M‖ 6= ‖L‖ and d(L,M) < ǫ′. Let ǫ =
min{r/2, ǫ′/2}. Note that ǫ′ > ǫ > 0. Our selection
of ǫ guarantees the following: 0 < ǫ < r ≤ 1, which
implies that

0 < r − ǫ < r (15)

Then by Proposition 39 there is a language M ⊂ L
such that ‖M‖ = r−ǫ. But since r−ǫ < r, ‖M‖ 6=
‖L‖. It also follows that d(L,M) = ‖L △ M‖ =
‖L\M‖. However, ‖L‖ = ‖M‖ + ‖L\M‖ from
Corollary 14. Thus d(L,M) = ‖L‖ − ‖M‖ = r −
(r − ǫ) = ǫ.

Corollary 42. If L ∈ τζ is an open set in the Besi-
covitch topological space and language L ∈ L, then
there exists ǫ > 0 such that for every real number

r ∈ (‖L‖ − ǫ, ‖L‖ + ǫ) ∩ [0, 1]

there exists language M ∈ L such that M ∈ r.

This corollary states that, under the Besicovitch
topology, representatives of some continuous inter-
val of norm values can be found in every open set in
the language space. This means that, as was claimed
in Remark 12(1), the language norm ‖·‖ζ is a con-
tinuous map from 2Σ∗

onto [0, 1].

Theorem 43. The upper quotient space Nζ is home-
omorphic to (and so essentially is) the unit interval
[0, 1].

Ideals simplify exploration of the elements of the
upper quotient space

Earlier we defined the (word) ideals of Σ∗. To
elaborate on this, recall the earlier discussion of

34

r-simple languages (v. Def. 16), and consider the
monoid ideals of Σ∗.

Lemma 44. If real number r ∈ [0, 1], there exists a
right ideal of Σ∗ in Lr.

Proof. If r = 1 then w = λ trivially satisfies the
lemma. So we assume r ∈ (0, 1). Since by Def. 16
0 ≤ ř1 < α, there is a subset I1 of Σ (actually, at
least α subsets) such that |I1| = ř1. Note from the
definition of Lr that řk ≤ rαk < řk + 1 for all k ∈
N. Multiplying through by α gives the inequality

řkα ≤ rαk+1 < řkα+ α. (16)

But for k + 1 we have

řk+1 = ⌊rαk+1⌋ ≤ rαk+1 < řk+1 + 1. (17)

Since all values are non-negative integers we can
combine the preceding two equations to yield

řkα ≤ řk+1 < řkα+ α. (18)

It follows that řk+1 = řkα + tk for some tk ∈ N
such that 0 ≤ tk < α. Therefore for all k ∈ N,
řkα ≤ αk+1 − α.

Thus there exists language T1 ⊆ Σ2\I1Σ such
that |T1| = t1, so that |I1Σ ∪ T1| = ř2. Set I2 =
I1Σ ∪T1. Continuing in this fashion, let Tk for each
k ∈ N be a language such that Tk ⊆ Σk+1\IkΣ
and |Tk| = tk. Finally, for k ∈ N define language
I ∈ 2Σ∗

such that I ∩ Σk = Ik, which is to say let
I =

⋃
i∈N Ii. Then by construction, I ∈ Lr, and

wΣj ⊆ I for all w ∈ I and every j ∈ N. Thus
IΣ∗ ⊆ I .

The preceding result provides further evidence
that right ideals are ubiquitous in the Besicovitch
topological space. We now develop our understand-
ing of the ideals to comprehend the elements of the
upper quotient space. We begin by extending the no-
tion of “sections of a word ideal.”

Definition 45. An n-word ideal in the monoid Σ∗ is
a language JF such that

JF = Σ∗w1Σ
∗w2 . . .Σ

∗wnΣ∗

for some finite language F = {w1, w2, . . . , wn}
over Σ∗. Then fF =

∑n
i=1|wi| is the length of F . If

v = (v1, . . . , vn) is a vector over N1×n, then the v-
section of JF is denoted JF,v and is the right ideal
defined as:

JF,v = Σv1w1Σ
v2w2Σ

v3 · · · ΣvnwnΣ∗.

Lemma 46. For every vector v over N1×n and every
language F such that |F | = n, ‖JF,v‖ = α−fF .

Proof. Let v1 + v2 + . . . + vn = S. Then when
k ≥ fF + S, |JF,v ∩ Σk| = αk−fF . Therefore,

lim
k→∞

∑k−1
i=0 α

i−fF − |JF,v ∩ Σ<k|
∑k−1

i=0 α
i

= lim
k→∞

∑fF +S−1
i=0 αi−fF

∑k−1
i=0 α

i

= lim
k→∞

αS−1
α−1

αk−1
α−1

= 0,

which implies that ‖JF,v‖ = α−fF .

In addition to the above result, it is possible to ex-
tend the proofs of Lemmas 44 and 30 to the n-word
ideals by induction. Taken together, these results tell
us that points in the upper quotient space contain
languages that “closely resemble” unions of sections
of ideals of Σ∗, in the following sense: cardinal-
ity of sections of these languages (as word length
increases) must approximate the cardinality of the
unions of (sections of) ideals.

We conclude this section by showing that all ≡
classes except 0ζ and 1ζ are uncountable.

Lemma 47. For any real number r ∈ (0, 1), the
element r ∈ Nζ is uncountable.

Proof. From Lemma 44, there is an r-simple lan-
guage L. In fact, there exist at least two r-simple
languages, since for each r ∈ (0, 1),

0 ≤ |L ∩ Σk| <
[
r +

1 − r

2

]
αk

=

(
r + 1

2

)
αk < rαk.

This means that for k ∈ N there exists a subset of
Σk\L = ¬(L ∩ Σk) consisting of the lesser of ei-
ther ⌊rαk⌋ or

⌊(
1−r
2

)
αk

⌋
words, and there exists

a subset of L ∩ Σk consisting of the same number

35

of words. This means there exists an r-simple lan-
guage at distance s = min{2r, 1 − r} from L. We
now construct this language in the following way:
let tk = min

{
⌊rαk⌋,

⌊(
1−r
2

)
αk

⌋}
; let Tk be a lan-

guage such that |Tk| = tk and Tk ⊆ ¬(L ∩ Σk),
which is possible since |¬(L ∩ Σk)| ≥ 2tk; and
let Fk ⊆ L be such that |Fk| = tk, which is pos-
sible since tk ≤ |L ∩ Σk|. Let T =

⋃
i∈N Ti,

F =
⋃

i∈N Fi, and let N = L\F . Then language

L′ def
= N ∪ T is the language formed by exchanging

tk words in L for tk words in ¬L. Thus the number
of words in L△k L′ is 2tk = sαk for each k ∈ N.
Hence, d(L,L′) = s and, since L and L′ contain the
same number of words of each length, they have the
same norm. Since L is r-simple, so is L′.

For all t ∈ R such that 0 ≤ t ≤ s, since s ≤ r
there exists language F ′ ⊆ F ⊆ L such that ‖F ′‖ =
t/2, and there exists language T ′ ⊆ T = L′ ∩ ¬L
such that ‖T ′‖ = t/2 (by Proposition 39). Then it

can be shown that if language Lt
def
= (L\F ′) ∪ T ′ is

such that

Lt = (L\F) ∪ (F\F ′) ∪ T ′ = N ∪ (F\F ′) ∪ T ′,

so Lt △ L′ = (T\T ′) ∪ (F\F ′). Thus d(Lt, L
′) =

s− t.

3.4 The Chomsky hierarchy

In this final section we show a few results which re-
late our Besicovitch topologies to the classical lan-
guage classes.

The finite and locally testable languages are not
dense

A major inadequacy of the Cantor topology was
the density of the finite languages. By contrast, these
are confined to a single ∼-equivalence class in the
Besicovitch topology.

Lemma 48. The finite languages are all in 0ζ .

Proof. If language L is finite, there exists N ∈ N
such that n > N implies L ∩ Σn = ∅, and hence
also that |L△n ∅| = 0.

This naturally leads to the question, addressed
presently, what happens if the description of an infi-
nite language is entirely finitary?

We first remind the reader that a language L is
locally testable just in case there is a fixed inte-
ger k (called a window length) and a proper sub-
set F (Σk such that, if every factor of word w of
length k is in F then w ∈ L. The important thing
about the locally testable family is that the member-
ship question “Is w ∈ L?” is decidable by inspect-
ing subsequent k-length factors ofw. We next define
a larger class of “generally testable” languages with
the property that every locally testable language is a
subset of some generally testable language.

Definition 49. A language L is generally testable if
there exists a window length n ∈ N and a set of
permitted factors S ⊆ Σn, where L = S∗Σ<n.

From this definition we see that word w ∈ L
if and only if w ∈ Σ<n or w can be written
u1u2 · · · utv, where ui ∈ S for all i ∈ Nt and
v ∈ Σ<n. It is interesting that the size of a gen-
erally testable language is not really limited, but yet
we have the following result.
Lemma 50. Every generally testable language in
2Σ∗

is in 0ζ with the exception of Σ∗, which is in
1ζ .

Proof. (Outline) Let the permitted factors of a word
in L be S ⊆ Σn. If |S| = s, suppose s = αn. But
then S = Σn, L = Σ∗, and therefore L ∈ 1ζ .

On the other hand, if s < αn, and word w ∈
L, there exist unique non-negative integers q and r,
such that |w| = nq + r and 0 ≤ r < n, and words
u1, u2, . . . , uq in S, and word v in Σr such that w =
u1u2 . . . uqvWe deduce that |L ∩ Σ|w|| = sqαr.

We can therefore easily see that the proportion of
the number of words L<i to those in Σ<k is maxi-
mized at word lengths where q = n − 1, i.e., where
i = nk + n− 1. We conclude the following:

‖L‖ ≤ lim sup
k→∞

∑
i = 0ksi|(|Σ<n

|Σ<kn+n| . (19)

By our assumption, s ≤ αn−1. Straightforward cal-
culation shows the right side of the above equation
tends to zero, because it is bound above by

lim sup
k→∞

1

2

(αn − 1)k

(αn)k
.

Thus, L ∈ 0ζ .

36

Corollary 51. Every locally testable language be-
longs to 0ζ .

Proof. Suppose L is a locally testable language over
Σ with window length n and permitted factors S (
Σn. Consider the generally testable language L′

with the same window length and the same permit-
ted factors as locally testable language L. Then
L ⊆ L′ and, by the properties of a language norm,
‖L‖ ≤ ‖L′‖; meanwhile ‖L′‖ = 0 from the preced-
ing lemma.

Regular languages are dense in the upper
quotient space

We have now seen that all finite and locally
testable languages belong to 0ζ . On the other hand:

Lemma 52. Regular languages are dense in the up-
per quotient space Nζ .

Proof. Let r ∈ [0, 1]. The claim is that for all ǫ > 0
there exists a regular language L such that |‖L‖ −
r| < ǫ. If ǫ ≥ min{r, 1 − r}, either ∅ or Σ∗ satisfies
the claim, Q.E.D. So we assume that ǫ < min{r, 1−
r}. Then r < r + ǫ < 1. Let integers n and q be
such that r < qα−n ≤ r + ǫ ≤ (q + 1)α−n, and
0 < q < αn. From this we have

0 < qα−n − r < ǫ. (20)

Let language Sǫ ⊆ Σn have cardinality q. Consider
the right ideal SǫΣ

∗, which is a disjoint union of the
q right word ideals wΣ∗ with w ∈ Sǫ. Note that
each of these is a 1-word ideal section JF,v, where
F = {w} for w ∈ Sǫ and v = (0). Therefore by
Lemmas 13 and 46,

‖SǫΣ
∗‖ =

∑

w∈Sǫ

‖wΣ∗‖

= qα−n

From (20) this means that |‖SǫΣ
∗‖ − r| < ǫ as

required. Finally, by the Myhill-Nerode Theorem
(Nerode, 1958) SǫΣ

∗ is a regular language, since all
but finitely many words in SǫΣ

∗ can be followed by
Σ∗.

This means that the linear, context-free, context-
sensitive, and recursively enumerable languages are
all dense in the upper quotient space. We still do not

know where all these families lie in the lower Besi-
covitch topological spaces, but we conjecture that
the regular languages are indeed also dense in the
Besicovitch topology (2Σ∗

, τζ).

Non-r.e. languages are dense in both quotient
spaces

We can show fairly simply that the non-
recursively enumerable languages are ubiquitous in
the Besicovitch topological spaces. Because dζ is a
strict pseudo-metric, the ∼ equivalence classes are
uncountable. We present the following without their
(uncomplicated) proofs due to space limitations.

Lemma 53. The single element of the class 0ζ is un-
countable in 2Σ∗

and contains a non-r.e. language.

Corollary 54. Every ∼ equivalence class contains
a non-r.e. language.

4 Conclusion

We have attempted to improve upon previous defi-
nitions of distance between languages in a language
space. After considering previous work by Vianu
(1977) which defined a language distance using the
density of their symmetric set difference, we pro-
gressed to a new adaptation of a pseudometric in-
spired by Besicovitch (1932). In a language space,
the Besicovitch pseudometric was developed which
is essentially the upper density of the set-difference
between languages. By lifting to the quotient space
Qζ using Besicovitch equivalence, a natural metric
topology was developed and shown to be perfect but
not compact. Another step of lifting brought us a
compact “upper” quotient space Nζ homeomorphic
to the unit interval. The ideals of this upper space
were studied, also invoking the notion of word ideal
defined herein. In the last section it was shown that
neither the finite nor locally testable languages are
dense in Nζ . Finally, the regular languages were
shown to be dense in Nζ , and the non-r.e. languages
were shown to be dense in both Qζ and Nζ .

References

J. Berstel. 1973. Sur la densité asymptotique de lan-
gages formels. In International Colloquium on Au-
tomata, Languages and Programming (ICALP, 1972),
pages 345–358. North-Holland.

37

A. S. Besicovitch. 1932. Almost Periodic Functions.
The University Press.

V. G. Bodnarchǔk. 1965. The metrical space of events,
part I. Kibernetika, 1(1):24–27.

C. S. Calude, H. Jürgensen, and L. Staiger. 2009.
Topology on words. Theoretical Computer Science,
410:2323–2335.

G. Cattaneo, E. Formenti, L. Margara, and J. Mazoyer.
1997. A shift-invariant metric on sZ inducing a non-
trivial topology. In I. Privara and P. Rusika, ed-
itors, Mathematical Foundations of Computer Sci-
ence 1997, volume 1295 of LNCS, pages 179–188.
Springer-Verlag.

A. Dincǎ. 1976. The metric properties on the semigroups
and the languages. In A. Mazurkiewicz, editor, Math-
ematical Foundations of Computer Science 1976, vol-
ume 45 of LNCS, pages 260–264. Springer-Verlag.

M. Gehrke. 2009. Stone duality and the recognisable
languages over an algebra. In A. Kurz, M. Lenisa, and
A. Tarlecki, editors, Algebra and coalgebra in com-
puter science, volume 5728 of LNAI, pages 236–250.
Springer.

D. Genova and N. Jonoska. 2006. Topological prop-
erties of forbidding-enforcing systems. Journal of
Automata, Languages and Combinatorics, 11(4):375–
398.

J. M. Howie. 1995. Fundamentals of Semigroup Theory.
Oxford University Press.

J. Kozik. 2005. Conditional densities of regular lan-
guages. Electronic Notes in Theoretical Computer Sci-
ence, 14.

J. Kozik. 2006. Decidability of relative density in Chom-
sky hierarchy of languages. Ph.D. thesis, Jagiellonian
University, Cracow, Poland.

S. Marcus. 1966. Introduction mathématique à la lin-
guistique structurale. Dunod.

S. Marcus. 1967. Algebraic Linguistics; Analytical Mod-
els. Academic Press.

E. Nelson. 1980. Categorical and topological aspects
of formal languages. Mathematical Systems Theory,
13:255–273.

A. Nerode. 1958. Linear automaton transformations.
Proceedings of the American Mathematical Society,
9(4):541–544.

A. Salomaa and M. Soittola. 1978. Automata-theoretic
aspects of formal power series. Springer, Berlin.

V. Vianu. 1977. The Bodnarchǔk metric space of lan-
guages and the topology of the learning space. In
J. Gruska, editor, Mathematical Foundations of Com-
puter Science 1977, volume 53 of LNCS, pages 537–
542. Springer-Verlag.

H. Walter. 1975. Topologies on formal languages. Math-
ematical Systems Theory, 9:142–158.

S. Yu. 1997. Regular languages. In G. Rozenberg and
A. Salomaa, editors, Handbook of formal languages,
volume 1, pages 41–110. Springer, Berlin.

38

Proceedings of the 14th Meeting on the Mathematics of Language (MoL 14), pages 39–50,
Chicago, USA, July 25–26, 2015. c©2015 Association for Computational Linguistics

Individuation Criteria, Dot-types and Copredication:
A View from Modern Type Theories∗

Stergios Chatzikyriakidis
LIRMM

University of Montpellier 2
stergios.chatzikyriakidis@lirmm.fr

Zhaohui Luo
Dept. of Computer Science

Royal Holloway, Univ. of London, U.K.
zhaohui.luo@hotmail.co.uk

Abstract

In this paper we revisit the issue of copredica-
tion from the perspective of modern type the-
ories. Specifically, we look at: a) the counting
properties of dot-types, and b) the case of a
complex dot-type that has remained unsolved
in the literature, i.e. that ofnewspaper. As re-
gards a), we show that the account proposed
in (Luo, 2010) for dot-types makes the cor-
rect predictions as regards counting. In order
to verify this, we implement the account in the
Coq proof-assistant and check that the desired
inferences follow. Then, we look at the case
of b), the case of a dot-type which is both re-
source and context sensitive. We propose a
further resource sensitive version of the dot-
type, in effect a linear dot-type. This along
with local coercions can account for the be-
haviour attested.

1 Copredication: Dot Types and
Individuation Criteria

One of the issues that should be taken care of when
giving an account of co-predication, concerns cases
of coordination like the one shown below:

(1) John picked up and mastered three books

In the above sentence, the CN book is used in its
physical sense (PHY) with respect to the predicate

∗ This work is partially supported by the research
grants from Leverhulme, Royal Academy of Engineering, the
CAS/SAFEA International Partnership Program for Creative
Research Teams as well as the ANR ContInt Polymnie project
in France.

picked up, while for the predicate mastered it is
rather used in its informational content sense (INFO).
A theory of co-predication should be able to take
care of these facts. This is true for the account
by means of the dot-types proposed by (Luo, 2010;
Luo, 2012b). However, besides capturing this be-
haviour of dot objects, there is an additional prop-
erty that has to be captured. The account provided
must also make the correct predictions as regards in-
dividuation and counting. Let us explain. Consider
the following sentences:

(2) John picked up three books

(3) John mastered three books

(4) John picked up and mastered three books

The first example (2) is true in case John picked
three distinct physical objects. Thus, it is compatible
with a situation where John picked up three copies
of the same book. (3) is true in case three distinct
informational objects are mastered but does not im-
pose any restrictions on whether these three infor-
mational objects should be different physical objects
or not. To the contrary, (4) is only compatible with
an interpretation where three distinct physical ob-
jects as well as three distinct informational objects
is involved.1

Another issue pertaining to dot types concerns
cases of what Retoré (2014) calls rigid and flexi-
ble coercions in co-predication cases. These cases
in contrast to cases likeBookwhere both senses can

1This is basically an issue of how complex objects, i.e. dot-
types, are individuated and stems from the work of (Asher,
2008; Asher, 2011).

39

be coordinated, involve examples where if one of the
senses is used the other one cannot be used anymore:

(5) Liverpool is spread out and voted (last Sun-
day).

(6) # Liverpool voted and won (last Sunday).

Perhaps a better example for such cases is Puste-
jovsky’s newspaperexamples. The CNnewspaper
is associated with three senses: a) physical object,
b) informational object and c) institution. It is a
strange fact that whereas senses a) and b) can appear
together in a coordinated structure, sense c) cannot
appear with any of the other two (examples taken
from (Antunes and Chaves, 2003)):

(7) # That newspaper is owned by a trust and is
covered with coffee.

(8) # The newspaper fired the reporter and fell off
the table.

(9) # John sued and ripped the newspaper.

Pustejovsky’s proposal (Pustejovsky, 1995) to treat
newspaper as a composite dot object does not ex-
plain the above facts. Likewise, the proposal of us-
ing (ordinary) dot-types in (Luo, 2010) has a simi-
lar problem: one would considernewspaperto be a
subtype of the dot-type INST• (PHY • INFO), which
would not disallow the above bad examples. The
picture gets complicated in the light of examples like
the following, in which it seems that the institutional
sense can be used together with one of the two other
senses in some cases:

(10) The newspaper you are reading is being sued
by Mia.

As far as we know, no satisfactory account has
been provided to these questions yet. In this paper,
following earlier work on dot-types in MTTs (Luo,
2010; Luo, 2012b; Xue and Luo, 2012) and coor-
dination (Chatzikyriakidis and Luo, 2012), we take
up the challenge of providing an account that cor-
rectly predicts the individuation criteria in cases of
co-predication while it furthermore provides a first
look at capturing the behaviour of problematic cases
like newspaper.

2 Formal Semantics in Modern Type
Theories: a Brief Introduction

The term Modern Type Theories (MTTs) refers to
type theories studied and developed within the tradi-
tion of Martin-Löf, which include predicative type
theories such as Martin-Löf’s type theory (Nord-
ström et al., 1990) and impredicative type theories
such as CICp as implemented in Coq (The Coq team,
2007) and UTT (Luo, 1994). Formal semantics in
Modern Type Theories (MTT-semantics for short)
was first studied by Ranta in his pioneering work
(Ranta, 1994).2 It has been further developed in the
last several years, including the crucial employment
of the theory of coercive subtyping (Luo, 1999; Luo,
Soloviev and Xue, 2012) among other developments
and made MTT-semantics a viable and full-blown
alternative to the traditional Montagovian frame-
work. In this paper, we use one such modern type
theory, UTT with Coercive Subtyping (Luo, 1994;
Luo, 1999), whose application to linguistic seman-
tics was first discussed in (Luo, 2010).

Two features of MTTs are worth being men-
tioned, both important for being a foundational lan-
guage for linguistic semantics. The first is that an
MTT has a consistent internal logic according to
the propositions-as-types principle (Curry and Feys,
1958; Howard, 1980).3 For instance, the higher-
order logic is embedded in UTT and it is essentially
used when we employ UTT for linguistic semantics
(just like how higher-order logic is used in Mon-
tague’s semantics.)

The second feature of MTTs is that it has rich type
structures, which have been recognised by many re-
searchers as very useful in formal semantics. In this

2Potentially, even further back, with the work of Sundholm
(Sundholm, 1986; Sundholm, 1989), but Ranta (Ranta, 1994)
was the first systematic study of formal semantics in a modern
type theory.

3Having such an internal logic is a basic requirement for
a type theory to be employed for linguistic semantics and we
need to be careful to keep the internal logic to be consistent
when trying to extend an existing type theory to do linguistic
semantics, for otherwise, we could be in a muddle situation if
the basic requirement is violated. For instance, the framework
of Type Theory with Records (TTR) (Cooper, 2011) is based
on set theory and, as a consequence, TTR does not have such
an internal logic based on the propositions-as-types principle
(to see this, it suffices to note that TTR’sa : A is just the set-
theoretical membership relationa ∈ A and undecidable).

40

section, we shall briefly discuss some of these dis-
tinctive features of MTTs, specifically the ones most
relevant to this paper.

2.1 Type Many-sortedness and CNs as Types

The domain of individuals in MTTs is multi-sorted
and not single-sorted as in Church’s simple type the-
ory (Church, 1940). Instead of using one coarse-
grained domain of entities, like it is done in the Mon-
tague Semantics (MS) (Montague, 1974), MTTs
contain many types that allow one to make fine-
grained distinctions between individuals and further
use those different types to interpret subclasses of
individuals. For example, one can findJohn :
[[man]] andMary : [[woman]], where[[man]] and
[[woman]] are different types.

A further difference closely related to type many-
sortedness concerns the interpretation of CNs. In
MS, CNs are interpreted as predicates of typee →
t, whereas in MTTs CNs are interpreted astypes.
Thus, in MTTs, CNsman, human, table andbook
are interpreted as types[[man]], [[human]], [[table]]
and [[book]], respectively. (Such types may be de-
fined by means of type constructors such asΣ etc
– see below.) Then, individuals are interpreted as
being of one of the types used to interpret CNs.
Such interpretations of CNs as types would not work
without a proper subtyping mechanism that extends
MTTs – coercive subtyping provides us with such a
framework.4

2.2 Rich Typing

Type structures in MTTs are very rich. They can be
used to represent collections of objects (or construc-
tive sets, informally) in a model-theoretic sense, al-
though they are syntactic entities in MTTs. Elabo-
rating on the expressiveness of typing structures of
MTTs, we briefly mention the following type struc-
tures:

• Dependent sum types (Σ-typesΣ(A,B) which
have product typesA × B as a special case).
Σ-types have been used to interpret intersec-
tive and subsective adjectives without the need

4See (Luo, 1999; Luo, Soloviev and Xue, 2012) for the for-
mal details of coercive subtyping. Also see (Luo, 2012a) and
the next section for further argumentation on interpretingCNs
as types.

of resorting to meaning postulates. The infer-
ences follow directly from typing (Ranta, 1994;
Chatzikyriakidis and Luo, 2013). Note that
subtyping is essential for theΣ-type to work
(Luo, 2012b).

• Dependent product types (Π-types Π(A,B),
which have arrow-typesA → B as a special
case). These are basic dependent types that,
together with universes (see below), provide
polymorphism among other things. To give an
example, verb modifying adverbs are typed by
means of dependentΠ-types (together with the
universeCN of common nouns) (Luo, 2012b;
Chatzikyriakidis, 2014).

• Disjoint union types (A + B). Disjoint union
types have been proposed to give interpreta-
tions of privative adjectives (Chatzikyriakidis
and Luo, 2013).

• Universes. These are types of types, basi-
cally collections of types. Typical examples
of universes in MTT-semantics include, among
others, the universeProp of logical proposi-
tions as found in impredicative type theories
and the universeCN of (the interpretations of)
common nouns (Luo, 2012b). Further uses of
universes can be seen in (Chatzikyriakidis and
Luo, 2012) where the universeLType of all
linguistic types is used in order to deal with co-
ordination.

• Dot-types (A • B). These are special types in-
troduced to study co-predication (Luo, 2012b).
It is worth mentioning that coercive subtyping
is essentially employed in the formulation of
dot-types.5

2.3 MTT-semantics is Both Proof-theoretic and
Model-theoretic

It has been noted recently (Luo, 2014) that one of
the advantages of MTT-semantics as compared to
traditional Montagovian approaches is that MTT-
semantics can be seen as being both model-theoretic
and proof-theoretic. NL semantics can first be repre-
sented in an MTT in a model-theoretic way and then

5See (Bassac et al., 2010) for another proposal of using co-
ercions to deal with co-predication.

41

these semantic representations can be understood in-
ferentially in a proof-theoretic way (Luo, 2014).

In particular, since MTTs are proof-theoretically
specified, it is not surprising that many proof as-
sistants implement MTTs. Perhaps, the most ad-
vanced of these proof-assistants is the Coq proof-
assistant (The Coq team, 2007). Coq is a state-of-
the-art proof assistant that has produced a number
of impressive results. Some of these include a com-
plete mechanized proof of the four colour theorem
(Gonthier, 2005), the odd order theorem (Gonthier et
al., 2013) as well as CompCert, a formally verified
compiler for C (Leroy, 2013). Because Coq has a
powerful reasoning ability and that it implements an
MTT, a new avenue of research is opened up – to use
Coq as an NL reasoner. This has been attempted in
(Chatzikyriakidis and Luo, 2014a; Chatzikyriakidis
and Luo, 2014b) with a number of promising results
as regards NL inference. In this paper, we also ex-
emplify the way proof-assistants can be used to help
in checking the inferences that semantic accounts
give rise to.

3 CNs as Types and Individuation Criteria

As already discussed in our introduction to MTTs,
CNs are interpreted as types in MTTs. This pro-
posal has also some nice consequences concerning
what Geach (1962) has called the criterion of iden-
tity, which is pretty much the individuation criterion
that we have been referring to in this paper. Intu-
itively, a CN determines a concept that beside hav-
ing a criterion of application to be employed to de-
termine whether the concept applies to an object,
it further involves a criterion of identity, to be em-
ployed to determine whether two objects of the con-
cept are the same. It has been argued that CNs are
distinctive in this as other lexical terms like verbs
and adjectives do not have such criteria of identity
(cf. the arguments in (Baker, 2003)). There seems
to be a close link between the constructive notion
of a set (Type) and criteria of identity/individuation.
This is because, in constructive mathematics, a set
is a ‘preset’, which involves its application crite-
rion, together with an equality, which further gives
its criterion of identity determining whether two ob-
jects of the set are the same (Bishop, 1967; Beeson,
1985). Modern type theories such as Martin-Löf’s

type theory (Martin-Löf, 1975; Martin-Löf, 1984)
were originally developed for the formalisation of
constructive mathematics, where each type is asso-
ciated with such an equality or criterion of identity.
The identification of CNs as types thus provides CNs
their criteria of application and identity. We cannot
go into the details of how this is to be achieved for-
mally. but the interested reader is directed to (Luo,
2012a) for a detailed exposition of the CNs as Types
idea.

In order to proceed, firstly we have to discuss
the existing account of dot-types as this was given
by (Luo, 2010; Luo, 2012b; Xue and Luo, 2012).
Specifically, we have to see whether this account
predicts the counting criteria correctly in examples
like (4) repeated below:

(11) John picked up and mastered three books

As we have said, the only possible interpretation of
(11) we receive is one where three distinct physical
as well as informational objects are involved. The
sentences cannot be interpreted as involving three
distinct informational objects but one physical ob-
ject or vice versa as involving three distinct physical
objects but one informational object. The question is
whether this account captures that. First of all, let us
say something about coordination, since this would
be needed in discussing the examples in a composi-
tional manner. The approach we suggest for coor-
dination, based on earlier work in (Chatzikyriakidis
and Luo, 2012) involves a type universe of linguistic
types,LType:6

(12) ΠA : LType. A → A → A

As regards typing the above is a natural way to en-
code coordination. However, we need a way to fur-
ther encode the semantics of coordination in each
case. For this paper, we show this for VP coordi-
nation only. In order to define VP coordination, we
first define an auxiliary objectAND:

(13) AND : ΠA:LType. Πx, y:A. Σa:A. ∀p:A →
Prop. p(a) ⊃ p(x) ∧ p(y).

The auxiliary entities read as follows: for any type
A in LType and forallx, y:A, AND(A, (x, y)) is a

6See (Chatzikyriakidis and Luo, 2012) for more details on
the universeLType, its motivation as well as (some of) its in-
troduction rules.

42

pair (a, f) such that forallp:A → Prop, f(p) is a
proof thatp(a) implies bothp(x) andp(y). Then,
and is defined as the first projectionπ1 of the auxil-
iary object:

(14) and = λA:LType.λx, y, z:A.π1(AND(A, x, y))

With these in mind, let us now look at the ex-
isting proposal as regards dot-types and its proper
formalization as this was provided in (Luo, 2010).
The whole idea of forming a dot-type is informally
based on the fact that to form a dot-typeA • B, its
constituent typesA and B should not share com-
mon parts/components. For example, the following
two cases cannot be dot-types since they both share
components:

(15) PHY • PHY

(16) PHY • (PHY • INFO)

Definition 3.1 (components)Let T : Type be a
type in the empty context. Then,C(T), the set of
components ofT , is defined as:

C(T) =df

{
SUP(T) if the NF ofT is notX • Y

C(T1) ∪ C(T2) if the NF ofT is T1 • T2

whereSUP(T) = {T ′ | T ≤ T ′}.

The rules for the dot-types are given in Figure 1,
as given in (Luo, 2012b). The notion of dot-type
captures copredication in a nice way: it is both for-
mal and suitable for MTT-semantics. The question
is whether this account gives us correct individua-
tion criteria. In order to test this, we check it against
the Coq proof-assistant (The Coq team, 2007), based
on the formal development as considered in (Luo,
2011). In effect, we define in Coq the dot-type
PHY • INFO and defineBook to be theΣ-type that
encodes Pustejovksy’s qualia structure; as a conse-
quence,Book is a subtype of PHY • INFO. We fur-
ther definemasteredand picked upto be of type
INFO → Prop andPHY → Prop, respectively, and
further provide a tactic to enhance automation, the
details of which are out of the scope of this paper.
Lastly, the quantifierthree is defined.7

7Three is defined as follows: forall A of type CN and given
a predicateP :A → Prop, there exist three elements,x,y and
z, that are different, which are true ofP .

Load LibTactics.
Definition CN:=Set.
Parameter Man Human:CN.
Parameter John:Man.
Axiom mh:Man->Human.
Coercion mh:Man>->Human.
(* Phy dot Info *)
Parameter Phy Info : CN.
Record PhyInfo:CN:=mkPhyInfo{phy:>
Phy;info:>Info}.
(*Book as Sigma-type with PhyInfo &
BookQualia*)
Parameter Hold:Phy->Info->Prop.
Parameter R:PhyInfo->Prop.
Parameter W:Human->PhyInfo->Prop.
Record BookQualia (A:PhyInfo):Set:=
mkBookQualia {Formal:Hold A A;

Telic:R A;
Agent:exists
h:Human, W h A }.

Record Book:Set:=mkBook{Arg:>
PhyInfo;Qualia:BookQualia Arg}.
Ltac AUTO:=cbv delta;intuition;try
repeat congruence;jauto;intuition.
Parameter mastered:Human->Info->Prop.
Parameter picked_up:Human->Phy->Prop.
Unset Implicit Arguments.
Parameter AND: forall A:Type, forall
x y:A, sigT(fun a:A=>forall p:A->
Prop,p(a)->p(x) /\p(y)).
Definition and:= fun A:Type, fun x
y:A=>projT1(AND A x y).
Definition Three:=fun(A:CN)(P:A->
Prop)=>exists x:A,P x/\(exists y:A,
P y/\(exists z:A,P z/\x<>y/\y<>z/\
x<>z)).

With these in line, let us see whether the correct
predictions are being made with respect to individ-
uation criteria. What we need to capture is the fol-
lowing entailment:

(17) John picked up and mastered three books⇒
John picked up three books and John mastered
three books

Basically, what we need to be able to get is a sit-
uation where three distinct informational as well as

43

Formation Rule

Γ valid 〈〉 ` A : Type 〈〉 ` B : Type C(A) ∩ C(B) = ∅
Γ ` A • B : Type

Introduction Rule

Γ ` a : A Γ ` b : B Γ ` A • B : Type

Γ ` 〈a, b〉 : A • B

Elimination Rules
Γ ` c : A • B

Γ ` p1(c) : A

Γ ` c : A • B

Γ ` p2(c) : B

Computation Rules

Γ ` a : A Γ ` b : B Γ ` A • B : Type

Γ ` p1(〈a, b〉) = a : A

Γ ` a : A Γ ` b : B Γ ` A • B : Type

Γ ` p2(〈a, b〉) = b : B

Projections as Coercions

Γ ` A • B : Type

Γ ` A • B <p1 A : Type

Γ ` A • B : Type

Γ ` A • B <p2 B : Type

Coercion Propagation

Γ ` A • B : Type Γ ` A′ • B′ : Type Γ ` A <c1 A′ : Type Γ ` B = B′ : Type

Γ ` A • B <d1[c1] A′ • B′ : Type

whered1[c1](x) = 〈c1(p1(x)), p2(x)〉.

Γ ` A • B : Type Γ ` A′ • B′ : Type Γ ` A = A′ : Type Γ ` B <c2 B′ : Type

Γ ` A • B <d2[c2] A′ • B′ : Type

whered2[c2](x) = 〈p1(x), c2(p2(x))〉.

Γ ` A • B : Type Γ ` A′ • B′ : Type Γ ` A <c1 A′ : Type Γ ` B <c2 B′ : Type

Γ ` A • B <d[c1,c2] A′ • B′ : Type

whered[c1, c2](x) = 〈c1(p1(x)), c2(p2(x))〉.

Figure 1: The rules for dot-types.

44

physical objects are involved. We formulate this as
a theorem to be proven in Coq:

Theorem DT:(Three Book)(and(PhyInfo
->Prop)(picked_up John)(mastered
John))->(Three Book)(picked_up
John)/\(Three Book)(mastered John).

This can be proven in Coq.8 Indeed, what we
need with respect to examples like (22), as Gotham
(2012) mentions, is an interpretation were the two
objects are double distinct, both informationally and
physically. Gotham (2012) shows this in discussing
the account as proposed by (Asher, 2011), which
provides weaker semantics for this example. In
effect, Asher’s (2011) account predicts situations
where three informational and one physical object
are involved (or vice versa) to be possible. The idea
developed is roughly as follows: In every situation
like (22) the hearer has to option to choose between
the physical and the informational individuation cri-
terion. If the former is chosen, then a situation where
three physical objects but one informational object
are involved is possible. If the hearer chooses the
latter criterion, then a situation where three distinct
informational objects but only one physical object
is involved is possible. If this is true, one can in-
deed use (22) to refer to let us say one informa-
tional and three physical objects (or vice versa), then
the double-distinct judgments should be the result
of some pragmatic strengthening and thus should be
cancelable. This is however not the case as the ex-
amples below show (taken from Gotham, 2012):

(18) John picked up and mastered three books, but
he didn’t pick up three books.

(19) John picked up and mastered three books; in
fact, he picked up exactly one book.

(20) John picked up and mastered three books, but
he didn’t master three books.

(21) John picked up and mastered three books; in
fact, he mastered exactly one book.

Most interestingly, what we can further prove is
the entailment that from John picked up and mas-
tered three books, it follows that John picked up

8Those that wish to prove this on their own, the tactics
to prove both of the examples are:compute, intro, destruct
AND, case a with (ThreeBook),AUTO,AUTO.

three physical objects and mastered three informa-
tional objects. In Coq notation:

Theorem DT:(Three Book)(and(PhyInfo
->Prop)(picked_up John)(mastered
John))->(Three Phy)(picked_up John)
/\(Three Info)(mastered John).

This can be proven as well.9

It seems in this respect, that the account gives
the correct predictions as regards individuation cri-
teria and counting. This can be seen as an advan-
tage compared to approaches like Asher’s (2011),
which gives the correct results after some additional
assumptions on accommodation are made (which
really complicate the account), while they further
make it too permissive as to allow the following (see
(Gotham, 2014)):

(22) # Fred picked up and mastered a stone.

On the other hand, the claim made by (Gotham,
2014) that the dot-type account as this is given by
(Luo, 2010) cannot capture the facts, is shown to
be incorrect on the basis of what we have pre-
sented here. Gotham’s account predicts the cor-
rect results as well, but we believe at the expense
of additional complications (e.g. the introduction of
R − compressible pluralities), that the present ac-
count does not introduce.

Thus, the account proposed for dot-types is not
only formally sound but also gives the correct re-
sults with respect to counting and individuation cri-
teria without the need of additional machinery. We
take this to be a clear advantage over the other ac-
counts. On a more general level, it seems that using
the rich typing structures that MTTs have to offer,
provides us with considerable advantages over prob-
lematic issues in lexical semantics.

4 The Case ofnewspaper: a Proposal for
Linear Dot-types

Cases likebook or lunch, being subtypes of dot-
types, seem to have clear properties that are captured

9In order to prove this, one has to add an additional axiom
in Coq that deals with equalities under subtyping. In general,
whenX <c Y , we do not havex 6=X y =⇒ (x 6=Y y)
unlessc is injective. For the atomic types like Book and PHY,
the equality on a subtype coincides with that of the supertype
and so we can axiomatically assume this. See Appendix A for
the Coq code and some explanation.

45

with the existing formalization given for dot-types.
There is however a more problematic case, famously
exemplified by the wordnewspaper, which seem to
require a different, more restrictive treatment. First
of all, newspaperis associated with three rather than
two senses, i.e. institution (23), informational object
(24) and physical object (25) as the examples below
illustrate:10

(23) The newspaper was sued on moral grounds.

(24) He read the newspaper.

(25) He picked up the newspaper.

Now, when it comes to the use of two different
senses in the context of the same sentence, a num-
ber of strange restrictions appear. The physical ob-
ject sense can be used along with the informational
sense, in the same way as in the case ofbook, but the
organizational sense (newspaper as an institution)
cannot be used copredicatively with any of the other
two senses (examples from (Antunes and Chaves,
2003)):11

(26) # That newspaper is owned by a trust and is
covered with coffee.

(27) # The newspaper fired the reporter and fell off
the table.

10An anonymous reviewer asks whether there are other anal-
ogous cases with three-way polysemy. Words similar to news-
paper also exist, e.g.magazine, journal. Other cases with more
than two meaning are mentioned in (Retoré, 2014) but it is
not clear whether they constitute examples of a similar phe-
nomenon. For example, the case of Liverpool, mentioned in
(Retoré, 2014) as having the sensesPlace, TownandPeople. It
is not however clear whether the justification for these types is
well-founded. For example the senseTownandPeoplecould
be very well reduced into one sense. Unfortunately, this needs
discussion that we cannot perform in this paper. However, this
is an extremely important question and the range of examples
that are similar to newspaper should be investigated in order to
end up with a fuller classification of dot-types according totheir
properties.

11As an anonymous reviewer notes, all these examples in-
volve a conjunction of the organizational and the physical as-
pect. He further asks what happens in case we have a conjunc-
tion of the informational and the organizational aspect. These
cases are also infelicitous, e.g.# He mastered and sued the
newspaperor #That newspaper is owned by a trust and is very
badly written, so the pattern described in the paper is not vio-
lated.

(28) # John sued and ripped the newspaper.

Similar words with multiple senses that further in-
volve similar restrictions are also discussed in (Re-
toré, 2014). There, a multi-sorted higher order logic
is used12 and every word is associated with a kind
of basic type along with a number of coercions that
can coerce this basic type into additional types. So in
the case of book one gets the principal lambda-term
λx.const(x):v → t where v stands for event and
two optional lambda-terms,Id:v → v andfa:v → a
wherea stands for typeartifact, a subtype of physi-
cal objects. The optional terms are declared as rigid,
meaning that if one of the coercions is used, the
other one cannot and vice versa. For the case of
dot-types likebook the optional lambda terms are
dubbed as flexible, meaning that the coercions can
be used simultaneously. This is indeed an interest-
ing account. However, the exact nature of the rigid
and flexible coercions are not defined formally, and
it is rather unclear how such a specification can be
made. Furthermore, for cases likenewspaper, such
an approach will not work. This is because, in the
case of the coercion fromfa:a → i (artifact to in-
formational object), this has to be defined as both
rigid and flexible at the same time. Flexible, because
we want this to be possible with the physical sense,
while rigid because we want this not to be possi-
ble with the organizational sense. Furthermore, the
account is based on the idea that there is always a
principal lambda term. For example, in the case of
Bookthe physical sense is chosen. How is this sense
chosen is something that it is not explained. The
question of why the physical rather than the infor-
mational aspect is chosen as the principal sense is
something that is left unanswered.

The data with respect tonewspaperget further
complicated. As we have seen, the organizational
aspect cannot be used with any of the other two
aspects. However, this is not without exceptions.
There are cases this restriction seems to disappear,
allowing the organizational aspect to appear with
any of the two other senses:

12The meta-language for the system in (Retoré, 2014) is Gi-
rard’s system F rather than the simply typedλ-calculus as in
Church’s simple type theory (Church, 1940) as used by Mon-
tague.

46

(29) The newspaper you are reading is being sued
by Mia.

However, if one looks at the examples that allow
this kind of constructions, it seems that they are of
a specific kind. Most specifically all these cases
involve some kind of modification, e.g. a relative
clause as in the above example, or adjectival modifi-
cation as in (30):

(30) The most provocative newspaper of the year
has been sued by the government.

(31) The newspaper he just grabbed from the news-
stand is doing well in the stock market.

The pattern seems to be the following: the or-
ganizational aspect cannot be used with any of the
other two aspects, unless one aspect is taking part
in a modified CN construction. In case this happens
the organizational aspect can be used along the other
aspects. The account as proposed in (Pustejovsky,
1995) for newspapercannot deal with these phe-
nomenon and as far as we know, no formal account
has been proposed for these cases. This is what we
want to discuss here. The original account of dot-
types in (Luo, 2010) among others will face similar
problems. The dot-type INST • (PHY • INFO) will
suffer the problem of predicting examples (23)-(25)
to be ok contrary to fact. In what follows, we dis-
cuss a solution to this extent by proposing to treat
these cases by extending the dot-type system to fur-
ther include resource sensitive dot-types, i.e. linear
dot-types.

Linear Dot-types: a Tentative Proposal. It is
clear from what we see from the data that we are
dealing with a situation where the dot-type is re-
source sensitive, in the sense of linear logic (Girard,
1987) or Lambek calculus (Lambek, 1958). For ex-
ample, in linear logic, the rules of weakening and
contraction are not available and this has a num-
ber of consequences. One of them is that one is
has to use an assumption exactly once. An assump-
tion, once used, is not re-usable anymore. It seems
that this idea, is quite close to what we need for the

newspapercase.13 We need an additional version of
the dot-type, more specifically a linear version of the
dot-type. This version will be closed related to the
tenser product in linear logic and the usual dot-type,
one of the important feature being that if one of its
components has been used, the other one cannot be
used any more.

Let us represent this linear dot-type asA	B. We
can further have combinations of regular and linear
dot-types. In the case of newspaper what we need
is the type INST 	 (PHY • INFO). With this type,
we can take care of examples like (23) to (25) (these
are also taken care of with a regular dot-type), while
at the same time excluding examples (26-28) (that
would be predicted to be ok with a regular dot-type).

Note that the examples like (29) can be accounted
for without employing the linear version of dot-
types. For instance, the semantics of (29) can be
given assue(n) where n : Σ(Newpaper, read)
and sue : Inst → Prop, because we have
Σ(Newpaper, read) < Newspaper < INST •
(PHY • INFO) < INST. The question of course is
when do we use a linear dot-type and when a regular
dot-type. In order to solve this problem, one can use
local coercions, i.e. subtyping assumptions local-
ized in terms (or judgments), as proposed in (Luo,
2010; Luo, 2012b). Local coercions have been used
in (Luo, 2011) to deal with cases of homophony and
in (Asher and Luo, 2012) to give semantics of lin-
guistic coercions in sophisticated situations. Local
coercions are only effective locally for some terms
(expressions in type theory). They may be intro-
duced into terms by the following rule (intuitively,
the coercions declared locally are only effective in
the expressions in the scope of the keywordin):

Γ, A <c B ` J

Γ ` coercionA <c B in J

whereJ is any of the following four forms of judge-
ment:

k : K, k = k′ : K, K kind, and K = K ′.

For instance, withJ ≡ k : K, we have

Γ, A <c B ` k : K

Γ ` coercionA <c B in k : K

13This is based on the fact that in case the organizational as-
pect is used, no other aspect can be used any more within the
same context. This is a kind of resource sensitivity.

47

In the case of newspaper, what we
need is to consider two local coercions:
Newspaper < INST • (PHY • INFO) in inter-
preting the cases where the ordinary dot-type should
be used andNewspaper < INST 	 (PHY • INFO)
in interpreting the cases where the linear dot-type
should be used. For example, the following (32)
will give a correct interpretation of (29):

(32) coercion Newspaper < INST • (PHY •
INFO) in [[(29)]]

while the following would not be accepted:

(33) # coercion Newspaper < INST 	 (PHY •
INFO) in [[(26)]]

We believe that this gives a satisfactory account
of a problem that as far as we know has not received
a treatment up to now.14

However, it has to be kept in mind that we have
not formally treated the linear dot-typeA 	 B. One
of the reasons for this is that, in order to do this, we
need to formally study how to incorporate coercive
subtyping into a resource sensitive logical system.
Put in another way, one needs to study an MTT aug-
mented with resource sensitive contextual segments
and its coercive subtyping extension. We leave this
as future work.

5 Conclusion

We have discussed dot-types with respect to their
counting criteria and have shown that the MTT ac-
count proposed captures the fact correctly. The
proof-assistant Coq was used in order to verify that
the correct inferences are predicted. The account
was shown not only to produce the correct results
but to do so without resorting to serious extra com-
plications of the original account (actually none is

14Another solution that has been proposed to us by an anony-
mous reviewer, is the following: One basically assumes that
the organizational aspect is just a different lexical entry, in
effect as we understand it (even though the reviewer has not
phrased it in this way) a case of homonymy. We have thought
of this possibility. In case this idea is put forth within the
framework discussed in this paper, one will use the account
by (Luo, 2011) for cases of homonymy likebankwhere local
coercions are used to either useBank < Institution or the
Bank < Riverside sense. In the case of newspaper, we would
use eitherNewspaper < INST orNewspaper < PHY• INFO.

needed). Furthermore, the case ofnewspaperwas
discussed and a solution based on the introduction of
linear dot-types combined with local coercions was
provided. The issue of introducing linear dot-types
in a formal way presupposes a linear version of type
theory that at the moment we do not have. Thus, we
leave this issue as a subject of future research. A
related piece of work is that the second author has
recently developed Lambek dependent types (Luo,
2015), with the motivation of studying a uniform ba-
sis for NL analysis: from automated syntactic anal-
ysis to logical reasoning in proof assistants based on
MTT-semantics.

References

S. Antunes and R.P Chaves. On the licensing conditions
of co-predication. InProc of the 2th Inter. Workshop
on Generative Approaches to the Lexicon (GL 2007),
2003.

N. Asher. A type driven theory of predication with com-
plex types.Fundamenta Informaticae 84 (2), 151-183,
2012.

N. Asher. Lexical Meaning in Context: a Web of Words.
Cambridge University Press, 2012.

N. Asher and Z. Luo. Formalisation of coercions in lexi-
cal semantics.Sinn und Bedeutung 17, Paris, 2012.

Mark C Baker. Lexical categories: Verbs, nouns and
adjectives, volume 102. Cambridge University Press,
2003.

C. Bassac, B. Mery, and C. Retoré. Towards a type-
theoretical account of lexical semantics.Journal of
Logic, Language and Information, 19(2), 2010.

M.J. Beeson.Foundations of Constructive Mathematics.
Springer-Verlag, 1985.

E. Bishop. Foundations of Constructive Analysis.
McGraw-Hill, 1967.

S. Chatzikyriakidis. Adverbs in a modern type theory.
In N. Asher and S. Soloviev, editors,Proceedings of
LACL2014. LNCS 8535, pages 44–56, 2014.

S. Chatzikyriakidis and Z. Luo. An account of natu-
ral language coordination in type theory with coercive
subtyping. In Y. Parmentier and D. Duchier, editors,
Proc. of Constraint Solving and Language Processing
(CSLP12). LNCS 8114, pages 31–51, Orleans, 2012.

S. Chatzikyriakidis and Z. Luo. Adjectives in a modern
type-theoretical setting. In G. Morrill and J.M Neder-
hof, editors,Proceedings of Formal Grammar 2013.
LNCS 8036, pages 159–174, 2013.

S. Chatzikyriakidis and Z. Luo. Natural language reason-
ing using proof-assistant technology: Rich typing and
beyond. InProceedings of EACL2014, 2014.

48

S. Chatzikyriakidis and Z. Luo. Natural Language Infer-
ence in Coq.Journal of Logic, Language and Infor-
mation, 23(4):441–480, 2014.

A. Church. A formulation of the simple theory of types.
J. Symbolic Logic, 5(1), 1940.

R. Cooper. Type theory and semantics in flux. In
R. Kempson, T. Fernando and N. Asher, editors,Hand-
book of the Philosophy of Science. Elsevier, 2011.

The Coq Team.The Coq Proof Assistant Reference Man-
ual (Version 8.1), INRIA, 2007.

H.B. Curry and R. Feys.Combinatory Logic, volume 1.
North Holland Publishing Company, 1958.

P.T. Geach.Reference and Generality: An examination
of some Medieval and Modern Theories. Cornell Uni-
versity Press, 1962.

J.-Y. Girard. Linear logic. Theoret. Comput. Sci., 50,
1987.

G. Gonthier. A computer checked proof of the four
colour theorem, 2005.

Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves
Bertot, Cyril Cohen, François Garillot, Stéphane
Le Roux, Assia Mahboubi, Russell OConnor,
Sidi Ould Biha, et al. A machine-checked proof of the
odd order theorem. InInteractive Theorem Proving,
pages 163–179. Springer, 2013.

Gotham, M.: Numeric quantification in copredication.
UCL Working Papers in Linguistics pp. 1–20 (2012)

M. Gotham.Copredication, quantification and individu-
ationy. PhD thesis, University College London, 2014.

W. A. Howard. The formulae-as-types notion of con-
struction. In J. Hindley and J. Seldin, editors,To H.
B. Curry: Essays on Combinatory Logic. Academic
Press, 1980.

J. Lambek. The mathematics of sentence structure.The
American Mathematical Monthly, 65(3), 1958.

X. Leroy. The compcert c verified com-
piler: Documentation and users manual.
http://compcert.inria.fr/man/manual.pdf, 2013.

Z. Luo. Computation and Reasoning: A Type Theory for
Computer Science. Oxford University Press, 1994.

Z. Luo. Coercive subtyping.Journal of Logic and Com-
putation, 9(1):105–130, 1999.

Z. Luo. Type-theoretical semantics with coercive subtyp-
ing. Semantics and Linguistic Theory 20 (SALT20),
Vancouver, 2010.

Z. Luo. Contextual analysis of word meanings in type-
theoretical semantics.Logical Aspects of Computa-
tional Linguistics (LACL’2011). LNAI 6736, 2011.

Z. Luo. Common nouns as types. In D. Bechet and
A. Dikovsky, editors,Logical Aspects of Computa-
tional Linguistics (LACL’2012). LNCS 7351, 2012.

Z. Luo. Formal semantics in modern type theories
with coercive subtyping.Linguistics and Philosophy,
35(6):491–513, 2012.

Z. Luo. Formal Semantics in Modern Type Theories: Is
It Model-theoretic, Proof-theoretic, or Both?Invited
talk at Logical Aspects of Computational Linguistics
2014 (LACL 2014), Toulouse. LNCS 8535, pages 177–
188, 2014.

Z. Luo. A Lambek calculus with dependent types.Types
for Proofs and Programs (TYPES 2015), Tallinn, 2015.

Z. Luo, S. Soloviev, and T. Xue. Coercive subtyping:
theory and implementation.Information and Compu-
tation, 223:18–42, 2012.

P. Martin-Löf. An intuitionistic theory of types: pred-
icative part. In H.Rose and J.C.Shepherdson, editors,
Logic Colloquium’73, 1975.

P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis,
1984.

R. Montague.Formal Philosophy. Yale University Press,
1974. Collected papers edited by R. Thomason.

B. Nordström, K. Petersson, and J. Smith.Programming
in Martin-Löf’s Type Theory: An Introduction. Oxford
University Press, 1990.

J. Pustejovsky.The Generative Lexicon. MIT, 1995.
A. Ranta. Type-Theoretical Grammar. Oxford Univer-

sity Press, 1994.
C. Retore. The montagovian generative lexicon Tyn: a

type theoretical framework for natural language se-
mantics. In R. Matthes and A. Schubert, editors,Proc
of TYPES2013, 2013.

G. Sundholm. Proof theory and meaning. In D. Gabbay
and F. Guenthner, editors,Handbook of Philosophical
Logic III: Alternatives to Classical Logic, pages 471–
506. Reidel, 1986.

G. Sundholm. Constructive generalized quantifiers.Syn-
these, 79(1):1–12, 1989.

T. Xue and Z. Luo. Dot-types and their implementation.
Logical Aspects of Computational Linguistics (LACL
2012). LNCS 7351, 2012.

A Some notes on a Coq proof

In order to prove:

Theorem DT:(Three Book)(and(PhyInfo
->Prop)(picked_up John)(mastered
John))->(Three Phy)(picked_up John)
/\(Three Info)(mastered John)

We first need to introduce the axiom in order to
deal with the subtyping equality problem. We intro-
duce this in a new local context:

Section Book.
Variable PHY:forall x:Book, forall
y:Book, not(x=y:>Book)-> not(x=y:>Phy).
Variable INFO:forall x:Book, forall
y:Book, not(x=y:>Book)-> not(x=y:>Info).

49

We show the proof of:

Theorem DT:(Three Book)(and(PhyInfo
->Prop)(picked_up John)(mastered
John))->(Three Phy)(picked_up John)

We use the following:

compute.intro.destruct AND1.case a with
(Three Book). AUTO. AUTO.destruct H0.
destruct H0.destruct H2.destruct H2.
destruct H3.destruct H3.destruct H4.
destruct H5.exists x0.AUTO.exists x1.
AUTO.

The interested reader can check for him-
self/herself for the other cases.

50

Proceedings of the 14th Meeting on the Mathematics of Language (MoL 14), pages 51–61,
Chicago, USA, July 25–26, 2015. c©2015 Association for Computational Linguistics

Lexical Semantics and Model Theory: Together at Last?

András Kornai
HAS Institute of Computer Science and Automation

11-13 Kende utca
H-1111 Budapest, Hungary
andras@kornai.com

Marcus Kracht
Bielefeld University
Postfach 10 01 31

33501 Bielefeld, Germany
marcus.kracht@uni-bielefeld.de

Abstract

We discuss the model theory of two popular
approaches to lexical semantics and their rela-
tion to transcendental logic.

1 Introduction

Recent advances in formal and computational lin-
guistics have brought forth two classes of theories,
algebraic conceptual representation (ACR) and con-
tinuous vector space (CVS) models. Together with
Montague grammar (MG) and its lineal descendants
(Discourse Representation Theory, Dynamic Predi-
cate Logic, etc.) we now have three broad families
of semantic theories competing in the same space.
MG and related theories fit well with most versions
of transformational and post-transformational gram-
mar and retain a strong presence in theoretical lin-
guistics, but have long been abandoned in computa-
tional work as too brittle (Landsbergen, 1982). As
we have argued elsewhere, MG-like theories fail not
just as performance grammar but, perhaps more sur-
prisingly, on competence grounds as well (Kornai et
al., 2015). Nevertheless, MG will be our starting
point, as it is familiar to virtually all linguists.

From an abstract point of view we should dis-
tinguish between a framework for compositional-
ity and a commitment to a particular brand of se-
mantics. While we still want to uphold the idea
of compositionality, we are less enthusiastic about
the dominance of standard first order models, even
if suitably intensionalized, in explaining or repre-
senting meanings. Luckily, other choices can be

made, though they come with a different concep-
tion of meaning. The main difference between ACR,
CVS, and the standard MG treatment is in fact the
choice of model structures: both ACR and CVS
aim at modeling ‘concepts in the head’ rather than
‘things in the world’, and thus clash strongly with
the ostensive anti-psychologism of MG. How can
we make sense of such theories after Lewis (1970)
without being attacked for promulgating yet another
version of markerese? The answer proposed in this
paper is that we divest model theory from the nar-
row meaning it has acquired in linguistics, as being
about formulas in some first- or higher-order calcu-
lus, and interpret natural language expressions ei-
ther directly in the models, the original approach
of Montague (1970a), or through some convenient
knowledge representation language, still composed
of formulas, but without the standard logical bag-
gage. The main novelty is that the formulas them-
selves will be very close to the models, though not
quite like in Herbrand models for reasons that will
become clear as we develop the theory.

Section 2 provides a brief justification for the en-
terprise, and sketches as much of ACR and CVS as
we will need for Section 3, where essential proper-
ties of their models are discussed. Our focus will
be on CVS, and we shall discuss the challenge of
compositionality, which appears to be nontrivial for
CVSs. ACR graphs are simple discrete structures,
very attractive for representing meaning (indeed,
they have a long history in Knowledge Representa-
tion), but more clumsy for syntax. CVS representa-
tions, finite dimensional vectors over R, are primar-
ily about distribution (syntactic cooccurrence), and

51

meaning, especially the linear structures that encode
analogy such as king:queen = man:woman will arise
in them chiefly as a result of probabilistic regulari-
ties (Arora et al., 2015). We take the view that CVS
models ‘concepts in the head’ and to understand how
these can be similar across speakers we need to in-
voke ‘concepts in the world’ as described by ACR.
Section 4 discusses the challenge posed by chang-
ing to mentalist semantics. If meanings are in the
head, we are losing, or so it appears, the objectivity
of meanings. However, we think that this is not so.
Instead, our working hypothesis of this paper is what
we call ‘One Reality’: meanings describe a common
reality so that anything that is true of the world must
be compatible with anything else that is true. The
section explores some immediate consequences of
this hypothesis. We close with some speculative re-
marks in Section 5.

2 Out with the old, in with the new

Classical MG (Montague, 1970b; Montague, 1973)
provides a translation from expressions of natural
language into (higher order) predicate logic. Pred-
icate logic itself is just a technical device, a lan-
guage, to represent the actual meanings, which are
thought to reside in models. Thus, already at the
inception, formal semantics differentiated two kinds
of “semantics”: the abstract level, consisting of lin-
guistic objects (here: expressions of simple type the-
ory), and the concrete level, represented by a model.
In what is to follow we shall investigate the effects
of making two changes. One is to replace the simple
type theory by radically different kinds of semantics,
and the second to uphold the idea that the semantics
is not just about some model, but about reality, and
as such cannot be arbitrarily fixed.

Let us briefly recall how a Montague-style seman-
tics looks like. Following (Kracht, 2011), a gram-
mar consists of a finite signature (F,Ω) of function
symbols (Ω : F → N assigns an arity to the sym-
bols), together with an interpretation that interprets
each function symbol f as an Ω(f)-ary function on
the space of signs, (see also Hodges 2001). Further
down we shall meet only two kinds of functions:
constants, where Ω(f) = 0, representing the lex-
icon, and binary functions (Ω(f) = 2), represent-
ing syntax proper.) We may take as signs either

pairs (w,m), where w is a word over the alphabet
and m its meaning; or we may take them as triples
(w, c,m), where c is an additional component, the
category (Kracht, 2003). In the best of all cases,
the action of f on the signs is independent in each
of the components. The independence of the string
action from the meanings is exactly Chomsky’s fa-
mous principle of the autonomy of syntax while the
independence of the meaning action from the words
is the principle of compositionality. If these are
granted, each function symbol f then gives rise to a
pair of functions (f ε, fµ), where f ε is an Ω(f)-ary
function on strings and fµ an Ω(f)-ary function on
meanings. Further, given any constant term t over
this signature, “unfolding” (the homomorphic oper-
ation denoted by ♠) it into a sign means

(f(t1, t2))
♠ = (f ε(t♠1 , t

♠
2), fµ(t♠1 , f

♠
2))

and for 0-ary f , simply f♠() = (f ε(), fµ()). Omit-
ting obvious brackets this is simply f♠ = (f ε, fµ).
A constant therefore is defined by its two compo-
nents, the string (f ε) and the meaning (fµ).

Effectively, we can now view not only the terms
as elements of an algebra (called the term algebra),
but also the strings together with the functions f ε

(f ∈ F), and the meanings together with the func-
tions fµ (f ∈ F). Expressions and meanings thus
become algebras, and there are then two homomor-
phisms from the algebra of terms: one to the alge-
bra of strings and another to the algebra of mean-
ings. Both algebras may have additional functions,
of course. This will play a role in the case of CVS
models which have the structure of a vector space,
whose natural operations enter into the definition of
the functions.

When we say ‘out with the old’ we will not dwell
much on the inadequacies of the standard MG treat-
ment, except to summarize some of the well known
issues. Technical inadequacies, ranging from nar-
row issues of proposing invalid readings and miss-
ing valid ones to more far-reaching problems as pro-
vided e.g. by hyperintensionals (Pollard, 2008) are
not viewed as fatal – to the contrary, these provide
the impetus for further developments. A more gen-
eral, systemic issue however is the chronic lack of
coverage. The problem is not so much that the pio-
neering examples from Every man loves a woman
such that she loves him to John seeks a unicorn

52

and Mary seeks it could hardly be regarded exam-
ples of ordinary language as the alarming lack of
progress in this regard – forty years have passed,
and best of breed implementations such as CatLog
(Morrill, 2011) and grammar fragments such as Ja-
cobson (2014) still cover only a few dozen construc-
tions. An equally deep, and perhaps even more crit-
ical, problem is the continuing disregard for infor-
mation. No matter how we look at it, well over 80%
of the information carried by sentences comes from
the lexicon, with only 10-15% coming from com-
positional structure (Kornai, 2010). By putting lexi-
cal semantics front and center, we will address both
these issues.

One of the biggest challenges for MG is the dis-
ambiguation. In the standard picture, readings cor-
respond to parse terms. Thus, a stringw has as many
readings as there are parse terms t such that tε = w.
Unfortunately, scholars in the MG tradition have
spent little effort on building grammatical models of
natural language that could serve as a starting point
of disambiguation in the sense Montague urged, and
the disambiguation in terms of parse terms is more
a promissory note than an actual algorithm. This
is particularly clear as we come to effects of con-
textuality, restated from Frege by Janssen (2001) as
follows: ‘Never ask for the meaning of a word in
isolation, but only in the context of a sentence’.

In other words, what a particular word means in
a sentence can be determined only by looking at the
context, since the context selects a particular read-
ing. The standard MG picture handles lexical am-
biguity by invoking separate lexical entries (that is,
0-ary function symbols) for each sense a word may
have, e.g. for pen1 ‘writing instrument’ and pen2
‘enclosed area for children or cattle’. When we say
The box is in the pen we clearly have pen2 in mind,
and when we say The pen is in the box it is pen1.
Strict adherence to MG orthodoxy demands that we
bite the bullet and claim that the false readings are
actually wonderful to have, since a smaller playpen
could really be delivered in a box, and even for a
large cattle pen an artist like Christo could always
come by and box up the entire thing. Yet some-
how the claim rings false, both from a cognitive
standpoint, since the odd readings do not even en-
ter our mind when we hear the sentence unless we
are specifically primed, and from the computational

standpoint, since it is common knowledge (at least
since Bar-Hillel (1960) where the box/pen example
originates) that the bulk of the effort e.g. in machine
translation is to disambiguate the word meanings.
According to Bar-Hillel, the average English word is
3-way ambiguous, so a sentence of length 15 will re-
quire over 14 million disambiguated options. How-
ever much our computational resources have grown
since 1960, and they have actually grown more than
14 million-fold, this is still unrealistic.

Another part of the theory that remained, for the
past forty years, largely unspecified, is the mapping
g that would ground elements of the mathematical
model structure in reality (as opposed to the ‘valu-
ation’ that is built into the model structure). For a
mathematical theory, such as the theory of groups,
there is no need for g as such in that there are no
groups “in the world”. All objects in mathematics
that have group structure (e.g. the symmetries of
some geometrical figure) can be built directly from
sets (since a symmetry is a function, and functions
are sets), so restricting attention to model structures
that are sets is entirely sufficient for doing mathe-
matics. Here we must give some thought to what
we consider ‘ground truth’, a notion that is already
problematic for proper names without referents such
as Zeus.

The abstract structure outlined above does not re-
quire the meanings to be anything in particular. All
that is required is that we come up with an algebra
of meanings into which the terms can be mapped so
that certain equations, the meaning postulates, come
out true. Our exercise consists therefore in throw-
ing out the old semantics and bringing in the new,
here CVS and ACR, and see where this leads us.
When we say ‘in with the new’ this is something
of an exaggeration – both ACR and CVS theories
go back to the late 1960s and early 1970s, and are
thus as old as MG, except both suffered a long hiatus
during the ‘AI Winter’. Algebraic conceptual rep-
resentation (ACR) begins with Quillian (1969) and
Schank (1972), who put the emphasis on associa-
tions (graph edges) between concepts (graph nodes).
Quillian only used one kind of (directed) edge, while
Schank used several – the ensuing proliferation of
link types is famously criticized in Woods (1975).
For a summary of the early work see Findler (1979),
for modern treatments see Sowa (2000), Banarescu

53

et al. (2013).
Continuous vector space (CVS) representation

was first developed by (Osgood et al., 1975), whose
interest is also with association between concepts,
which they directly measured by asking informants
to rate the strength of the association on a 7-point
scale. From such data, Osgood and his cowork-
ers proceeded by data reduction via principal com-
ponent analysis (PCA), obtaining vectors that were
viewed as directions in semantic space. In the mod-
ern version, which has taken computational linguis-
tics by storm in the past five years, the associations
are mined from cooccurrence data in large corpora
(Schütze, 1993), but data reduction by PCA or sim-
ilar techniques is still a central part of establishing
the mapping from the vocabulary V to Rn.

Importantly, both ACR and CVS are essentially
type free. They assume that the representation of the
whole utterance is not any different from the repre-
sentation of the constituents, down to the lexical en-
tries: in ACR every meaning is a graph, and in CVS
a vector. As said above, there are two types of func-
tion symbols. Those of arity 0 constitute the con-
ceptual dictionary. The remaining function symbols
are of arity 2. On the string side they are interpreted
as concatenation, giving rise to a CFG. For ACR,
the meanings of the parts are combined by ordinary
substitution operations, graph rewriting and adjunc-
tion. For CVS, several combination operations have
been proposed, including vector addition (Mitchell
and Lapata, 2008), coordinatewise (weighted) mul-
tiplication (Dinu and Lapata, 2010), function appli-
cation (Coecke et al., 2010) and substitution into re-
current neural nets (Socher et al., 2013). For a sum-
mary, see Baroni (2013). Here we will use ⊗ to de-
note any composition operation, as tensorial prod-
ucts have long been suggested in this area (Smolen-
sky, 1990).

A key point is that ⊗ itself may be parametrized,
more similar to the ‘type-driven’ versions of MG
(Klein and Sag, 1985) than to the classic variant
which has a single composition operation, function
application. Berkeley Construction Grammar (CxG,
see Goldberg 1995) has long urged a full theory of
constructional meanings, and Kracht (2011) makes
clear that languages must employ many, many sim-
ple constructions, if as above compositionality and
autonomy of syntax are assumed.

3 The structure of CVS and ACR model
structures

Recall that the functions f ε and fµ (f ∈ F) impose
an algebraic structure both on the set of exponents
and the set of meanings, respectively. There may be
additional structure on the meanings, which we may
take advantage of. For example, if meanings are
vectors, we additionally have scalar multiplication
and addition, which can be used in calculations, but
which also have their own semantic relevance. In-
deed, it has been observed by Mikolov et al. (2013)
that in an analogy a : b = c : d we can calculate vd
approximately as va− vb + vc. Or, what is the same,
we expect va − vb = vc − vd.

The currently best performing Context Vector
Grammar (CVG, see Socher et al. 2013) uses what
looks like a single binary function ⊗, however it is
parametrized by part of speech. CVGs work on or-
dered pairs (~v,X) where ~v contributes the seman-
tics, and X is some part of speech category (in-
cluding nonterminals such as NP). In our notation
(~v,X) combines with (~w, Y) by two square ma-
trices LXY , RXY and a bias ~bXY that depend on
X and Y (but not on ~v or ~w) to yield ~v ⊗ ~w =
tanh(L~v + R~w +~b) (dropping the parts of speech)
where the squishing function tanh is applied coor-
dinatewise.

Since tanh is strictly monotonic, we have x = y
iff tanh(x) = tanh(y), so the last step of squishing
can be ignored in the kind of equational deduction
that we will deal with. As an example, consider the
gram3-comparative task. It is an accident of
English that comparative is sometimes denoted by
the suffix -er and sometimes by the prefix more writ-
ten as a separate word. Ideally, the semantics should
support equations such as

~big ⊗ ~er − ~nice⊗ ~er = ~big − ~nice (1)

or, equivalently,

tanh(L ~big+R~er+~b)−tanh(L ~nice+R~er+~b) =
~big − ~nice

In reality both the matrix and the vector coefficients
are small enough for tanh(x) = x to be a reasonable
approximation, so we have

L ~big − L ~nice = ~big − ~nice (2)

54

or, what is the same, (L − I)(~big − ~nice) = 0 not
just for big and nice but for every pair of adjective
vectors ~u,~v. This is possible only if 〈A〉, the sub-
space generated by the adjectives, is contained in
Ker(L − I). Since L does not even need to be de-
fined outside 〈A〉, and must coincide with I within
〈A〉, the simplest assumption is L = I everywhere.
Now, R and b are fixed for the comparative task, so
R~er+~b is some constant vector ~c on 〈A〉, so that we
finally get

∀~x ∈ 〈A〉 : ~x⊗ ~er = ~x+ ~c (3)

and obviously if (3) holds the analogical require-
ment in (1) is satisfied. The same argument can be
made (with different constant ~c) for every deriva-
tional and inflexional suffix such as the -ly of
the gram1-adjective-to-adverb or the -ing
of the gram5-present-participle Google
task. Further, the same must hold for every case
where a fixed formative is used to derive a higher
constituent, such as PP[from] from a base NP and
a prefix from, or NP from a base N and the prefix
the. Remarkably, just as PP[from] can differ from
PP[by] only by a fixed offset, the difference between
the constant for from and that for by, NP[every] and
NP[some] can also differ only in a fixed offset irre-
spective of what the base N was.

This shows how analogies can help in identify-
ing the functions for certain derivations. However,
more can be achieved. Consider the case of two
synonymous expressions e and e′. Retracing their
respective parses, assuming that the result vectors
are the same we derive further constraints. Con-
sider the mayor’s hat and the hat of the mayor which
should get the same vector assigned compositionally
through two different routes. If ~m and ~h are the vec-
tors for mayor and hat, we have some ~m + ~c1 for
the mayor and ~h + ~c1 for the hat. If the ’s posses-
sive construction is defined by matrices L1, R1 and
bias ~b1, and the of-possessive by L2, R2, ~b2, the fact
that these mean the same will be expressed, again
ignoring the squishing, by

L1(~m+ ~c1) +R1
~h+ ~b1

= L2(~h+ ~c1) +R2(~m+ ~c1) + ~b2 (4)

By collecting like terms together, this means

(L1 −R2)~m+ (R1 − L2)~h+ ~c4 = ~0 (5)

for some constant ~c4 and for all noun vectors ~m,~h.
This of course requires L1 = R2, L2 = R1 and
~c4 = 0, meaning that the two constructions differ
only in the order they take the possessor and pos-
sessed arguments. Also, if instead of ((the hat) of
(the mayor)) we had chosen the structure (the (hat
of (the mayor))) the matrices would be the same.

To summarize, all productive derivational and in-
flectional processes will have the output differ from
the input by some constant ~c that depends only on
the construction in question, and the same goes for
all ‘syntactic’ processes such as forming a PP or NP
whose output differs from its input only by the ad-
dition of some fixed grammatical formative, includ-
ing the formation of modal verb complexes (must
go, will eat, . . .) by a fixed auxiliary. Note that
such processes crosslinguistically often end up in the
morphology, cf. Romanian -ul ‘the’ or Hungarian
-val/vel ‘with’.

An important consequence of what we said so
far is that the effects of fixed formatives, be they
attached morphologically or by a supporting clitic
or full word, are commutative. This explains how
even closely related languages like Finnish and Hun-
garian can have different conventional suffix orders
(e.g. between case endings and possessive endings),
as it takes no effort to rejigger the semantics with
a change of inflection order. Also, a good number
of bracketing paradoxes (Williams, 1981; Spencer,
1988) simply disappear: in light of commutative se-
mantics brackets are not at all called for, and the
‘paradox’ is simply a by-product of an overly de-
tailed (context free) descriptive technique.

The less productive a process, the less compelling
the argument we made above, since it depends on
some identity holding not just for a handful of vec-
tors but for an entire subspace generated by the part
of speech class of the input. For example the mor-
phologically still perceptible relatedness of latinate
prefixes and stems (Aronoff, 1976) as in commit, re-
mit, permit, submit, compel, repel, impel, confer, re-
fer, infer, . . . will hardly allow for computing sep-
arate vectors for con-, re-, . . . on the one hand and
pel, mit, sume, fer, ceive, . . . on the other as we have

55

too many unknowns for too few equations. Or con-
sider bath:bathe, sheath:sheathe, wreath:wreathe,
teeth:teethe, safe:save, strife:strive, thief:thieve,
grief:grieve, half:halve, shelf:shelve, serf:serve, ad-
vice:advise, . . . where the relationship between the
noun and the verb is quite transparent, yet the set on
which the rule applies is almost lost among the much
larger set of nouns that can be ‘verbed’ by zero af-
fixation or stress shift alone.

This is not to say that suppletive forms, such as
found in irregular plurals or strong verbs are out-
side the scope of our finding, for clearly if plu-
ral formation is the addition of a single fixed ~c
in all regular cases, ~horses = ~horse + ~c, we
must also have ~oxen = ~ox + ~c since the anal-
ogy horse:horses=ox:oxen is intact. But given their
paucity, derivational forms may still be sensitive to
order of affixation, so that something like the Mirror
Principle (Baker, 1985) may still make sense.

Looking at the 882L andRmatrices (25 by 25 di-
mensions) in the CVG instance available as part of
the Stanford Dependency Parser, we note that over
half (55% for L, 53% for R) of the variance in this
set is explained by the first 25 eigenmatrices, so the
structure is likely considerably simpler than the full
CVG model allows for. We tested this hypothesis
by grammars CVG(k) constructed from the Socher
et al. (2013) CVG(882) by replacing all 882 L and
R matrices by approximations based on the first k
eigenmatrices (middle column of Table 1). The case
k = 1 corresponds to the earlier RNN (Socher et al.,
2011) with a single global ⊗, and gets only 81.0%
on the WSJ task. As we increase the number of co-
efficients kept, we obtain results closer and closer to
the original CVG(882): at k = 100 we are already
within 1% of the full result.

k no I I first
1 81.02
5 82.85 84.59

25 86.88 89.32
50 88.50 90.07

100 89.47 90.24
200 90.08 90.32
882 90.36 90.36

Table 1 Parsing performance as a function of the
number of coefficients kept in ⊗ definitions

As Socher et al. (2013) already observe, the diagonal

of the L (resp. R) matrix is dominant for left- (resp.
right-)headed endocentric constructions, so we also
experimented with keeping only k − 1 of the eigen-
matrices and replacing the kth by I before finding
the best approximations (right column of Table 1).
With this choice of basis, the phenomenon is even
more marked: it is sufficient to keep the top 24 (plus
the coefficient for I) to get within 1% of the original
result.

By limiting k we can limit the actual information
content of ⊗, which would otherwise grow quadrat-
ically in d. Given that the 882 matrix pairs were
already abstracted on the basis of sizeable corpora
(63m words from the Reuters newswire, see Turian
et al. 2010), direct numerical investigation of the
882⊗ operators to detect this simpler structure faces
stability issues. In fact, it is next to impossible to
guess, based strictly on an inspection of the eigen-
matrices, that replacing the least one by I would
be advantageous – for this we need to have a more
model-based strategy, to which we now turn.

We speak about distributions in two main senses:
discrete (class-level) and continuous (item-level).
The distinction is reflected in the notation of gen-
erative grammar as between preterminals and termi-
nals, and in the practice of language modeling as be-
tween states and emissions of Hidden Markov Mod-
els (HMMs). In generative grammar, the class-level
distribution is typically conceived of in 0-1 terms:
either a string of preterminals is part of the language
or it is not – weighted grammars that make finer dis-
tinctions only became popular in the 1980s, decades
after the original work on constituency (Wells, 1947;
Harris, 1951; Chomsky, 1957). The standard (un-
weighted) grammar already captures significant gen-
eralizations such that A+N (adjective followed by
noun) is very likely in English, while N+A is more
likely in French. However, as (Harris, 1951) already
notes,

All elements in a language can be grouped
into classes whose relative occurrence can
be stated exactly. However, for the oc-
currence of a particular member of one
class relative to a particular member of an-
other class, it would be necessary to speak
in terms of probability, based on the fre-
quency of that occurrence in a sample.

56

Retrofitting generative rules such as N → AN
achieves very little, in that it is not clear which ad-
jective will go with which noun. As (Kornai, 2011)
noted, HMM transition probabilities tend to stay in a
relatively narrow range of 10−4−10−1 (the low val-
ues typically coming from smoothing) while emis-
sions can span 8-9 orders of magnitude – this is pre-
cisely why n-gram HMMs remain a viable alterna-
tive to PCFGs to this day. CVS models capture a
great deal of the distributional nuances because the
vectors encode not just an estimate of unigram prob-
abilities

log(p(w)) =
1

2d
||~w||2 − logZ ± o(1) (6)

but also a cooccurrence estimate

log p(w,w′) =
1

2d
||~w+ ~w′||2−2 logZ±o(1) (7)

for some fixed Z (Arora et al., 2015). For unigrams,
the GloVe dictionary (Pennington et al., 2014) actu-
ally shows a Pearson correlation of 0.393 with the
Google 1T frequencies and 0.395 with the BNC.
While these are not bad numbers, (especially con-
sidering that G1T and BNC only correlate to 0.882),
clearly a lot more need to be done before (7) be-
comes realistic. Table 2 shows some frequent, rare,
and nonexistent A+N combinations together with
their Google 1T frequency; the right-hand side of
eq. (7); the scalar product of the GloVe word vec-
tors; and their cosine angles.

A-N pair freq (6) rhs 〈, 〉 cos

popular series 95k -3.153 13.95 0.39
popular guidance 127 -3.158 2.80 0.08
popular extent 0 -3.175 6.78 0.23
rapid development 299k -3.137 20.40 0.50
rapid place 182 -3.165 7.88 0.25
rapid percent 0 -3.115 11.30 0.24
private student 134k -3.121 16.79 0.37
rare student 989 -3.133 5.30 0.13
cold student 0 -3.121 4.58 0.10

Table 2 Cooccurrence predictors for frequent, rare,
and nonexistent adjective+noun combinations

Evidently, GloVe captures a great deal of the dis-
tribution, clearly ranking the frequent above the

rare/nonexistent both in unnormalized (scalar prod-
uct) and normalized (cosine) terms, while (7) largely
obscures this. All of these predictors fare badly
when it comes to comparing rare to nonexistent
forms. (Of course Google 1T ‘nonexistence’ only
means ‘below the cutoff’ but here this is as good
as nonexistence since such pairs don’t participate in
the training.) It is reasonable to conclude that em-
beddings model the high- to mid-range of the distri-
bution quite well, but fail on very rare data, which
call for a corrective term in the Arora et al. estimate
in Eq. (7).

Remarkably, word similarity measures based on
definitional similarity do nearly as well on semantic
world similarity tasks as those based on distributions
(Recski and Ács, 2015). These definitions, common
to ACR models, manifest no distributional similarity
between definiendum and definiens, compare rascal
to a child who behaves badly but whom you still like.
Yet when we compare rascal to imp ‘a child who be-
haves badly, but in a way that is funny’ the similarity
becomes evident: both rascal and imp are defined as
‘children behaving badly’. There are many idiosyn-
cratic traits to these words, for example both little
rascal and little imp are plausible, but ??old imp is
not, even though old rascal is. More often than not,
these differences in distribution have to do with acci-
dents of history rather than any semantic difference
to speak of – this is especially clear on the case of
exact synonyms like twelve and dozen.

Here we simply assume that observable distribu-
tion is the result of two factors: pure syntax, as ex-
pressed by the system of lexical (part of speech) cat-
egories such as N, and their projections such as NP,
and pure semantics, expressed by their conceptual
representations. The manner these two factors com-
bine is not transparent, we hope to address the issue
in a follow-on paper.

4 One Reality

Let us return to the question posed above concern-
ing ‘real’ meanings: the challenge is not so much
to encode meanings into some clever abstract lan-
guage but to actually account for their successful use
in conversation. If we believe in a common reality
about which we talk to each other, meanings have
to have a property that allows them to be merged in

57

a particular way: anything that is true of the world
must be compatible with anything else that is true.
Yet, reality is not given to us in one fell swoop but
rather needs to be explored. Despite the fact that we
think of the one real model as the justification of our
way of talking, we can only hypostatise its existence
and take it from there. The constructed models of re-
ality must form a family of models each approaching
the single one. This can be explored in two ways.
One way is to insist that any language – even an ab-
stract one – is already equipped with a realist inter-
pretation, and that leads to what is known as Robin-
son Consistency and the so-called Joint Embedding
Property. The second approach considers only the
constructed models as given and constructs reality
out of them. This leads us to inverse systems of
models, or dually, direct systems of algebras.

The models of choice, we argue here, are ACR
representations, in essence graphs with colored
edges. Some additional markup may be neces-
sary on the nodes (to govern the loci of substi-
tution/adjunction operations) and some additional
constraints (in particular limiting out-degrees) may
hold, but on the whole such structures are well un-
derstood. CVS models may stand in various rela-
tions to one another, in a manner far more complex
than the alternative relations familiar from Kripke-
style models. For example, embeddings Ip and Iq
created from the same raw data by PCA but keeping
a different number of dimensions p < q are in an
extension of relation which we can state directly on
the corresponding models as Mp < Mq where <
means ‘can be embedded in’.

In ACR, there are many cases when one model
structure can be embedded in the other, central
among these being the case of the smaller struc-
ture simply containing fewer existents than the larger
one. (The term ‘existent’ is a bit awkward, but helps
to avoid non-Meinongian ontological commitments:
in a model whose base elements are graphs or vec-
tors corresponding to mountain and gold, I(gold)⊗
I(mountain) is an ‘existent’.) Moreover, if K,L
are isomorphic substructures of M, the isomorphy
between K and L can be extended to an automor-
phism ofM, making model structures homogeneous
in the sense of Fraı̈ssé (1954).

For the graph structures to actually be models they
must satisfy certain requirements. The requirements

are sine qua non because the models are models of
something, namely, in first approximation, external
reality. If models are about external reality then it
follows that there can be only one. As such how-
ever it is not to be found in anyone’s head. Instead,
we picture the acquisition of the model structure as
a process that walks through a number of smaller
model structures, expanding them as new informa-
tion comes in. The process of expansion by neces-
sity produces substructures of one bigger structure.
Thus, the classes of model structures must satisfy
what is known as the amalgamation property that for
eachK,L,M where we have k and l embeddings of
M into K and L respectively, we have some N and
embeddings k′ and l′ of K and L into N such that
the following diagram commutes:

N

K

k′
>>

L

l′
``

M
k

``

l

>>

On the logical side we expect a joint consistency
in the spirit of Robinson’ theorem: if T1 and T2 are
two theories such that the intersection is consistent
and there is no formula ϕ such that T1 ` ϕ while
T2 ` ¬ϕ, then T1 ∪ T2 is consistent. Assuming that
the world is consistent, we expect this behaviour.
Let U be the intersection of T1 and T2. Suppose
our database is U . Then after some steps of learning
we may end up in T1 or in T2. However, both states
cannot be in conflict by deriving one of them a for-
mula and the other its negation. So, they are jointly
consistent.

This property makes perfect sense for lexical entries,
where extending a model M with new entries to
build K or L can be amalgamated to produce N .
What this means, in naive terms, is that the lexicon
harbors no contradictions. To see that this is already
a non-empty requirement, consider the lexical en-
try for cancer which will, under the ACR theory,
contain an IS A link to incurable. When (hopefully
soon) a cure is found, this means that the lexical en-
try itself will have to be revised, just as gay marriage
forced the revision of ‘between a man and a woman’.
More significant are the contradictory cases, for in-

58

stance when in one extension we learn that Colonel
Mustard killed Mr. Boddy, and in another we learn
that Professor Plum did. Admitting model structures
that harbor internal contradictions (as in paraconsis-
tent logic) clashes with the use of a single model; an
alternative that suggests itself is to allow for much
richer embeddings, e.g. ones that contain propo-
sitional attitude clauses: Miss Scarlet believes that
Colonel Mustard killed Mr. Boddy, while Mrs. Pea-
cock believes it’s Professor Plum.

As the last example shows, there is an additional
complicating factor at play. Even if we assume the
model to be a model of a single reality, this ground-
ing model may vary from person to person as in the
‘lifelong’ DRT of (Alberti, 2000). Communication
may reveal that this is the case, but the remedy is not
simple. Differences may arise about facts of the mat-
ter as well as over meanings, hence they may con-
cern either the grounding model itself (‘reality’) or
the map g that grounds the meanings (Kracht, 2011).
Thus, the fact that language is shared among a group
of individuals in and of itself calls for a different ap-
proach in model theory. This must be left for another
occasion, however.

If we believe in a single and unique model struc-
ture, we will assume that any model we build must
be embeddable into the one existing model. Thus,
we must have the joint embedding property (JEP)
for the family of ‘candidate’ models of reality. This
property requires that for any two models K,L the
existence of an N in which both can be embedded.
Such a consistency requirement must be made if we
insist that all semantics is about a single external re-
ality.

However, suppose the real model is unknown, even
unknowable. Then, if we want to understand what
it means to talk about real objects appeal to external
reality is futile if all we have is appearances. This is
where Kant saw the need of a logic he called tran-
scendental. The transcendental object is so to speak
the limit of approximation made by our inquiry. It
is our construction of reality, which rationalises our
previous models as being about something. In this
connection it is rather interesting to note the pro-
posal by Achourioti and van Lambalgen (2011) con-
cerning the transcendental logic. The authors pro-
pose that what Kant had actually in mind was what

is nowadays called an inverse system. This is a fam-
ily of models Ms indexed by a poset (S,≤) such
that for all s, t there is r such that s, t ≤ r, together
with maps hst : Ms → Mt for s ≥ t satisfying
htr ◦ hst = hsr. Even if there is no unique model
structure, the system of model structures itself is ob-
jective in Kant’s sense (that is about an object) if it
has the structure of an inverse system; and the tran-
scendental object itself can somehow be imagined as
a member of the inverse limit of that system. What
is interesting to note is that the formulae for which
the transition from the inverse system to the inverse
limit is what is known as geometrical formulae, hav-
ing the form ∀x(ϕ(x)→ ∃yθ(x, y)).

5 Conclusions

As usual, model theory does not solve many out-
standing problems, but brings a great deal of much
needed clarity in organizing the minor variants one
could conceive of. As long as we stay with a purely
deductive apparatus, we have to figure out whether
natural deduction, Beth tableaux, Hilbert systems,
sequent calculi, or some new combination of the
above is what we use, and this inevitably gets mixed
up with other design choices we have within the
ACR/CVS world. (Also, for reasons shrouded in the
mists of history, proof theory somehow has a very
bad reputation within linguistics.)

This paper has taken the first, rather tentative
steps towards understanding the structure of the new
model structures. We have seen that operations of
inflectional morphology, whether realized by actual
inflection or by function words, amount to a shift by
a constant vector. Second, we have seen that data
can be pooled across semantically equivalent but
syntactically different constructions such as the of
and ’s possessives. Third, we have seen that the nu-
merical limitations of the current model make it im-
possible to explore the low frequency tail of the dis-
tribution where many phenomena of great linguis-
tic interest, such as causativization and other forms
of predicate decomposition, are to be found. Even
so, our results in Table 1 make clear that the ac-
tual complexity of construction operations is consid-
erably less than the POS-pair assumption built into
CVGs would suggest.

The use of existents provides, for the first time we

59

believe, a reasonable framework to approach both
standard and Meinongian ontology on equal foot-
ing. This is not to say that one has to be committed
to some higher plane of ideal existence where the
entirety of Meinong’s Jungle is present, to the con-
trary, all one needs is a notion of finitely generated
models, and a compositional semantics that is will-
ing to interpret a⊗ b based on the interpretation of a
and b. Similarly, the key property of Fraı̈ssé homo-
geneity is the one at stake in the entire philosoph-
ical debate surrounding inverted qualia (see Byrne
(2014) for a summary). What is clear is that auto-
morphisms mapping one synonym on another can
be extended to automorphisms of the whole lexicon,
but from here on one may take several paths depend-
ing on one’s philosophical predilections.

Many questions remain open, and perhaps more
importantly, many questions can be meaningfully
asked for the first time. The traditional riddle
of class meanings (how nouns designate ‘things’,
adjectives ‘qualities’, and verbs ‘actions’) is now
amenable to empirical work relating the vectors of
pronouns, proadjectives and other pro-forms to the
center of gravity of 〈N〉, 〈A〉, On the pure se-
mantics side, we may begin to see how, by finite
mechanism, humans are capable of infinite compre-
hension, learning of (transcendental) objects.

Acknowledgments

We thank Gábor Recski (HAS Research Institute for
Linguistics) for performing the PCA on the ⊗ oper-
ators of the Socher et al. (2013) CVG.

References
Gábor Alberti. 2000. Lifelong discourse representation

structure. Gothenburg Papers in Computational Lin-
guistics.

Mark Aronoff. 1976. Word Formation in Generative
Grammar. MIT Press.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,
and Andrej Risteski. 2015. Random walks on con-
text spaces: Towards an explanation of the mysteries
of semantic word embeddings. arXiv:1502.03520v1.

Mark Baker. 1985. Incorporation: a theory of grammat-
ical function changing. MIT.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan

Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria, August. As-
sociation for Computational Linguistics.

Yehoshua Bar-Hillel. 1960. A demonstration of the non-
feasibility of fully automatic high quality translation.
In The present status of automatic translation of lan-
guages, volume Advances in Computers I, pages 158–
163.

Marco Baroni. 2013. Composition in distributional
semantics. Language and Linguistics Compass,
7(10):511–522.

Alex Byrne. 2014. Inverted qualia. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philoso-
phy. Summer 2014 edition.

Noam Chomsky. 1957. Syntactic Structures. Mouton,
The Hague.

Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark.
2010. Mathematical foundations for a compositional
distributional model of meaning. arXiv:1003.4394v1.

Georgiana Dinu and Mirella Lapata. 2010. Measuring
distributional similarity in context. pages 1162–1172.

Nicholas V. Findler, editor. 1979. Associative Networks:
Representation and Use of Knowledge by Computers.
Academic Press.

Roland Fraı̈ssé. 1954. Sur l’extension aux relations de
quelques propriétés des ordres. Ann. Sci. Ecole Norm.
Sup, 71:361–388.

Adele E. Goldberg. 1995. Constructions: A Construc-
tion Grammar Approach to Argument Structure. Uni-
versity of Chicago Press.

Zellig Harris. 1951. Methods in Structural Linguistics.
University of Chicago Press.

Wilfrid Hodges. 2001. Formal features of composition-
ality. Journal of Logic, Language and Information,
10:7–28.

Pauline Jacobson. 2014. Compositional Semantics. Ox-
ford University Press.

T.M.V. Janssen. 2001. Frege, contextuality and compo-
sitionality. Journal of Logic, Language and Informa-
tion, 10(1):115–136.

Ewan Klein and Ivan Sag. 1985. Type-driven translation.
Linguistics and Philosophy, 8:163–201.

András Kornai, Judit Ács, Márton Makrai, Dávid
Nemeskey, Katalin Pajkossy, and Gábor Recski. 2015.
Competence in lexical semantics. To appear in Proc.
*SEM-2015.

András Kornai. 2010. The algebra of lexical seman-
tics. In Christian Ebert, Gerhard Jäger, and Jens
Michaelis, editors, Proceedings of the 11th Mathemat-
ics of Language Workshop, LNAI 6149, pages 174–
199. Springer.

60

András Kornai. 2011. Probabilistic grammars and lan-
guages. Journal of Logic, Language, and Information,
20:317–328.

Marcus Kracht. 2003. The Mathematics of Language.
Mouton de Gruyter, Berlin.

Marcus Kracht. 2011. Interpreted Languages and Com-
positionality, volume 89 of Studies in Linguistics and
Philosophy. Springer, Berlin.

Jan Landsbergen. 1982. Machine translation based
on logically isomorphic montague grammars. In
Proceedings of the 9th conference on Computa-
tional linguistics-Volume 1, pages 175–181. Academia
Praha.

D. Lewis. 1970. General semantics. Synthese, 22(1):18–
67.

Tomas Mikolov, Wen-tau Yih, and Zweig Geoffrey.
2013. Linguistic regularities in continuous space word
representations. In Proceedings of NAACL-HLT-2013,
pages 746–751.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In Proceedings of
ACL-08: HLT, pages 236–244, Columbus, Ohio. As-
sociation for Computational Linguistics.

Richard Montague. 1970a. English as a formal language.
In R. Thomason, editor, Formal Philosophy, volume
1974, pages 188–221. Yale University Press.

Richard Montague. 1970b. Universal grammar. Theoria,
36:373–398.

Richard Montague. 1973. The proper treatment of quan-
tification in ordinary English. In R. Thomason, editor,
Formal Philosophy, pages 247–270. Yale University
Press.

Glynn Morrill. 2011. CatLog: A categorial
parser/theorem-prover. In Type Dependency, Type
Theory with Records, and Natural-Language Flexibil-
ity.

Charles E. Osgood, William S. May, and Murray S.
Miron. 1975. Cross Cultural Universals of Affective
Meaning. University of Illinois Press.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Conference on Empirical Methods in
Natural Language Processing (EMNLP 2014).

Carl Pollard. 2008. Hyperintensions. Journal of Logic
and Computation, 18(2):257–282.

M. Ross Quillian. 1969. The teachable language com-
prehender. Communications of the ACM, 12:459–476.

Gábor Recski and Judit Ács. 2015. Mathlingbudapest:
Concept networks for semantic similarity. In Proceed-
ings of the 9th International Workshop on Semantic
Evaluation (SemEval 2015), pages 543–547, Denver,
Colorado, June. Association for Computational Lin-
guistics.

Roger C. Schank. 1972. Conceptual dependency: A the-
ory of natural language understanding. Cognitive Psy-
chology, 3(4):552–631.

Hinrich Schütze. 1993. Word space. In SJ Hanson,
JD Cowan, and CL Giles, editors, Advances in Neu-
ral Information Processing Systems 5, pages 895–902.
Morgan Kaufmann.

Paul Smolensky. 1990. Tensor product variable binding
and the representation of symbolic structures in con-
nectionist systems. Artificial intelligence, 46(1):159–
216.

Richard Socher, Cliff Chiung-Yu Lin, and Christopher D
Manning. 2011. Parsing natural scenes and natu-
ral language with recursive neural networks. In Proc.
28th ICML.

Richard Socher, John Bauer, Christopher D. Manning,
and Andrew Y. Ng. 2013. Parsing with composi-
tional vector grammars. In The 51st Annual Meeting
of the Association for Computational Linguistics (ACL
2013).

J.F. Sowa. 2000. Knowledge representation: logical,
philosophical, and computational foundations. MIT
Press.

Andrew Spencer. 1988. Bracketing paradoxes and the
English lexicon. Language, 64:663–682.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method for
semi-supervised learning. In Proceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics, pages 384–394. Association for Computa-
tional Linguistics.

Michiel van Lambalgen and Theodora Achourioti. 2011.
A Fromalization of Kant’s Transcendental Logic. The
Review of Symbolic Logic, 4:254 – 289.

Roulon S. Wells. 1947. Immediate constituents. Lan-
guage, 23:321–343.

Edwin Williams. 1981. On the notions ‘lexically related’
and ‘head of a word’. Linguistic Inquiry, 12:245–274.

William A. Woods. 1975. What’s in a link: Founda-
tions for semantic networks. Representation and Un-
derstanding: Studies in Cognitive Science, pages 35–
82.

61

Proceedings of the 14th Meeting on the Mathematics of Language (MoL 14), pages 62–74,
Chicago, USA, July 25–26, 2015. c©2015 Association for Computational Linguistics

A Frobenius Model of Information Structure
in Categorical Compositional Distributional Semantics

Dimitri Kartsaklis Mehrnoosh Sadrzadeh
Queen Mary University of London

School of Electronic Engineering and Computer Science
Mile End Road, London E1 4NS, UK

{d.kartsaklis;m.sadrzadeh}@qmul.ac.uk

Abstract

The categorical compositional distributional
model of Coecke et al. (2010) provides a lin-
guistically motivated procedure for computing
the meaning of a sentence as a function of the
distributional meaning of the words therein.
The theoretical framework allows for reason-
ing about compositional aspects of language
and offers structural ways of studying the un-
derlying relationships. While the model so
far has been applied on the level of syntac-
tic structures, a sentence can bring extra in-
formation conveyed in utterances via intona-
tional means. In the current paper we ex-
tend the framework in order to accommodate
this additional information, using Frobenius
algebraic structures canonically induced over
the basis of finite-dimensional vector spaces.
We detail the theory, provide truth-theoretic
and distributional semantics for meanings of
intonationally-marked utterances, and present
justifications and extensive examples.

1 Introduction

Distributional models of meaning, in which a word
is represented as a high dimensional vector of con-
textual statistics in a metric space, provide a con-
vincing framework for lexical semantics that has
been found useful in a number of natural language
processing tasks (Schütze, 1998; Landauer and Du-
mais, 1997; Manning et al., 2008). Despite their
success at the word level, the underlying hypothe-
sis of these approaches does not naturally scale up
to phrases or sentences due to the infinite capacity
of language to produce new meanings from a finite
vocabulary and a set of grammar rules.

Coecke et al. (2010) provide a solution to the
problem by noticing that the category of finite-
dimensional vector spaces and linear maps is ho-
momorphic to a grammar expressed as a pregroup
(Lambek, 2008); specifically, both share compact
closed structure (Kelly, 1972). In practice this
means that any grammatical derivation based on the
type-logical identities of the individual words in a
sentence can be translated to a (multi-)linear map
which, when applied on the vectorial representations
of the words therein, results in a sentence vector.
The grammatical type of a word determines the vec-
tor space in which this word lives. Taking nouns to
be simple vectors in a basic vector space N , an ad-
jective, for example, becomes a linear mapN → N ,
or equivalently, a matrix in N ⊗ N ; furthermore, a
transitive verb is a bi-linear mapN⊗N → S, living
in N ⊗ S ⊗N . Composition takes the form of ten-
sor contraction, which is a generalization of matrix
multiplication to higher order tensors.

In general, the model resembles a quantitative
linear-algebraic version of the formal semantics ap-
proach (Montague, 1970), in the sense that syntax
strictly guides the semantic composition. Interest-
ingly, syntax seems to co-exist with a distinct struc-
tural layer, the purpose of which is to optimize the
message that an utterance conveys. This aspect is
known as information structure, and at the phrase
or sentence level is expressed as a distinction be-
tween a theme part (information that is generally
agreed to be known to both of the interlocutors) and
a rheme part—information that is new for the ad-
dressee. The exact relation that holds between syn-
tactical and information structure is an interesting
and controversial topic. For example, a theme does
not have to comprise a valid grammatical constituent

62

in the strict sense of the term, as it is evident in the
following example:

(1) Q: Do you need anything?
A: [I would like]T [some tea]R

The distinction between a theme and rheme is de-
noted by the presence of a boundary that can be
expressed by phonological, morphological or even
syntactical means, depending on the language. Fur-
thermore, the presence of such boundaries suggest
the existence of a distinct composition operator re-
lated to information structure and different than the
one that would be normally used for syntax.

In this paper we extend the categorical model of
Coecke et al. (2010) in a way to accommodate an
information structure layer of composition. In or-
der to achieve this, we model intonational bound-
aries (the devices for defining information struc-
ture in English) by using the multiplication part of
the Frobenius algebra that is canonically induced
over any vector space with fixed basis, in order to
endow equal contribution of the theme and rheme
on the vectorial representation of a sentence, thus
putting emphasis on the appropriate part. The re-
sulting model can be seen as containing two types of
composition operators: the usual tensor contraction
for accommodating syntax, and the Frobenius multi-
plication for accommodating information structure.
We discuss the implications in terms of the resulting
vectorial representations for phrases and sentences,
and provide connections with existing models from
the current literature of compositional distributional
semantics. Various examples demonstrate the poten-
tial of the model.

2 Categorical compositional distributional
semantics

The categorical model of Coecke et al. (2010) as-
signs semantic representations to phrases and sen-
tences of language, based on their grammatical
structure and the semantics of individual words. In
its most abstract form, this model can be expressed
in terms of a structure-preserving passage between
grammar and meaning:

F : Grammar→ Meaning

Given a sequence of words w1 · · ·wn, its categor-
ical meaning is defined to be:

Jw1 · · ·wnK := F(α)(Jw1K, · · · , JwnK) (1)

Here, α is derived from the grammatical relation-
ships amongst the words in the sequence. This no-
tion can be formalised in a coherent way, if both the
grammar and the meaning are expressed in a high
level logical structure, referred to by compact clo-
sure. Lambek’s pregroup algebras (Lambek, 2008)
and vector space distributional semantics are exam-
ples of compact closed structures. Stipulating that
the grammar is expressed in a pregroup algebra and
that the meaning of words are vectors constructed
using the distributional hypothesis (Harris, 1968),
Eq. 1 gets a more concrete form:1

−−−−−−→w1 · · ·wn := F(α)(−→w 1 ⊗ · · · ⊗ −→wn) (2)

In the proceeding subsections we make these no-
tions precise and provide intuitions and examples.

2.1 Pregroup grammars
A pregroup grammar is a pregroup algebra, linked to
the vocabulary of a language via the notion of a type
dictionary. We define these structures below.

A pregroup algebra is a partially ordered monoid
where each element has a left and a right adjoint. It
is denoted by a tuple (P,≤, ·, 1, (−)l, (−)r), where
(P,≤) is a partially ordered set, and · is a monoid
multiplication with 1 as its unit. For each element
p ∈ P there are pl, pr ∈ P , referred to by p’s left
and right adjoints, satisfying the following four in-
equalities:

p · pr ≤ 1 ≤ pr · p pl · p ≤ 1 ≤ p · pl

When a pregroup algebra is generated over a base
set B, it is denoted by P (B). Given the vocabu-
lary of a language Σ and a set of its basic gram-
matical types B, a pregroup grammar is a relation
D ⊆ Σ×P (B) that assigns grammatical types from
the pregroup algebra P (B) to the words of the vo-
cabulary Σ. Such a pregroup grammar is denoted by
P (B,Σ).

As an example, suppose B = {n, s}, where n
stands for a well-formed noun phrase and s for a
well-formed sentence. Suppose further that Σ =
{Mary, snores, likes,musicals}. The pregroup dic-
tionary consists of the following set:

{
(Mary, n), (snores, nrs), (likes, nrsnl), (musicals, n)

}

1One can translate the types from other type logics, such as
the syntactic calculus and CCG to pregroups and carry on with
the same calculations. There is also recent work that directly
assigns vector semantics to CCG (Lewis and Steedman, 2013).

63

One says that a sequence of words w1w2 · · ·wn

for wi ∈ Σ forms a grammatical sentence, according
to a pregroup grammar P (B,Σ), whenever we have:

t1 · t2 · . . . · tn ≤ s
for (wi, ti) ∈ D. The above inequality is often re-
ferred to by grammatical reduction. For example,
‘Mary likes musicals’ is a grammatical sentence,
since we have the following reduction:

n · nr · s · nl · n ≤ 1 · s · 1 = s (3)

2.2 Distributional models
The only piece of information provided by a deriva-
tion like the one in Eq. 3 is whether the sentence
in question is well-formed or not. Furthermore, we
are unable to distinguish between words of the same
type. Distributional models of meaning provide a
solution to these problems by following the distri-
butional hypothesis (Harris, 1968), which states that
semantically similar words must appear in similar
contexts. Hence, the semantic representation of a
word can be given in terms of its distributional be-
haviour in a large corpus of text. In its simplest form,
a word vector is comprised by numbers that show
how many times the target word co-occurs with ev-
ery other word in a selected subset of the vocabulary
(usually the most frequent content-bearing words).
This allows the representation of words as points in
some high dimensional space, where semantic relat-
edness can be measured (usually by cosine distance)
and evaluated. For a concise introduction to dis-
tributional models, see (Turney and Pantel, 2010).
We will now proceed to show how the quantitative
approach of distributional models can be combined
with the compositional model of Section 2.1 into a
unified account.

2.3 Categorical generalization
The theory of categories generalises algebraic con-
structions to categorical ones (Mac Lane, 1971).
Herein, instead of sets, functions or relations, one
has objects A,B and morphisms f : A → B. The
generalised binary operation over these is referred
to by a product. Posing different conditions on the
objects, morphisms, or the product results in differ-
ent kinds of categories. A monoidal category has a
product with a unit I , that is A ⊗ I ∼= I ⊗ A ∼= A.
These categories are generalisations of partially or-
dered monoids: elements of the partial order be-

come objects of the category and the partial order-
ings between them become morphisms. Further-
more, compact closed categories are generalisations
of pregroups, where the adjunction inequalities cor-
respond to the following ε and η morphisms:

εr : A⊗Ar → I ηr : I → Ar ⊗A
εl : Al ⊗A→ I ηl : I → A⊗Al

These maps needs to adhere to four axioms, re-
ferred to as yanking equations, which ensure that all
relevant diagrams commute.

The importance of the theory of categories for this
paper is that finite-dimensional vector spaces and
linear maps also form a compact closed category, de-
noted by FVect. Herein, objects are vector spaces,
morphisms are linear maps, and the product is the
tensor product between vector spaces whose unit is
the scalar field of the vector spaces, in our case, real
numbers (R). In the presence of a fixed basis (which
is the case we are interested in) the adjoints become
identity, that is we have V r ∼= V l ∼= V , for a vector
space V spanned by {−→v i}i. As a result the four ε
and η maps reduce to two:

ε : V ⊗ V → R η : R→ V ⊗ V
The ε map takes the inner product of two vectors

and the η map produces a diagonal matrix. The fact
that both pregroup algebras and vector spaces form
compact closed categories allows us to develop a
structure preserving passage between the two math-
ematical structures, thus enabling us to bridge the
grammatical structure to distributional semantics.

2.4 From grammar to distributions
A structure preserving passage from grammatical
structures (in the form of a pregroup grammar) to
semantics (in the form of vector spaces) is given by
a map denoted as follows:

F : P (Σ,B)→ FVect (4)

This is a strongly monoidal passage, which means
that it has the following compositional properties for
juxtapositions of types in a pregroup grammar:

F(1) = R (5)
F(p · q) = F(p)⊗F(q) (6)

F(pr) = F(pl) = F(p) (7)
F(p ≤ q) = F(p)→ F(q) (8)

64

On the level of basic types we assign a vector
space to each basic type, that is, F(n) = N and
F(s) = S. As a result of the above assignments,
words that have simple types, for example noun
phrases, will become vectors in vector space N .
Words that are functions of one argument become
matrices, e.g. intransitive verbs with type nr · s
are elements of N ⊗ S; and words that are func-
tions of two arguments, e.g. transitive verbs with
type nr · s · nl, become tensors of order 3, living
in N ⊗ S ⊗N for the specific case. The grammati-
cal reductions are translated to compositions of mor-
phisms, and in particular ε-maps.

−−−−−−−−→
Mary snores = F(n · nr · s)(−−−→Mary⊗ snores)

= (εrN ⊗ 1S)(
−−−→
Mary⊗ snores)

A simple computation shows that the above is
equal to

−−−→
Mary × snores; similarly, for the meaning

of a transitive sentence we obtain:

−−−−−−−−−−−−−→
Mary likes musicals =

−−−→
Mary× likes×−−−−−→musicals

Note that tensor contraction (in spaces with fixed
basis) is associative, so there is no need to keep track
of brackets in the above. The situation is similar to
pregroups, where the monoid multiplication is again
associative.

2.5 Frobenius algebras
Compact closed categories on their own do not have
much structure: there is a binary operation and the
maps ε and η. The expressive power of these cat-
egories can be increased using Frobenius algebras.
We define these below.

Given a compact closed category C, an object
X ∈ C has a Frobenius structure on it if there ex-
ist the following morphisms:

∆: X → X ⊗X ι : X → I

µ : X ⊗X → X ζ : I → X

These have to satisfy certain conditions, the most
important to us being the Frobenius condition:

(µ⊗ 1X) ◦ (1X ⊗∆) = ∆ ◦ µ = (1X ⊗ µ) ◦ (∆⊗ 1X)

Vector spaces with fixed basis do have such struc-
tures over them, generally referred to by copying and
merging. For −→v ∈ V,w ∈ V ⊗ V , we have that

∆(−→v) ∈ V ⊗ V is a diagonal matrix whose diag-
onal elements are weights of −→v , and µ(w) ∈ V is
a vector consisting only of the diagonal elements of
w.

These structures have been used in previous work
to encode lower dimensional verb matrices into
higher dimensional tensors (Kartsaklis et al., 2012;
Kartsaklis et al., 2014) and to pass the information
around sentences with relative clauses by copying
and merging (Sadrzadeh et al., 2013; Sadrzadeh et
al., 2014).

2.6 Graphical calculus
In the presence of higher order tensor product
spaces, calculations can become quite complex. The
formalism of compact closed categories and Frobe-
nius structures is complete with regard to a graphical
calculus (Selinger, 2011) that simplifies the compu-
tations to a great extend. We briefly overview the
main components of this language.

Objects are depicted by lines and morphisms by
boxes. Tensor products between objects and mor-
phisms are given by juxtaposition of their diagrams,
while composition of morphisms amounts to con-
necting outputs to inputs. Examples are as follows:

A

A f

B

A

A C f

A B f g B

B D h

C

The ε maps are depicted by cups, η maps by caps,
and yanking by their composition and straightening
of the strings. For instance:

Al

A Al
A

Al A Al A=

The diagrams corresponding to the Frobenius
morphisms are as follows:

(µ, ζ) = (∆, ι) =

with the Frobenius condition being depicted as:

= =

The defining axioms guarantee that any picture of
a Frobenius computation can be reduced to a normal
form (so-called a “spider”) that only depends on the
number of input and output strings of the nodes:

65

. . . · · ·
=

. . . · · ·

Elements within the objects (for the case of vector
spaces, vectors) are depicted by morphisms from the
unit. These are shown by triangles with a number of
strings emanating from them. The number of strings
denotes the order of the tensor; for instance, the dia-
grams for−→v ∈ V, v′ ∈ V ⊗W , and v′′ ∈ V ⊗W⊗Z
are as follows:

V V W V W Z

3 Information structure and intonation

The term information structure collectively refers to
techniques that aim to enhance the communication
between two interlocutors in order to optimize the
conveyed message for the benefit of the addressee
(Chafe, 1976). One such technique, for example, is
to emphasize a particular part of the utterance that
is important for the listener by changing the spoken
pitch:

(2) Q: What does Mary like?
A: Mary likes MUSICALS

The emphasis imposes a specific information
structure to the uttered sentence, essentially splitting
it in two parts: The part in upper-case above is what
Steedman (2000) calls rheme—the information that
the speaker wishes to make common ground for the
listener; the rest of the sentence, i.e. what the lis-
tener already knows, is called theme. The question
in (2) puts the listener in a specific attentional state,
in the context of which an answer such as:

(3) A: #MARY likes musicals

will be infelicitous, that is, not compatible with that
state.

The distinction between theme (or topic) and
rheme (or comment) has great significance from an
information structure point view, since it defines a
generic shape for the sentence that directly reflects
the attentional needs of the addressee. A further di-
mension that can be found in both rheme and theme
distinguishes between the focus, that is, the specific

word that receives most of the intonational empha-
sis, and the background, which consists of the rest of
the words in the specific text segment. Note that in
contrast to rheme/theme distinction, focus and back-
ground seem to operate at the lexical level.2

Furthermore, we should point out that although
the examples we use in this paper are mainly based
on question/answer dialogues, this is not by any
means the only case where the presence of a specific
information structure can be useful. For example,
consider the dialogue:

(4) –I think Mary likes jazz.
–Mary likes MUSICALS.

Information structure can be expressed in differ-
ent ways that may vary from language to language.
In English, for example, the means for defining in-
formation structure is intonation: variations of spo-
ken pitch, the purpose of which is to emphasize parts
of the utterance that might be important for the con-
veyed message, as we saw above in our examples.
However, in other languages such as Japanese or
Cantonese, the intonational boundaries can be also
specifically marked by morphological devices, e.g.
special particles (Féry and Krifka, 2008). Finally,
the position of a text segment in a sentence can also
be an indication of its information-structural role. In
English, for example, themes tend to appear at the
beginning of a clause.

In this paper we concentrate on the sentence-level
distinction between rheme and theme.

4 Grammar and intonation

The presence of a distinct layer of information struc-
ture that seems to co-exist with the grammatical
structure of a sentence, poses the interesting ques-
tion regarding the exact relationship that holds be-
tween those different structural aspects. For exam-
ple, although the text segment “Mary likes” forms
a perfectly acceptable theme, most linguists would
agree that it does not also comprise a valid grammat-
ical constituent. In spite of this claim, though, it is
interesting to note that a number of categorial gram-
mars, including Combinatory Categorial Grammar
(CCG) (Steedman, 2001), treat text segments like
the above as possible syntactic constituents. Con-
sider the following ditransitive sentence:

2Actually many authors use the term focus as a synonym for
rheme; the definitions we give in this paper follow (Steedman,
2000).

66

(5) John gave Mary a flower

In CCG, this sentence has a number of different
syntactic derivations, two of them are the following:

John gave Mary a flower

NP ((S\NP)/NP)/NP NP NP
>

(S\NP)/NP
>

S\NP
<

S

(9)

John gave Mary a flower

NP ((S\NP)/NP)/NP NP NP
>T >

S/(S\NP) (S\NP)/NP
>B

S/NP
>

S

(10)

Note that (9) proceeds by first composing the
part corresponding to the verb phrase (“gave Mary
a flower”); later, in the final step, the verb phrase is
composed with the subject ‘John’. The situation is
reversed for (10), where the use of type-raising and
composition rules of CCG allow the construction of
the fragment “John gave Mary” as valid grammat-
ical text constituent, which is later combined with
the direct object of the sentence (‘a flower’). Steed-
man (2000) argues that this form of different syntac-
tic derivations that one can get even for very sim-
ple sentences when using CCG (some times referred
to with the somewhat belittling term “spurious read-
ings”), actually serve to reflect variations in infor-
mation structure. Each one of the above deriva-
tions subsumes a different intonational pattern, dis-
tinguishing the rheme from the theme when the sen-
tence is used for answering different questions: (9)
answers to “Who gave Mary a flower?”, whereas
(10) to “What did John give to Mary?”.

In other words, the claim here is that (a) surface
structure and information structure coincide; and (b)
the role of information structure is to provide a par-
ticular interpretation of the surface structure. Let us
define this important idea in a precise way, since it
will be the cornerstone of the model presented in this
paper:

Postulate 4.1 Intonational boundaries in an utter-
ance determine the intended syntactic structure.

In our grammatical formalism, pregroup gram-
mars, variations in a grammatical derivation similar
to above are only implicitly assumed, since the or-
der of composition remains unspecified. This fact is

apparent in the pregroup derivation of the example
sentence, where both (9) and (10) are subsumed into
the following reduction diagram:

John gave Mary a flower
n nrs nlnl n n (11)

Furthermore, it is directly reflected in our seman-
tic space through the functorial passage, via the fact
that tensor contraction is associative:

−−→
John× (gave×−−−→Mary×−−−→flower) = (12)

(
−−→
John× gave×−−−→Mary)×−−−→flower

Eq. 12 constitutes a natural manifestation of the
principle of combinatory transparency (Steedman,
2001): no matter in what order the various text con-
stituents are combined, the semantic representation
assigned to the sentence is always the same; in other
words, information structure should not affect se-
mantic conditions. Note, however, that even in the
strict setting of formal semantics this is not always
the case. Consider the behaviour of the following
sentence under the presence of the focus-sensitive
particle ‘only’:

(6) a. John only gave Mary A FLOWER

b. John only gave MARY a flower

The use of different intonational focus clearly
changes the semantic value of the sentence: (6a) is
true if the only thing that John gave to Mary was a
flower (but he might have given things to other girls
as well), while (6b) is true if the only person who
got a flower from John was Mary.

In the more relaxed and quantitative setting of a
compositional distributional model of meaning, the
idea of having vectorial representations of words and
sentences that reflect intonational patterns seems
even more legitimate. This concept is aligned with
the distributional nature of such models: given a
text corpus containing information structure anno-
tations (of any kind), we would assume that the
co-occurrence vector of a word under focus (say,−−−→
BOOK) would slightly differ from that of the vec-
tor representing the normal use of the word (

−−→
book).3

Furthermore, we would expect that, after the com-
position, this difference would be also reflected in

3In the trivial case, this would be true by the presence of
intonational markers in the immediate context of a word under
focus, as opposed to its normal use.

67

the vector representing the meaning of the entire
sentence. From the next section we start working
towards imposing this behaviour on the categorical
model of Coecke et al. (2010).

5 Intonation in pregroups

Traditionally, a notational system describing intona-
tion consists of markings that indicate pitch accents
and boundaries. Using the notation of Pierrehum-
bert and Hirschberg (1990), for example, we get the
following for our example sentence:4,5

(7) [MARY]R [likes MUSICALS]T
H∗ L L+H∗ LH%

The prosody starts with a sharp pitch accent (H∗)
that puts the focus on ‘Mary’, and continues with
a rapid fall to low pitch (L boundary) that signifies
a transition from rheme to theme. Within theme
now, the focus goes to ‘musicals’ which gets the
less rapidly rising pitch L+H∗, whereas the bound-
ary LH% expresses a rising continuation that marks
the end of theme. In the case that theme precedes
the rheme, we have the following pattern:

(8) [MARY likes]T [MUSICALS]R
L+H* LH% H∗ LL%

As mentioned earlier, this paper mainly addresses
the rheme/theme aspect of information structure,
which is directly related to boundary markings. We
start by representing an intonational boundary using
a special token ., for which the following relations
hold:

theme . rheme or rheme / theme (13)

Naturally, . is equivalent to LH%, while / cor-
responds to L in the Pierrehumbert and Hirschberg
(1990) notation. It is very important to emphasize
at this point that the above introduced tokens are far
from an ad-hoc means for achieving a goal. Recall
from our discussion in Section 3 that while in En-
glish the means of imposing information structure is
purely phonological, this is not necessarily the case
for other languages. As a concrete case, in Buli (a
Gur language spoken in Ghana), the rheme is pre-
ceded by a focus marker, which again can be inter-
preted as an information-structural boundary since it

4Example taken from (Steedman, 2000).
5From now on we explicitly mark themes and rhemes in

our examples for clarity.

separates the theme from rheme; this is shown in the
following example (Fiedler et al., 2006):

(9) Q: What did the woman eat?
A: Ò NÒb kà túé

3sg eat (FM) beans

To formalize this mixing of syntactical and infor-
mation structure in the context of a pregroup gram-
mar, we add the two boundary markers to the vocab-
ulary and introduce two new atomic types:

Theme: θ Rheme: ρ (14)

An intonation pregroup grammar then will have
the following form:

P (Σ ∪ {., /}, {n, s, θ, ρ})
For the case of a simple transitive sentence, we

get the following boundary types, based on the fact
that now the boundary (and not the verb) becomes
the head of our sentence:

. : θr · s · ρl / : ρr · s · θl (15)

The type dictionary changes accordingly: a tran-
sitive verb such as ‘like’ will be assigned two more
types nr · θ and θ · nl depending whether it pro-
duces a left-hand theme or a right-hand theme in the
sentence; similarly, nouns will be assigned the extra
type ρ. For the two cases of Eq. 13, we obtain the
following derivations:

Mary likes . musicals

n nr θ θr s ρl ρ (16)

Mary / likes musicals
ρ ρr s θl θ nl n (17)

After transferring this to FVect via our functor
in Eq. 4, and extending its action on atomic types
by defining F(θ) = Θ and F(ρ) = P , we get the
obvious semantic counterpart:

Mary likes . musicals

N Nr Θ ΘrSP l P

(18)

There are some important observations based on
the derivation in (18) above. Firstly, our simple sen-
tence now is given in terms of a theme and a rheme,

68

as required, both of which contribute equally to its
construction. Additionally, note that our verb is not
any more a function of two arguments (of a subject
and an object) as in the canonical case, but of a sin-
gle noun: it takes as input a subject in order to return
a theme. Hence, in contrast to a typical case of a
transitive verb, the semantic representation of which
requires a tensor of order 3, in this case the corre-
sponding linear map takes the form N → Θ, which
can be canonically represented by a matrix N ⊗Θ.

The question of how to properly model intona-
tion in compositional distributional semantics is ev-
idently epitomized in choosing an appropriate form
for the tensor of the . token in (18). In order to pro-
vide an answer to this, we first need to examine the
concepts of rheme and theme from a semantic point
of view.

6 A semantic truth-theoretic argument

We use as an example the following simple case:

(10) Q: Who does John like?
A: [John likes]T [MARY]R

From an extensional point of view, the semantic
value of the theme can be seen as a set of alternative
options (Rooth, 1992), each one of which may be
used as a response to the given question:

JJohn (might) likeK = {x|John (might) like x}

As a consequence, the role of the rheme now is
to restrict the set of alternatives to a specific choice
(Steedman, 2000). Note that this action of restrict-
ing the available choices is responsibility of the into-
national boundary; indeed, the boundary can be seen
as a binary operator that performs the merging of the
theme with the rheme, restricting the alternatives set
of the theme to a specific response:

(11) [John likes]T . [MARY]R :=
.([John likes]T,[MARY]R)

This is what Diagram (18) shows; in our multi-
linear setting, the boundary becomes a bi-linear map
Θ⊗P → S that performs the required “restriction”.
Now, what is the most appropriate way to model this
operation in the extensional setting discussed above?
Note that by simply checking if rheme is contained
in the alternatives set is not sufficient; this would
return true or false as an answer to a question that
expects a person. A more appropriate choice then

is to model the boundary by using set intersection:
we take the meaning of rheme to be a singleton that
contains the answer, and the meaning of the sentence
to be the intersection of rheme with theme:

{Mary} ∩ {x|John (might) like x} (19)

The answer will be again the singleton {Mary} if
Mary is included in the set of people who John po-
tentially likes, and the empty set otherwise. Thus
we have achieved our goal: the theme set has
been restricted according to the provided response.
We generalize this argument to an arbitrary pair of
rheme and theme (with Stheme denoting theme’s cor-
responding alternative set) as follows:

.(rheme, theme) = {rheme} ∩ Stheme{
rheme if rheme ∈ Stheme
∅ o.w.

(20)

6.1 From sets to vector spaces
We transfer the above reasoning to vector spaces, by
encoding sets and relations in vectorial forms. The
vectorial form of a set is a vector space (let it be
N = {ni}i) whose basis vectors are the elements
of the set. For the sake of demonstration (and this
will become clear as the section reads on), we define
our sentence space to be a one dimensional space
where the origin denotes falsity and everything else
denotes truth. One can take this to be a dimension
in any vector space; here we take it to be in N and
denote its basis vector with a basis vector ofN . Fur-
thermore, a binary relation such as likes(x, y) can
be represented as an adjacency matrix W in which
Wij is 1 if the pair (i, j) is contained in the relation
and 0 otherwise. Note that this matrix is isomorphic
to a tensor in N ⊗ S ⊗N , since our sentence space
is one-dimensional.

Let us apply categorical composition to compute
a vectorial representation for the theme of our sen-
tence, “John likes”.

(εrN ⊗ 1S)


−→n3 ⊗


∑

ij

Wij
−→ni ⊗−→nj




 =

∑

ij

Wij〈−→n3|−→ni〉−→nj =
∑

ij

Wijδ3i
−→nj =

∑

j

W3j
−→nj (21)

Hence the vectorial representation of “John likes”
becomes indeed the subset of all individuals who
might be liked by the person denoted by vector −→n3,
and can be seen as the semantic value of the theme

69

of our sentence. The next step is to compose this
theme with the rheme ‘Mary’; in other words, we
must decide an appropriate type of composition for
our intonational boundary. Let us first try again stan-
dard categorical composition:

(1S ⊗ εlN)




∑

j

W3j
−→nj


⊗−→n1


 =

∑

j

W3j〈nj |n1〉 =
∑

j

W3jδj1 = W31 (22)

Note that this corresponds to a set membership
test; the result is 1 if Mary is included in the set of
alternative responses and 0 otherwise. However, as
noted before, in information structure terms a more
appropriate operation would be to take the intersec-
tion of the singleton {Mary} with the set of alterna-
tives. Interestingly, set intersection now corresponds
to element-wise vector multiplication (in this work
denoted by symbol �) and the vector space equiva-
lent of Eq. 19 becomes:

∑

j

W3j
−→nj


�−→n1 =

{ −→n1 if W31 = 1−→
0 o.w.

(23)

The result is now ‘Mary’, if Mary is included in
the set of valid answers, and the zero vector other-
wise. The fact that the meaning of our sentence be-
comes an element of the noun space demonstrates
clearly that, in information structure terms, there is
a necessity for a shared vector space between sen-
tences and nouns (or noun phrases)—a direct con-
sequence of the fact that now the meaning of a sen-
tence is mainly focused on a specific noun or noun
phrase therein. Furthermore, since a sentence is now
expressed as a merging of a theme and a rheme, it is
also required that Θ = S = P (and equal to what
we took to be N in the preceding). In the next sec-
tion we encode the above reasoning in the abstract
form of compact closed categories and then present
an instantiation in vector spaces.

7 Intonation in compact closed categories
with Frobenius structure

The point with regard to shared spaces is accom-
plished by the following types assignment:

F(x) = W ∀x ∈ {n, s, θ, ρ} (24)

As a consequence of the above, the vector spaces
assigned to transitive verbs are computed as follows:

F(nr · θ) = F(θ · nl) = W ⊗W
Furthermore, boundaries are assigned to the fol-

lowing vector space:

F(θr · s · ρl) = F(ρr · s · θl) = W ⊗W ⊗W

We have now arrived at a central point of this pa-
per. As the semantic representation of a boundary,
we assign the following morphism:

(1W ⊗ µW ⊗ 1W) ◦ (ηW ⊗ ηW) (25)

Note that the above is indeed an element in W ⊗
W ⊗W :

., / : I ∼= I ⊗ I ηW⊗ηW−−−−−→W ⊗W ⊗W ⊗W (26)
1W⊗µW⊗1W−−−−−−−−→W ⊗W ⊗W

The reasoning behind our assignment will be-
come clear in a moment. For now, we proceed to
a formal definition:

Definition 7.1 The meaning vector of a sentence ex-
pressed in information structure terms is given by:

(1W ⊗ µW ⊗ 1W) ◦ (ηW ⊗ ηW)(
−−−→
theme⊗−−−→rheme) (27)

when theme precedes the rheme, or as follows in the
opposite case.

(1W ⊗ µW ⊗ 1W) ◦ (ηW ⊗ ηW)(
−−−→
rheme⊗−−−→theme) (28)

These vectors are depicted as follows:

.
theme rhemetheme rheme

W W=W WWW W

(29)

/
rheme themerheme theme

W W=W WWW W

(30)

Note that the normal forms at the right-hand side
of the diagrams above are direct applications of the
Frobenius condition. Furthermore, either the theme
or rheme here might correspond to large text con-
stituents, i.e. phrases or even sentences. In this case,
the proposed framework guarantees that an appro-
priate vector will be created for them based on cate-
gorical composition.

70

8 Vector space instantiation

Our justification for using the semantic form of Eq.
25 for the boundary comes from the fact that it pro-
duces normal forms as below:

µ(
−−−→
theme⊗−−−→rheme) µ(

−−−→
rheme⊗−−−→theme) (31)

This is exactly how element-wise vector multipli-
cation is defined from a categorical perspective:

−→v1 −→v2

µ(−→v1 ⊗−→v2) = −→v1 �−→v2 = V V
(32)

As a result, the linear algebraic instantiations of
Definition 7.1 become as follows:

−−−→
rheme�−−−→theme

−−−→
theme�−−−→rheme

We stress again the fact that rheme and theme can
have complex structures, and their vector meanings
will reflect this strutter. For simple transitive sen-
tences6 of the form “subject verb . object” or “sub-
ject / verb object”, we get linear algebraic meanings
as follows:

(
−−→
subj× verb)� −→obj

−−→
subj� (verb× −→obj)

As an example of a composed theme, consider:

.Mary likes musicals Mary likes musicals

=
W W W WWW W W W W W

(33)
A vector is computed for the theme ‘Mary likes’

according to the rules of the grammar, and then this
vector is element-wise multiplied with the vector of
the rheme (which, in this example, is just the distri-
butional vector of the word).

9 Interpretation

The transition from the set-theoretical framework to
high dimensional real vector spaces poses the ques-
tion what is the role of element-wise vector multi-
plication in the latter setting. Compositional mod-
els based on element-wise vector addition or mul-
tiplication are usually referred to as vector mixture

6We provide more complicated examples later in Sect. 11.

models—a term that emphasizes on the equal con-
tribution of each word to the final result, which pro-
duces a kind of average of the input vectors. Note
that this behaviour stands in direct contrast with the
categorical compositional approach, in which the
type-logical identities of words strictly depend on
their grammatical role. Due to their simplicity, vec-
tor mixture models have been studied extensively
(Mitchell and Lapata, 2008), demonstrating steady
and reasonably good performance in a number of
tasks.

The significance of the Frobenius operators for
our model (as opposed to some other form of com-
binatory mechanism) is that their concrete manifes-
tation in a vector space setting imposes exactly this
vector mixture behaviour, in the form of element-
wise vector multiplication. In other words, the result
is a combination of two compositional approaches,
vector mixtures and categorical models, in a unified
framework: while categorical composition is still
applied to compute vectorial representations for a
theme and a rheme, the two parts contribute equally
to the final result via element-wise multiplication
imposed by the Frobenius operators. This puts the
necessary focus on the appropriate part of the sen-
tence, reflecting the variation in meaning intended
by the intonational pattern.

To what extent the notion of a rheme as a means
for restricting the theme applies in FVect? Note
that, from a geometric perspective, element-wise
vector multiplication acts as a scaling of the basis;
for example, (xy)�(2.0

0.5) transforms the vector space
in which the first vector lives so that the units on
the x-axis are doubled and the units on the y-axis
are halved.7 Furthermore, a zero value in one vector
would completely eliminate the corresponding com-
ponent in the other. Hence, the concept of restricting
the theme has now taken a new quantitative form,
generalizing appropriately our initial intuition (mo-
tivated by set intersection) to the multi-dimensional,
real-valued setting of FVect.

10 Relation to previous work

How does the above derivations correlate to the
premises of the original framework, in which ‘likes’
is a transitive verb with type nr ·s ·nl? Note that an-
other application of the Frobenius condition on the
normal form of Diagram (33) will give us:

7Of course we can think of a similar scaling taking place
on the two axes of the second vector by factors x and y.

71

Mary likes musicals Mary likes musicals

= W W W WW W W W W

likes

W⇒ (34)

In other words, the semantic representation of
word ‘likes’ can be still regarded as a bi-linear map,
faithfully encoded in a tensor of order 3, as required
by the framework. In this case, the tensor of ‘likes’
in FVect is seen as created by applying the mor-
phism 1W ⊗∆W on a matrix representing the verb
‘likes’. The limitation, of course, is that now the
middle wire carrying the result (the sentence vector
space) cannot be any more differentiated from the
two argument wires (the noun vector spaces), since
it is produced by copying one of them.

Note that these are the Frobenius models of Kart-
saklis et al. (2014), referred to as Copy-Subject and
Copy-Object, and originally used as a means for
faithfully encoding a verb matrix to a tensor of order
3, thus restoring the functorial relation between the
semantic representation and the grammatical type.
The present theory8 offers an alternative more com-
plete account that goes far beyond providing a con-
venient way to expand a matrix to a cube.

11 Covering complex intonational patterns

So far we examined simple cases of intonation, in
which our sentence consisted of a single rheme and
a theme. In this section we turn our attention to some
more interesting examples.

11.1 Multiple rhemes
We will first examine the case of a sentence with
more than one rhemes. Imagine the following ques-
tion/answer dialogue:

(12) Q: Who likes whom?
A: [JOHN]R [likes]T [MARY]R

In our pregroup notation, this introduces two dis-
tinct intonational boundaries in the sentence. The
derivation takes the following form:

John / likes . Mary
ρ ρr s θl θ θ θr s ρl ρ (35)

8An early account of which also appears in the doctoral
thesis of the first author (Kartsaklis, 2015).

Note that the type of ‘likes’ now becomes θ · θ;
in other words, the theme is not any more a function
(no adjoint is present in the type), but a higher or-
der atomic entity. This is directly reflected in FVect
where we get:

.John likes Mary John likes Mary

=

/

(36)

The result of this computation is now a matrix and
not a vector. Indeed, if we follow the linear algebraic
calculations we get:

(µW ⊗ µW)(
−−→
John⊗ likes⊗−−→mary) = (37)

(
−−→
John⊗−−−→Mary)� likes

The behaviour above follows the premises of the
proposed model: Since our theme is a matrix, the
calculations follow naturally, producing another ma-
trix as the rheme (the tensor product of the two indi-
vidual rhemes) that restricts as required the theme
via element-wise multiplication. Note that this
means that a sentence with one rheme would not be
comparable with a sentence with two rhemes, since
it would live in a different space. That is again not
surprising: the shape of theme defines the shape of
the sentence vector space, and only themes of the
same order can be compared to each other.

11.2 Relational words as rhemes
We have conveniently avoided to discuss until now
the case in which the rheme is not a noun phrase, but
a relational word as below:

(13) Q: How does John feel about Mary?
A: [John]T [LIKES]R [Mary]T

In pregroups we model such a situation by the fol-
lowing derivation:

John . likes / Mary
θ θr s ρl ρ ρ ρr s θl θ (38)

Note that this time the verb becomes a higher or-
der rheme, getting the type ρ ·ρ. However, when this
is transferred to FVect the symmetry of the cate-
gory and the commutativity of the Frobenius algebra
means that the vector of the sentence becomes equal
to that of Example (12). In general, problems due
to commutativity of the Frobenius operators can be
resolved if one moves to non-commutative versions

72

of Frobenius algebras. Piedeleu et al. (2015) explore
such constructions in the context of language by ele-
vating the categorical model of Coecke et al. (2010)
to an open quantum system setting, in which words
are represented as mixed states.

11.3 Nested rhemes
Consider the following case:

(14) What was the book Mary wrote about?
[Mary wrote a book about]T [ART]R

The interesting point here is that the intonational
boundary is placed in a position that constitutes a
glaring violation of the grammatical structure, which
in the normal case has the following form:

Mary wrote a book about art
n nr snl n nlnnr n (39)

For cases like these we should recall that our
framework is entirely built on the assumption of
Postulate 4.1: in the context of information struc-
ture, intonational boundaries determine the intended
syntactical structure. For our case, we get:

Mary wrote a book about . art
n nr θ nl n nrn θr s ρl ρ (40)

The linear-algebraic result follows trivially as the
usual element-wise composition of the theme with
the rheme.

11.4 Rheme in the middle of sentence
In many cases a noun phrase can serve as the rheme
while being placed in the middle of the sentence,
splitting the theme into two parts:

(15) Did Mary write an essay about art?
[Mary wrote]T [A BOOK]R [about art]T

In these cases, the left-hand intonational boundary
gets the type θr · ρ · ρl, as below:

Mary wrote . a book / about art
n nr θ θr ρ ρl ρ ρr s θl θ nr n (41)

In other words, a new rheme is produced that is
used as input to the right-hand intonational bound-
ary. In Fvect we get the following interaction:

Mary wrote a book about art

(42)

By application of the spider equality (Section 2.6)
we get the normal form below, which computes a
meaning for the sentence as the element-wise multi-
plication of the vectors composed for the two themes
with the vector of the rheme:

Mary wrote a book about art

(43)

12 Conclusion and future work

The present paper provides a first account of into-
nation and information structure for the emerging
field of categorical compositional distributional se-
mantics. In a more generic level, it lays the ground-
work for a model capable of accommodating two
different types of composition over a distributional
setting. An experimental evaluation is deferred for
the future, preferably in the context of a question-
answering task. There is also a lot of interesting
work to be done on the theory side. At the cur-
rent stage, for example, the semantic value of in-
tonational boundaries is given by direct assignment
of a specific morphism—a common practice in the
past for the relevant literature. A future direction,
then, more aligned with the categorical nature of the
model, would be to embed the appropriate transla-
tion into the functorial passage itself. This challeng-
ing goal requires novel theoretical contributions that
will elevate the concept of a pregroup grammar to a
new entity equipped with Frobenius structure.

Finally, the categorical compositional model of
Piedeleu et al. (2015) is very relevant to our inter-
ests, since it can accommodate a variety of non-
commutative Frobenius algebras the linguistic intu-
ition of which in relation to this work remains to be
explored.

Acknowledgements

We would like to thank the three anonymous review-
ers for their comments, and Bob Coecke for great
discussions on the paper. Financial support from
AFOSR is gratefully acknowledged by the authors.

73

References
Wallace L. Chafe. 1976. Givenness, contrastiveness,

definiteness, subjects, topics and point of view. In
Charles N. Li, editor, Subject and Topic. Academic
Press, New York.

B. Coecke, M. Sadrzadeh, and S. Clark. 2010. Math-
ematical Foundations for a Compositional Distribu-
tional Model of Meaning. Lambek Festschrift. Lin-
guistic Analysis, 36:345–384.

Caroline Féry and Manfred Krifka. 2008. Information
Structure: Notional distinctions, ways of expression.
In Piet van Sterkenburg, editor, Unity and diversity of
languages, pages 123–135. John Benjamins Publish-
ing.

Ines Fiedler, Katharina Hartmann, Brigitte Reineke,
Anne Schwarz, and Malte Zimmermann. 2006. Sub-
ject focus in West African languages. In International
Conference of Information Structure, Potsdam.

Z. Harris. 1968. Mathematical Structures of Language.
Wiley.

Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, and Stephen
Pulman. 2012. A unified sentence space for categor-
ical distributional-compositional semantics: Theory
and experiments. In Proceedings of 24th International
Conference on Computational Linguistics (COLING
2012): Posters, pages 549–558, Mumbai, India, De-
cember. The COLING 2012 Organizing Committee.

Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, Stephen Pul-
man, and Bob Coecke. 2014. Reasoning about
meaning in natural language with compact closed
categories and Frobenius algebras. arXiv preprint
arXiv:1401.5980.

Dimitri Kartsaklis. 2015. Compositional Distribu-
tional Semantics with Compact Closed Categories and
Frobenius Algebras. Ph.D. thesis, University of Ox-
ford.

G Maxwell Kelly. 1972. Many-variable functorial cal-
culus (I). In G.M. Kelly, M. Laplaza, G. Lewis, and
S. MacLane, editors, Coherence in categories, pages
66–105. Springer.

J. Lambek. 2008. From Word to Sentence. Polimetrica,
Milan.

T. Landauer and S. Dumais. 1997. A Solution to Plato’s
Problem: The Latent Semantic Analysis Theory of Ac-
quision, Induction, and Representation of Knowledge.
Psychological Review.

Mike Lewis and Mark Steedman. 2013. Combined
distributional and logical semantics. Transactions of
the Association for Computational Linguistics, 1:179–
192.

Saunders Mac Lane. 1971. Categories for the Working
Mathematician. Number 5 in Graduate Texts in Math-
ematics. Springer-Verlag.

C.D. Manning, P. Raghavan, and H. Schütze. 2008. In-
troduction to Information Retrieval. Cambridge Uni-
versity Press.

J. Mitchell and M. Lapata. 2008. Vector-based Models
of Semantic Composition. In Proceedings of the 46th
Annual Meeting of the Association for Computational
Linguistics, pages 236–244.

Richard Montague. 1970. English as a formal language.
In Linguaggi nella Società e nella Tecnica, pages 189–
224. Edizioni di Comunità, Milan.

Robin Piedeleu, Dimitri Kartsaklis, Bob Coecke, and
Mehrnoosh Sadrzadeh. 2015. Open System Cate-
gorical Quantum Semantics in Natural Language Pro-
cessing. In Proceedings of the 6th Conference on Al-
gebra and Coalgebra in Computer Science (CALCO),
Nijmegen, Netherlands, June.

Janet Pierrehumbert and Julia Hirschberg. 1990. The
meaning of intonational contours in the interpretation
of discourse. In Philip Cohen, Jerry Morgan, and
Martha Pollack, editors, Intentions in communication,
pages 271–312. MIT Press, Cambridge MA.

Mats Rooth. 1992. A theory of focus interpretation. Nat-
ural language semantics, 1(1):75–116.

M. Sadrzadeh, S. Clark, and B. Coecke. 2013. The
Frobenius anatomy of word meanings I: subject and
object relative pronouns. Journal of Logic and Com-
putation, Advance Access, October.

M. Sadrzadeh, S. Clark, and B. Coecke. 2014. The
Frobenius anatomy of word meanings II: Possessive
relative pronouns. Journal of Logic and Computation,
June.

H. Schütze. 1998. Automatic Word Sense Discrimina-
tion. Computational Linguistics, 24:97–123.

Peter Selinger. 2011. A survey of graphical languages
for monoidal categories. In Bob Coecke, editor, New
structures for physics, pages 289–355. Springer.

Mark Steedman. 2000. Information structure and
the syntax-phonology interface. Linguistic inquiry,
31(4):649–689.

Mark Steedman. 2001. The Syntactic Process. MIT
Press.

Peter D Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of semantics.
Journal of artificial intelligence research, 37(1):141–
188.

74

Proceedings of the 14th Meeting on the Mathematics of Language (MoL 14), pages 75–86,
Chicago, USA, July 25–26, 2015. c©2015 Association for Computational Linguistics

A Synopsis of Morphoid Type Theory

David McAllester
TTI-Chicago

mcallester@ttic.edu

Abstract

Morphoid type theory (MTT) is a type-
theoretic foundation for mathematics support-
ing the concept of isomorphism and the substi-
tution of isomorphics. Unlike homotopy type
theory (HoTT), which also supports isomor-
phism, morphoid type theory is a direct exten-
sion of classical predicate calculus and avoids
the intuitionistic constructs of propositions-
as-types, path induction and squashing. Al-
though HoTT is capable of supporting clas-
sical inference, MTT’s thoroughly classical
treatment is expected to be more comfortable
for those who take a Platonic or realist ap-
proach to the practice of mathematics.

1 Introduction

The central issue in both homotopy type theory
(HoTT-Authors, 2013) and morphoid type theory
(McAllester, 2014) is isomorphism. The notion
of isomorphism in mathematics seems related to
the notion of an application programming interface
(API) in computer software. An API specifies what
information and behavior an object provides. Two
different implementations can produce identical be-
havior when interaction is restricted to that allowed
by the API. For example, textbooks on real analy-
sis typically start from axioms involving multipli-
cation, addition, and ordering. Addition, multipli-
cation and ordering define an abstract interface —
the well formed statements about real numbers are
limited to those that can be defined in terms of the
operations of the interface. We can implement real
numbers in different ways — as Dedekind cuts or

Cauchy sequences. However, these different im-
plementations provide identical behavior as viewed
through the interface — the different implementa-
tions are isomorphic as ordered fields. The axioms
of real analysis specify the reals up to isomorphism
for ordered fields. Peano’s axioms (the second order
version) similarly specify the structure of the natural
numbers up to isomorphism.

The general notion of isomorphism is best il-
lustrated by considering dependent pair types.
Here we will write a dependent pair type as
PairOf (x :σ, y :τ [x]) where the instances of this
type are the pairs Pair(x, y) where x is an in-
stance of the type σ and y is an instance of τ [x].
The type of directed graphs can be written as
PairOf (N :type, P : (N ×N)→ Bool) where
N is a type representing the set of nodes of the graph
and P is a binary predicate on the nodes giving the
edge relation. Two directed graphs Pair(N , P) and
Pair(M, Q) are isomorphic if there exists a bijec-
tion from N to M that carries P to Q. Some bi-
jections will carry P to Q while others will not.
Two pairs Pair(x, y) and Pair(u,w) of a general
dependent pair type PairOf (x :σ, y :τ [x]) are iso-
morphic if there is a σ-isomorphism from x to u that
carries y to w. Some σ-isomorphisms from x to u
will carry y to w while others will not. This im-
plies that to define isomorphism at general depen-
dent pairs types we need that for any type σ, and
for any two isomorphic values x and u of type σ,
we can define the full set of σ-isomorphisms from
x to u. An interesting special case is the full set of
σ-isomorphisms from x to x. This is the symmetry
group of x.

75

Both Homotopy type theory (HoTT) and mor-
phoid type theory (MTT) are intended as type-
theoretic foundations for mathematics supporting
a concept of isomorphism. HoTT is an exten-
sion of constructive logic while MTT is an exten-
sion of classical predicate calculus. More specif-
ically, HoTT is a version of Martin Löf type the-
ory (Martin-Löf, 1971; Coquand and Huet, 1988;
Sambin and Smith, 1998) extended to includes Vo-
evodsky’s univalence axiom (HoTT-Authors, 2013).
Martin-Löf type theory involves propositions-as-
types and path induction, neither of which are used
in MTT. To accommodate classical (nonconstruc-
tive) inference, HoTT can be extended with a ver-
sion of the law of the excluded middle. However,
even in the classical version propositions continue to
be represented as types rather than Boolean-valued
expressions. To accommodate classical inference
HoTT also includes squashing — a technicality re-
quired to allow propositions-types to be treated more
like Boolean-valued expressions. In MTT all propo-
sitions are Boolean-valued and there is no need for
squashing.

Perhaps the most significant difference between
HoTT and MTT involves the abstraction barrier
imposed on types. In MTT two types are type-
isomorphic if there exists a bijection between them.
In MTT two types with the same cardinality (num-
ber of equivalence classes) cannot be distinguished
by well-typed predicates on types. In HoTT, how-
ever, types with the same cardinality can still be dis-
tinguished by well-typed predicates. In HoTT two
types are equivalent only when they have the same
higher-order groupoid structure. For example, two
graphs fail to be isomorphic unless the node types
have the same higher order groupoid structure. This
can be interpreted as implementation details of a
type leaking from the abstraction barrier on types.
This leakage interpretation is discussed more explic-
itly in section 3.

HoTT allows one to block the leakage of type im-
plementations by squashing types to “sets”. A set
is a type whose internal groupoid structure is effec-
tively suppressed. One can construct the type of
topological space whose point types are sets. In
this case we get the familiar notion isomorphism
(homeomorphism) where two topological spaces are
homeomorphic if there is any bijection between their

points that identifies their open sets. We can then
define the groupoid of topological spaces to be the
category consisting of the topological spaces and
the homeomorphisms between them. This is the
“first order” groupoid of topological spaces. If we
take the point types of topological spaces to be first
order groupoids rather than sets, and restrict the
point bijections to functors, we get the second order
groupoid of topological spaces. We can then define
a third order groupoid and so on. In HoTT we can
even have ω-order groupoids.

In MTT the internal structure of types is ap-
proached in a different way. In MTT natural map-
pings are distinguished from general functions. For
example, there is an isomorphism (a linear bijection)
from a finite dimensional vector space to its dual.
However, there is no natural isomorphism. Although
not covered in this synopsis, MTT takes a function
to be natural if it can be written as a lambda expres-
sion. Lambda expressions (natural functions) have
commutation properties not shared by general func-
tions. Two types σ and τ are cryptomorphic (in the
sense of Birkoff or Rota) if there exists a pair of nat-
ural functions (lambda expressions) f : σ → τ and
g :τ → σ such that f ◦ g and g ◦ f are both identity
functions (viewed as functions on the isomorphism
classes of σ and τ respectively). MTT does not at-
tempt to handle higher order groupoid structure.

This synopsis of MTT is preliminary and many
of the features described here go beyond the fea-
tures covered by soundness proofs in version 4
of (McAllester, 2014). This synopsis should be
viewed as a plan, or program, for the next version
of (McAllester, 2014).

2 The Core Rules of Morphoid Type
Theory

Morphoid type theory starts from the syntax and se-
mantics of classical predicate calculus. In sorted first
order logic every term has a sort and each function
symbol f specifies the sorts of its arguments and the
sort of its value. We write f : σ1 × · · · × σn → τ
to indicate that f is a function that takes n argu-
ments of sort σ1, . . ., σn respectively and which pro-
duces a value of sort τ . The syntax of sorted first or-
der logic can be defined by the following grammar
where function and predicate applications must sat-

76

ε ` typej :typei for j < i
Σ ` τ :typei
x not declared in Σ

Σ; x :τ ` x :τ

Σ ` τ :typei
Σ ` σ :typei

Σ ` (τ → σ) :typei

Σ ` f :σ → τ
Σ ` e :σ

Σ ` f(e) :τ

ε ` Bool :typei
Σ ` Φ:Bool

Σ; Φ ` Φ

Σ; Θ ` Θ
Σ ` Ψ

Σ; Θ ` Ψ

Σ ` Φ:Bool
Σ ` Ψ:Bool

Σ ` (Φ ∨Ψ):Bool

Σ ` Φ:Bool

Σ ` ¬Φ:Bool

Σ; x :τ ` Φ[x] :Bool

Σ ` (∀x :τ Φ[x]) :Bool

Σ ` w :τ
Σ ` u :τ

Σ ` (w =τ u) :Bool

Figure 1: Predicate Calculus Expressions. Here type0, type1, type2, . . . are distinct constants and ε is a constant
denoting the empty context. The first two rules of the first row allow us to derive ε;α : typej ` α : typej thereby
declaring primitive types. We can then declare additional symbols such as c :α or P :α → Bool. The requirement
of j < i in the first rule is needed to avoid Russel’s paradox. The second rule of the second row allows Boolean
assumptions to be introduced into contexts.

isfy the sort constraints associated with the function
and predicate symbols.

t ::= x | c | f(t1, . . . , tn)

Φ ::= P (t1, . . . , tn) | t1 =σ t2

| Φ1 ∨ Φ2 | ¬Φ | ∀x :σ Φ[x]

Note that in the above grammar the equality symbol
=σ is subscripted with a sort σ to which it applies.
The labeling of equality with sorts is important for
the treatment of isomorphism.

Given this basic grammar of terms and formulas it
is standard to introduce the following abbreviations.

Φ ∧Ψ ≡ ¬(¬Φ ∨ ¬Ψ)

Φ⇒ Ψ ≡ ¬Φ ∨Ψ

∃x :σ Φ[x] ≡ ¬∀x :σ ¬Φ[x]

∃!x :σ Φ[x] ≡




∃x :σ Φ[x]
∧∀x, y :σ

Φ[x] ∧ Φ[y]⇒ x =σ y

(∃x :σ) ≡ ∃x :σ x =σ x

We now replace the word “sort” with the word
“type”. To define the set of well formed terms and
formulas we need to specify primitive types and a set
of constant and function symbols each with specified

argument and value types. In formal type systems
this is done with symbol declarations. We write Σ `
t : σ to indicate that the symbol declarations in Σ
imply that t is a well-formed expression of type σ.
For example we have the following.

α :type;
β :type;
c :α;
f :α→ β




` f(c) :β

α :type;
c :α;
f :α→ α;
P :α→ Bool




` P (f(f(c))) :Bool

An expression of the form Σ ` Θ is called a se-
quent where Σ is called the context and Θ is called
the judgement. The sequent Σ ` Θ says that judge-
ment Θ holds in context Σ. We allow a context to
contain both symbol declarations and Boolean as-
sumptions. For example we have

α :type; a :α; b :α;
f :α× α→ α;
∀x :α ∀y :α
f(x, y) =α f(y, x)




` f(a, b) =α f(b, a)

77

Σ ` Φ:Bool
Σ ` Ψ:Bool
Σ; Φ ` Ψ
Σ;¬Φ ` Ψ

Σ ` Ψ

Σ ` Φ:Bool
Σ ` Ψ:Bool
Σ ` Φ

Σ ` Φ ∨Ψ
Σ ` ¬¬Φ

Σ ` Φ:Bool
Σ ` Ψ:Bool
Σ ` Ψ

Σ ` Φ ∨Ψ

Σ ` Φ:Bool
Σ ` Ψ:Bool
Σ ` ¬Ψ
Σ ` ¬Φ

Σ ` ¬(Φ ∨Ψ)

Σ ` ∀x :τ Φ[x]
Σ ` e :τ

Σ ` Φ[e]

Σ;x :τ ` Φ[x] :Bool
Σ;x :τ ` Φ[x]

Σ ` ∀x :τ Φ[x]

Σ ` ∃!x :σ Φ[x]

Σ ` The(x :σ, Φ[x]) :σ
Σ ` Φ[The(x :σ, Φ[x])]

Σ ` e :τ

Σ ` e =τ e

Σ ` u =τ w

Σ ` w =τ u

Σ ` u =τ w
Σ ` w =τ s

Σ ` u =τ s

Σ ` τ :typei
Σ; x :σ ` e[x] :τ
Σ ` w =σ u
Σ, σ, τ and e[x] are pure

Σ ` e[w] =τ e[u]

Σ ` f, g :σ → τ
Σ ` ∀x :σ f(x) =τ g(x)

Σ ` f =σ→τ g

Σ ` τ :typei
Σ ` ∀x :σ ∃y :τ Φ[x, y]
Σ, σ, τ and Φ[x, y] are pure

Σ ` ∃f :σ → τ ∀x :σ Φ[x, f(x)]

Figure 2: Predicate Calculus Inference Rules. The first row is a complete set of rules for Boolean logic. A rule
with two conclusions abbreviates two rules each with the same antecedents. The third rule in the second row handles
definite descriptions (Hilbert’s ι-operator). An expression is “pure” if does not involve any of the constructs introduced
in figure 6. The last row gives the axioms of extensionality and choice.

In higher order predicate calculus the type system
is extended to include not only primitive types but
also function types and we can write, for example,
P (f) where we have f :σ → τ and P : (σ → τ) →
Bool. In the higher order case we can use the fol-
lowing standard abbreviations due to Curry.

σ1 × σ2 → τ ≡ σ1 → (σ2 → τ)

f(a, b) ≡ f(a)(b)

This extends in the obvious way to abbreviations of
the form σ1 × · · · × σn → τ . Without loss of gen-
erality we then need consider only single argument
functions.

Figure 1 gives a set of inference rules for forming
the expressions of higher order predicate calculus.
Each rule allows for the derivation of the sequent be-
low the line provided that the sequents above the line

are derivable. A rule with no antecedents is written
as a single derivable sequent.

Figure 2 gives inference rules for predicate cal-
culus including definite descriptions of the form
The(x : σ, Φ[x]) (Hilbert’s ι-operator) and rules
representing the axiom of extensionality and the ax-
iom of choice.

Figure 3 gives inference rules for dependent pair
types, subtypes, and existential types. A dependent
pair type has the form PairOf (x :σ, y :τ [x]) and
is the type whose instances are the pairs Pair(x, y)
where x is an instance of σ and y is an in-
stance of τ [x]. A subtype expression has the form
SubType(x : σ, Φ[x]) where Φ[x] is a Boolean
expression. This expression denotes the type whose
elements are those elements x in σ such that Φ[x]
holds. We let PairOf(x : σ, y : τ [x] s. t. Φ[x, y])

78

Σ ` σ :typei

Σ; x :σ ` τ [x] :typei

Σ ` PairOf (x :σ, y :τ [x]) :typei

Σ ` PairOf (x :σ, y :τ [x]) :typei

Σ ` u :σ
Σ ` w :τ [u]

Σ ` Pair(u,w) :PairOf (x :σ, y :τ [x])
Σ ` π1(Pair(u,w))

.
= u

Σ ` π2(Pair(u,w))
.
= w

Σ ` p :PairOf (x :σ, y :τ [x])

Σ ` π1(p) :σ
Σ ` π2(p) :τ [π1(p)]
Σ ` p .

= Pair(π1(p), π2(p))

Σ ` e .
= e

Σ ` u .
= w

Σ ` w .
= u

Σ ` u .
= w

Σ ` w .
= s

Σ ` u .
= s

Σ ` u .
= w

Σ ` Θ[u]

Σ ` Θ[w]

Σ ` τ :typei
Σ; x :τ ` Φ[x] :Bool

Σ ` SubType (x :τ, Φ[x]) :typei

Σ ` SubType (x :τ, Φ[x]) :typei
Σ ` e :τ
Σ ` Φ[e]

Σ ` e :SubType (x :τ, Φ[x])

Σ ` e :SubType (x :τ, Φ[x])

Σ ` e :τ
Σ ` Φ[e]

Σ ` σ :typei
Σ; x :σ ` τ [x] :typei

Σ ` (∃x :σ τ [x]) :typei

Σ ` (∃x :σ τ [x]) :typei
Σ ` w :σ
Σ ` e :τ [w]

Σ ` e : (∃x :σ τ [x])

Σ ` e : (∃x :σ τ [x])
Σ; y :σ; z :τ [y] ` Θ[z]
y does not occur free in Θ[z]

Σ ` Θ[e]

Figure 3: Pair Types, Subtypes and Existential Types. Note the use of absolute equality (judgemental equality) .=
in the rules for pair types. We can have two distinct but isomorphic things — we can have a =σ b with a 6 .= b. It
is important that absolute equalities are not Boolean expressions — otherwise the substitution of isomorphics would
yield that a =σ b implies a .

= b.

abbreviate

SubType

(
z :PairOf (x :σ, y :τ [x]) ,
Φ[π1(z), π2(z)]

)
.

The type of groups, abbreviated Group, can then
be written as

PairOf (α :type, f : (α× α)→ α s. t. Φ[α, f])

where Φ[α, f] states the group axioms. For example,
the group axiom that an identity element exists can
be written as

∃x :α ∀y :α f(x, y) =α y ∧ f(y, x) =α y.

The type of topological spaces, denoted TOP, can
be written as

PairOf




α :type,
Open : (α→ Bool)→ Bool,
s. t. Ψ[α,Open]




where Ψ[α,Open] states the topology axioms.
Here the open sets of the topological space are rep-
resented by predicates. Note that the types Group
and TOP are closed type expressions — these type
expressions do not contain free variables.

We should note that subtypes are literally subsets
and, for example, we can derive the sequent

G :AbelianGroup ` G :Group.

Existential types have the form ∃x :σ τ [x] where
τ [x] is a type expression. This is the type whose
members are those values v such that there exists a
value u : σ such that v is in the type τ [u]. Existen-
tial types allow one to express the type of permuta-
tion groups as distinct from the type of groups. A
permutation group is a group whose group elements
are permutations of an underlying set. The type of
permutation groups, denoted PermGroup, has the

79

form

∃α :type ∃P : (Permutation[α]→ Bool) τ [α, P].

Here the predicate P represents a set of permu-
tations on the type α and τ [α, P] is a pair type
specifying a group whose elements are the permu-
tations of α satisfying P and where the group op-
eration is functional composition. Again note that
PermGroup is a closed type expression. The rules
for existential types then allow the derivation of the
sequent

G :PermGroup ` G :Group.

We also have the representation theorem

` ∀G :Group ∃H :PermGroup G =Group H.

However, the isomorphism relations =Group and
=PermGroup are different. Two permutation groups
can be group-isomorphic while operating on un-
derlying sets of different sizes. Such permutation
groups are group-isomorphic but not permutation-
group-isomorphic.

3 Observational Equivalence

Our intention now is to interpret an equation such as
G =Group H as stating that G and H are group-
isomorphic. The significance of isomorphism arises
from the substitution rule of figure 2. The rules
of equality — reflexivity, symetry, transitivity and
substitution — support the congruence closure algo-
rithm for reasoning about equality. The ability to ap-
ply congruence closure to the isomorphism relation
should be of great value in automated reasoning.1

The core rules define a notion of “observational
equivalence” — two closed terms a and b of type σ
are observationally σ-equivalent if for every predi-
cate expression P :σ → Bool (typable by the core
rules) we have P (a) if and only if P (b). We want
=σ to be as course as possible subject to the con-
straint that a =σ b implies that a and b are observa-
tionally σ-equivalent.

The desire to be as coarse as possible while
staying within observational equivalence motivates
the interpretation of type-isomorphism as same-
cardinality. Predicates on types that are well formed

1It is tempting to suggest that congruence closure is of great
value in subconscious human thought.

under the core rules cannot distinguish between
types of the same cardinality.

4 Morphoids

The semantics of morphoid type theory is developed
within a meta-theory of Platonic mathematics — we
adopt the position that it is meaningful to discuss
actual (Platonic) mathematical objects.

The semantics of morphoid type theory is based
on a class of values called morphoids. A rigorous
definition of a class of morphoids for a subset of the
language can be found in (McAllester, 2014) version
4. Here we give some intuition for morphoids and
state some formal properties.

Morphoids are built from “points”. Morphoid
points are analogous to the ur-elements of some
early versions of set theory. General morphoids are
built from points in a manner analogous to the way
that sets are constructed from ur-elements.

A morphoid point has the form Point(i, j) where
i is called the left index and j is the right index of
the point. We define the operations of Left, Right,
inverse and composition on points as follows.

Left(Point(i, j)) = Point(i, i)

Right(Point(i, j)) = Point(j, j)

Point(i, j)−1 = Point(j, i)

Point(i, j) ◦Point(j, k) = Point(i, k)

Here we have that x ◦ y is defined only in the case
where Right(x) = Left(y).

Every morphoid value is either a Boolean value
(True or False), a point, a morphoid type, a pair
of morphoid values, or a morphoid function. The
operations of Left, Right, inverse and composition
are defined recursively on all morphoid values where
x ◦ y is defined when Right(x) = Left(y). We
consider each kind of value in turn.

A morphoid type is a set σ of morphoid values
satisfying certain properties defined in (McAllester,
2014). A fundamental property is the following.

(M) For x, y, x ∈ σ with x◦y−1◦z defined we have
x ◦ y−1 ◦ z ∈ σ.

The following equations define the morphoid op-
erations on types where σ ◦ τ is defined only when

80

σ Left(σ) Right(σ)





Point(a,A), Point(a, Ã),

Point(ã, A), Point(ã, Ã),

Point(b,B), Point(b, B̃),

Point(b̃, B), Point(b̃, B̃),

Point(c, C), Point(c, C̃),

Point(c̃, C), Point(c̃, C̃)









Point(a, a), Point(a, ã),
Point(ã, a), Point(ã, ã),

Point(b, b), Point(b, b̃),

Point(b̃, b), Point(b̃, b̃),

Point(c, c), Point(c, c̃),
Point(c̃, c), Point(c̃, c̃)









Point(A,A), Point(A, Ã),

Point(Ã, A), Point(Ã, Ã),

Point(B,B), Point(B, B̃),

Point(B̃, B), Point(B̃, B̃),

Point(C,C), Point(C, C̃),

Point(C̃, C), Point(C̃, C̃)





σ−1 τ σ ◦ τ




Point(A, a), Point(Ã, a),

Point(Ã, a), Point(Ã, ã),

Point(B, b), Point(B̃, b),

Point(B̃, b), Point(B̃, b̃),

Point(C, c), Point(C̃, c),

Point(C̃, c), Point(C̃, c̃)









Point(A,AA), Point(A, ÃA),

Point(Ã, AA), Point(Ã, ÃA),

Point(B,BB), Point(B, B̃B),

Point(B̃, BB), Point(B̃, B̃B),

Point(C,CC), Point(C, C̃C),

Point(C̃, CC), Point(C̃, C̃C)









Point(a,AA), Point(a, ÃA),

Point(ã, AA), Point(ã, ÃA),

Point(b,BB), Point(b, B̃B),

Point(b̃, BB), Point(b̃, B̃B),

Point(c, CC), Point(c, C̃C),

Point(c̃, CC), Point(c̃, C̃C)





Figure 4: The operations of Left, Right, inverse and composition on point types.

G Left(G) Right(G)

Point(a,A) Point(a,a) Point(A,A)
\ \ \

Point(b,B) Point(b,b) Point(B,B)
/ / /

Point(c,C) Point(c,c) Point(C,C)

G−1 H G ◦H

Point(A,a) Point(A,AA) Point(a,AA)
\ \ \

Point(B,b) Point(B,BB) Point(b,BB)
/ / /

Point(C,c) Point(C,CC) Point(c,CC)

Figure 5: The operations of Left, Right, inverse and composition on abstract morphoid graphs.

81

Right(σ) = Left(τ).

Left(σ) =

{
x1 ◦ x−1

2 : x1, x2 ∈ σ,
Right(x1) = Right(x2)

}

Right(σ) =

{
x−1

1 ◦ x2 : x1, x2 ∈ σ,
Left(x1) = Left(x2)

}

σ ◦ τ =

{
x ◦ y : x ∈ σ, y ∈ τ,
Right(x) = Left(y)

}

σ−1 = {x−1 : x ∈ σ}

A morphoid type whose elements are points is
called a point type. Figure 4 gives examples of mor-
phoid point types and examples of the morphoid op-
erations applied to point types. The morphoid clo-
sure condition (M) implies that for any morphoid
type σ we have that Left(σ) and Right(σ) are
equivalence relations (see figure 4). Note that mor-
phoid types are not required to be closed under in-
verse. This allows types to be directed from left to
right. Again consider the types in figure 4. Fur-
thermore, property (M) implies that any morphoid
type σ defines a bijection between the equivalence
classes of Left(σ) and the equivalence classes of
Right(σ).

A morphoid pair is simply a pair of morphoids.
The morphoid operations on pairs are defined as
follows where again x ◦ y is defined only when
Right(x) = Left(y).

Left(Pair(x, y)) = Pair(Left(x),Left(y))

Right(Pair(x, y)) = Pair(Right(x),Right(y))

Pair(x, y)−1 = Pair(x−1, y−1)

Pair(x, y) ◦Pair(z, w) = Pair(x ◦ z, y ◦ w)

The treatment of morphoid functions involves
subtleties. In this synopsis we note only that for
any two morphoid types σ and τ we can define the
type σ → τ such that for f ∈ σ → τ and x ∈ σ
we can define the application f(x) so that we have
f(x) ∈ τ . Furthermore, these definitions are such
that the elements of the type σ → τ represents all
functions from the equivalence classes of σ to the
equivalence classes of τ . Details, including the defi-
nitions of the morphoid operations on functions, can
be found in (McAllester, 2014).

It is possible to prove that morphoids satisfy the
following properties where properties (G4), (G5),

(G6), and (G9) apply when the compositions are de-
fined.

(G1) For any morphoid x we have that Left(x),
Right(x) and x−1 are also morphoids.

(G2) For any morphoids x and y we have that x ◦ y
is defined if and only if Right(x) = Left(y)
and when x ◦ y is defined we have that x ◦ y is
a morphoid.

(G3) Left(x−1) = Right(x) and Right(x−1) =
Left(x)

(G4) Left(x ◦ y) = Left(x) and Right(x ◦ y) =
Right(y).

(G5) (x ◦ y) ◦ z = x ◦ (y ◦ z).

(G6) x−1 ◦ x ◦ y = y and x ◦ y ◦ y−1 = x.

(G7) Right(x) = x−1 ◦ x and Left(x) = x ◦ x−1.

(G8) (x−1)−1 = x.

(G9) (x ◦ y)−1 = y−1 ◦ x−1.

Properties (G1) through (G9) state that the class
of morphoids forms a groupoid under the morphoid
operations. Figure 5 shows morphoid operations on
graphs whose nodes are points.

5 Abstraction and Isomorphism

The semantic definition of isomorphism relies on an
additional operation on morphoids — the operation
of abstraction. As an example we consider vector
spaces. In morphoid type theory an abstract vector
space is one in which the vectors are points. The
space Rn is a vector space whose vectors are n-
tuples of real numbers. A tuple of real numbers is an
implementation of a vector — a tuple of real num-
bers is not a point. However, we can define an ab-
straction operation such that for any morphoid value
x we have that x@Point is a point. Details can be
found in (McAllester, 2014).

There is an abstraction ordering on morphoids
where x � y if x can be converted to y by ab-
stracting parts of x to points. For every type there
is a set of maximally abstract elements of that type.
The maximally abstract graphs are the graphs whose
nodes are points. The maximally abstract vector

82

spaces are those vector spaces in which the vectors
are points. The maximally abstract types are the
point types. For each morphoid type σ it is possible
to define an abstraction operation mapping x ∈ σ to
x@σ where x@σ is a maximally abstract member of
σ. For example, for any morphoid type σ ∈ typei
we have that σ@typei is the point type whose mem-
bers are the points of the form x@Point for x ∈ σ.
Details can be found in (McAllester, 2014).

The isomorphism relation x =σ y is defined to
mean that x ∈ σ, y ∈ σ, and there exists z ∈ σ
such that (x@σ) ◦ z−1 ◦ (y@σ) is defined. Condi-
tion (M) on morphoid types guarantees that this is
an equivalence relation on the elements of σ.

6 The Semantic Value Function

The semantics of morphoid type theory is an exten-
sion of the sementics of predicate calculus. The
semantics involves three concepts — variable in-
terpretations, semantic entailment, and a semantic
value function. These three concepts are defined
by mutual recursion where the recursion reduces the
size of the expressions involved. A variable inter-
pretation assigns a value to each variable declared
in a given context. More formally, for any well-
formed context Σ we write V JΣK for the set of vari-
able interpretations consistent with declarations and
Boolean assertions in Σ. We define V JΣK by the
following rules where this is undefined if no rule ap-
plies.

• We define V JεK to be the set containing the
empty variable interpretation.

• V JΣ;x :τK is defined if V JΣK is defined, x is
not declared in Σ, and Σ |= τ : typei in which
case V JΣ;x :τK is defined to be the set of vari-
able interpretations of the form ρ[x ← v] for
ρ ∈ V JΣK and v ∈ VΣ JτK ρ.

• V JΣ; ΦK is defined if V JΣK is defined and Σ |=
Φ : Bool in which case V JΣ; ΦK is defined to
be the set of all ρ ∈ V JΣK such that VΣ JΦK ρ =
True.

A semantic entailment is written as Σ |= Θ and
this holds if V JΣK is defined and Θ holds under all
variable interpretations in V JΣK. The entailment re-
lation Σ |= Θ holds if one of the following clauses
applies.

• The entailment Σ |= e :τ holds if V JΣK, VΣ JeK
and VΣ JτK are all defined and for all ρ ∈ V JΣK
we have that VΣ JτK ρ is a morphoid type and
VΣ JeK ρ ∈ VΣ JτK ρ.

• For a Boolean expression Φ, i.e., for Σ |= Φ :
Bool, we have that Σ |= Φ holds if for all ρ ∈
V JΣK we have VΣ JΦK ρ = True.

• We write Σ |= e1
.
= e2 if V JΣK, VΣ Je1K and

VΣ Je2K are all defined and for ρ ∈ V JΣK we
have that VΣ Je1K ρ and VΣ Je2K ρ are the same
value.

For V JΣK defined and for an expression e that is
well-formed in the context Σ, we have a semantic
value function VΣ JeK. The semantic value function
VΣ JeK maps a variable interpretation ρ ∈ V JΣK to
a morphoid value VΣ JeK ρ. For V JΣK defined, the
following clauses state when VΣ JeK is defined and,
when it is defined, define the value VΣ JeK ρ for ρ ∈
V JΣK.

• x. For x declared in Σ and for ρ ∈ V JΣK we have
that VΣ JxK is defined with VΣ JxK ρ = ρ(x).

• Bool. We have that VΣ JBoolK ρ is the type con-
taining the two Boolean values True and False.

• typei. We have VΣ JtypeiK ρ is the type whose
members are all morphoid types in the set-theoretic
universe Vκi where κi is the ith inaccessible cardi-
nal.

• σ → τ. If Σ |= σ : typei, and Σ |= τ : typei,
then VΣ Jσ → τK is defined with VΣ Jσ → τK ρ =
(VΣ JσK ρ)→ (VΣ JτK ρ).

• f(e). If VΣ JfK and VΣ JeK are defined and for
all ρ ∈ V JΣK we have that VΣ JfK ρ can be ap-
plied to VΣ JeK ρ then VΣ Jf(e)K is defined with
VΣ Jf(e)K ρ = (VΣ JfK ρ)(VΣ JeK ρ).

• ∀ x : τ Φ[x]. If Σ; y : τ |= Φ[y] : Bool then
VΣ J∀ x :τ Φ[x]K is defined with VΣ J∀ x :τ Φ[x]K ρ
being True if for all v ∈ VΣ JτK ρ we have
VΣ;y :τ JΦ[y]K ρ[y ← v] = True.

• Φ ∨ Ψ. If Σ |= Φ : Bool and Σ |= Ψ : Bool
then VΣ JΦ ∨ΨK is defined with VΣ JΦ ∨ΨK ρ =
VΣ JΦK ρ ∨ VΣ JρK ρ.

• ¬Φ. If Σ |= Φ : Bool then VΣ J¬ΦK is defined
with VΣ J¬ΦK ρ = ¬VΣ JΦK ρ.

83

Bijection[σ, τ] ≡ SubType(f :σ → τ, ∀y :τ ∃!x :σ f(x) =τ y) a;σ b ≡ ∃z : iso(σ, a, b)

Σ ` σ :typei
Σ ` a :τ
Σ ` b :η

Σ ` iso(σ, a, b) :typei

Σ ` σ, τ :typei
Σ ` f :Bijection[σ, τ]

Σ `l(σ, τ, f) : iso(typei, σ, τ)
Σ ` ∀x :σ x ;l(σ,τ,f) f(x)

Σ ` η : iso(typei, σ, τ)

Σ `↑η→σ :Bijection[η, σ]
Σ `↓η→τ :Bijection[η, τ]

Σ `





∀x :σ ∀y :τ
(x;η y) ⇔
∃z :η ↑η→σ(z) =σ x ∧

↓η→τ (z) =τ y

Σ ` c : iso(σ, a, b)

Σ ` c :σ

Σ ` a :σ, b :σ
Σ ` c : iso(σ, a, b)

Σ ` a =σ c
Σ ` b =σ c

Σ ` a =σ b

Σ ` a;σ b

Σ;x :σ; y :γ[x] ` e[x, y] :τ [x, y]
Σ ` a1 :σ, a2 :σ, a3 : iso(σ, a1, a2)
Σ ` b1 :γ[a1], b2 :γ[a2], b3 : iso(γ[a3], b1, b2)

Σ ` e[a3, b3] : iso(τ [a3, b3], e[a1, b1], e[a2, b2])

Σ ` σ3 : iso(typei, σ1, σ2)
Σ ` f1 :σ1 → τ1, f2 :σ2 → τ2, f3 :σ3 → τ3
Σ; z :σ3 ` f3(z) : iso(τ3, f1(↑σ3→σ1

(z)), f2(↓σ3→σ2
(z)))

Σ ` f3 : iso(σ3 → τ3, f1, f2)

Σ ` c : iso(σ, a, b)
Σ ` Φ[c]

Σ ` c : iso(SubType(x :σ, Φ[x]), a, b)

Σ ` c : iso(τ [d], a, b)
Σ ` d :σ

Σ ` c : iso(∃x :σ τ [x], a, b)

Figure 6: Internalizing Isomorphism. Here iso(σ, x, y) is the type whose elements are the σ-isomorphisms from x
to y. The fourth row gives the rules of iso-substition and iso-extensionality.

• s =σ w. If Σ |= s : σ and Σ |= w : σ then
VΣ Js =σ wK is defined with VΣ Js =σ wK ρ being
True if VΣ JsK ρ =VΣJσKρ VΣ JwK ρ.

• The(x :σ, Φ[x]). If Σ |= ∃!y :σ Φ[y] then

VΣ JThe(x :σ, Φ[x])K ρ =

The(VΣ JSubType(x :σ, Φ[x])K ρ).

• PairOf (x :σ, y :τ [x]) . If Σ |= σ :
typei and Σ; z : σ |= τ [z] : typei
then VΣ JPairOf (x :σ, y :τ [x])K is defined with
VΣ JPairOf (x :σ, y :τ [x])K ρ being the type con-
taining the pairs Pair(v, w) for v ∈ VΣ JσK ρ and
w ∈ VΣ; z :σ Jτ [z]K ρ[z ← v].

• Pair(u,w). If VΣ JuK and VΣ JwK are de-
fined then VΣ JPair(u,w)K is defined with
VΣ JPair(u,w)K ρ = Pair(VΣ JuK ρ, VΣ JwK ρ).

• πi(e). If VΣ JeK is defined and for all ρ ∈ V JΣK
we have that VΣ JeK ρ is a pair then VΣ Jπi(e)K is
defined with VΣ Jπi(e)K ρ = πi(VΣ JeK ρ).

• SubType (x :σ, Φ[x]) . If Σ |= σ : typei
and Σ; y : σ |= Φ[y] : Bool then
VΣ JSubType(x :σ, Φ[x])K is defined with
VΣ JSubType (x :σ, Φ[x])K ρ being the type
whose members are those values v ∈ VΣ JσK ρ with
VΣ; y :σ JΦ[y]K ρ[y ← v] = True.

• ∃x : σ τ [x]. If Σ; y : σ |= τ [y] : typei then
VΣ J∃x :σ τ [x]K is defined with VΣ J∃x :σ τ [x]K ρ
being the type containing those values w such that
there exists u ∈ VΣ JσK ρ with w ∈ VΣ Jτ [y]K ρ[y ←
u].

The morphoid operations can also be defined on
variable interpretations. For ρ ∈ V JΣK we have

84

Σ;α :typei ` γ[α] :typei
Σ ` σ :typei, τ :typei, f :Bijection[σ, τ]
Σ ` a :γ[σ], b :γ[τ], a;γ[l(σ,τ,f)] b

Σ ` Pair(σ, a) =PairOf(α :typei, y :γ[α]) Pair(τ, b)

Σ; α :typei ` δ[α], η[α] :typei
Σ ` σ, τ :typei
Σ ` f :Bijection[σ, τ]
Σ ` a :PairOf(δ[σ], η[σ])
Σ ` b :PairOf(δ[τ], η[τ])

Σ `





(a;PairOf(δ[l(σ,τ,f)], η[l(σ,τ,f)]) b)

⇔
π1(a) ;δ[l(σ,τ,f)] π1(b) ∧
π2(a) ;η[l(σ,τ,f)] π2(b)

Σ; α :typei ` δ[α], η[α] :typei
Σ ` σ, τ :typei
Σ ` f :Bijection[σ, τ]
Σ ` g :δ[σ]→ η[σ]
Σ ` h :δ[τ]→ η[τ]

Σ `





(g ;δ[l(σ,τ,f)]→η[l(σ,τ,f)] h)

⇔
∀x1 :δ[σ]
∀x2 :δ[τ]
(x1 ;δ[l(σ,τ,f)] x2)

⇒ g(x1) ;η[l(σ,τ,f)] h(x2)

Figure 7: Some Derived Rules. The rules in this figure can be derived from the rules in figure 6. The first rule
constructs isomorphism relations at types of the form PairOf(α :typei, y :γ[α]). The rule states that Pair(σ, a) is
isomorphic to Pair(τ, b) if there exists a bijection f from σ to τ that carries a to b. The rules in the second row allow
one to determine whether f carries a to b in the case where γ[α] is a simple type over α (see the text). There are two
base cases not listed in the figure. For γ[α] = α we have that a ;l(σ,τ,f) b if and only if f(a) =τ b. If γ[α] does not
depend on α we have a;γ b if and only if a =γ b.

that Left(ρ) is the variable interpretation that maps
x to Left(ρ(x)). Right(ρ) is defined similarly. For
ρ ∈ V JΣK we have that ρ−1 maps x to ρ(x)−1. For
ρ, γ ∈ V JΣK we have that ρ◦γ is defined if and only
if Right(ρ) = Left(γ) in which case ρ ◦ γ is the
variable interpretation mapping x to ρ(x) ◦ γ(x).

A fundamental property of Morphoid type theory
is that if V JΣK is defined then it is closed under in-
verse and composition — for ρ ∈ V JΣK we have
ρ−1 ∈ V JΣK and for ρ, γ ∈ V JΣK with ρ◦γ defined
we have (ρ ◦ γ) ∈ V JΣK. Furthermore for VΣ JeK
defined and for ρ, γ ∈ V JΣK we have

VΣ JeK (ρ ◦ γ) = (VΣ JeK ρ) ◦ (VΣ JeK γ)

and
VΣ JeK (ρ−1) = (VΣ JeK ρ)−1.

Another fundamental property of the value func-
tion involves the abstraction ordering. The abstrac-
tion ordering can be extended to variable interpreta-
tions where we have ρ � γ if ρ and γ are defined on

the same set of variables and for each variable x we
have ρ(x) � γ(x). The value function is monotone
with respect to the abstraction ordering — for ρ � γ
we have VΣ JeK ρ � VΣ JeK γ.

7 Internalizing Isomorphism

Figure 6 gives inference rules for isomorphism. Fig-
ure 7 gives rules which can be derived from the
rules in figure 6. The first rule in figure 7 de-
rives isomorphisms at types of the form PairOf(α :
typei, τ [α]). We note that types Group and
TOP as defined in section 2 can be written as sub-
types of pair types of this form. The rule states
that two objects Pair(σ, a) and Pair(τ, b) of type
PairOf(α : typei, τ [α]) are isomorphic if there
exists a bijection f from σ to τ which carries a to
b. The two rules in the second row of figure 7 al-
low one to determine whether or not f carries a to
b in the case where τ [α] is a “simple type” over

85

α. To define the simple types we first introduce
the notation PairOf(γ, η) as an abbreviation for
PairOf(x : γ, y : η) in the case where x does not
occur in η. A simple type expression γ[α] over the
type variable α is then defined to be either the vari-
able α itself, a type γ not containing α, or a type
of the form PairOf(δ[α], η[α]) or δ[α] → η[α]
where δ[α] and η[α] are recursively simple type ex-
pressions over α. Subtypes of pair types of the form
PairOf(α : typei, γ[α]) where γ[α] is a simple
type over α covers the types Group and TOP as
well as many other mathematical concepts. We leave
the derivation of the rules in the second row of fig-
ure 7 as a (tricky and tedious) exercise for the reader.

While the rules in figure 7 are adequate in many
situations, they do not cover types such as

Pairof(p :Pairof(typei, typei), y :γ[p])

or
Pairof(G :Group, H :τ [G])

or

Pairof(f :typei → typei, A :τ [f]).

For the general case we need the rules of figure 6.

8 Summary

Morphoid type theory is a type-theoretic foundation
for mathematics supporting the concept of isomor-
phism and the substitution of isomorphics. Mor-
phoid type theory is an extension of classical predi-
cate calculus that avoids the use of propositions-as-
types, path induction or squashing. Morphoid type
theory may be more comfortable for mathemticians
who take a realist or Platonic approach to the prac-
tice of mathematics.

References

Thierry Coquand and Gerard Huet. 1988. The calcu-
lus of constructions. Information and computation,
76(2):95–120.

Martin Hofmann and Thomas Streicher. 1994. The
groupoid model refutes uniqueness of identity proofs.
In Logic in Computer Science, 1994. LICS’94. Pro-
ceedings., Symposium on, pages 208–212. IEEE.

HoTT-Authors. 2013. Homotopy type the-
ory, univalent foundations of mathematics.
http://hottheory.files.wordpress.com/2013/03/hott-
online-611-ga1a258c.pdf.

Per Martin-Löf. 1971. A theory of types.
David McAllester. 2014. Morphoid type theory. CoRR,

abs/1407.7274.
John C. Reynolds. 1983. Types, abstraction and para-

metric polymorphism. In IFIP Congress, pages 513–
523.

Giovanni Sambin and Jan M Smith. 1998. Twenty Five
Years of Constructive Type Theory, volume 36. Oxford
University Press.

86

Proceedings of the 14th Meeting on the Mathematics of Language (MoL 14), pages 87–98,
Chicago, USA, July 25–26, 2015. c©2015 Association for Computational Linguistics

General Perspective on Distributionally Learnable Classes

Ryo Yoshinaka
Kyoto University, Japan
ry@i.kyoto-u.ac.jp

Abstract

Several algorithms have been proposed to
learn different subclasses of context-free
grammars based on the idea generically
called distributional learning. Those tech-
niques have been applied to many formalisms
richer than context-free grammars like mul-
tiple context-free grammars, simple context-
free tree grammars and others. The learning
algorithms for those different formalisms are
actually quite similar to each other. We in
this paper give a uniform view on those algo-
rithms.

1 Introduction

Approaches based on the idea generically called dis-
tributional learning have been making great success
in the algorithmic learning of various subclasses of
context-free grammars (CFGs) (Clark, 2010c; Yoshi-
naka, 2012). Those techniques are applied to richer
formalisms as well. The formalisms studied so far
include multiple CFGs (Yoshinaka, 2011a), simple
context-free tree grammars (CFTGs) (Kasprzik and
Yoshinaka, 2011), second-order abstract categorial
grammars (Yoshinaka and Kanazawa, 2011), par-
allel multiple CFGs (Clark and Yoshinaka, 2014),
conjunctive grammars (Yoshinaka, 2015) and oth-
ers. The goal of this paper is to present a uniform
view on those algorithms.

Every grammar formalism for which distribu-
tional learning techniques have been proposed so
far generate their languages through context-free
derivation trees, whose nodes are labeled by produc-
tion rules. The formalism and grammar rules deter-

mine how a context-free derivation tree τ is mapped
to a derived object τ̃ = d. A context-free deriva-
tion tree τ can be decomposed into a subtree σ and
a tree-context χ so that τ = χ[σ]. The subtree deter-
mines a substructure s = σ̃ of d and the tree-context
determines a contextual structure c = χ̃ in which
the substructure is plugged to form the derived ob-
ject d = c ⊙ s, where we represent the plugging
operation by ⊙. In the CFG case, c is a string pair
⟨l, r⟩ and s is a string u and ⟨l, r⟩ ⊙ u = lur, which
may correspond to a derivation I

∗⇒ lXr
∗⇒ lur

where I is the initial symbol and X is a nontermi-
nal symbol. In richer formalisms those substructures
and contexts may have richer structures, like tuples
of strings or λ-terms. A learner does not know how
a given example d is derived by a hidden grammar
behind the observed examples. A learner based on
distributional learning simply tries all the possible
decompositions of a positive example into arbitrary
two parts c′ and s′ such that d = c′ ⊙ s′ where
some grammar may derive d thorough a derivation
tree τ ′ = χ′[σ′] with χ̃′ = c′ and σ̃′ = s′. Based
on observation on the relation between substructures
and contexts collected from given examples, a hy-
pothesis grammar is computed. We call properties
on grammars with which distributional learning ap-
proaches work distributional properties.

This paper first formally defines grammar for-
malisms based on context-free derivation trees. We
then show that grammars with different distribu-
tional properties are learnable by standard distri-
butional learning techniques if the formalism sat-
isfies some conditions, which include polynomial-
time decomposability of objects into contexts and

87

substructures. In addition, we discuss cases where
we cannot enumerate all of the possible contexts and
substructures.

2 Σ-grammars

There is a number of ways to represent a language,
a subset of an object set O∗, whose elements are
typically strings, trees but anythings encodable are
eligible. Formalisms this paper discusses generate
objects in O∗ through context-free derivation trees
τ , which are mapped to an element d ∈ O∗ in a
uniform way. The map is inductively defined and
computed. Each derivation subtree τ ′ of τ also de-
termines an object, which we call a substructure
of d. Each substructure is not necessarily a mem-
ber of O∗. For example, nonterminal symbols of
multiple CFGs (Seki et al., 1991) derive n-tuples of
strings, where the value n is unique to each non-
terminal, while the languages generated by multiple
CFGs are still simply string sets. A generalization of
the CFG formalism is specified by kinds of objects
that each nonterminal generates and admissible op-
erations over those objects.

Let O be a set of objects, which are identified with
their codes of finite length. We have a set Ω of fi-
nite representations O which are interpreted as sub-
sets OO of O through an effective procedure. By
a sort we flexibly refer to O ∈ Ω or OO ⊆ O.
We also have an indexed family of computable func-
tions from tuples of objects of some sorts to objects
of some sort. Let F be a set of function names or
function indices f , which represent functions f̃ . By
O1× · · ·×On → O0 we denote the set of functions
whose domain is O1 × · · · × On and codomain is
O0. By FO0,O1,...,On , we denote the set of function
names f ∈ F with f̃ ∈ OO1 × · · · × OOn → OO0 .
We assume that the domain sorts O1, . . . , On and the
codomain sort O0 are easily computed from f . We
specify a class of grammars by a triple, which we
call a signature, Σ = ⟨Ω, F, O∗⟩ where O∗ ∈ Ω is a
special sort of objects. We write O∗ for OO∗ .

A context-free Σ-grammar (Σ-grammar for
short) is a tuple G = ⟨N, σ, F, P, I⟩ where N is a
finite set of nonterminal symbols, I ⊆ N is a set of
initial symbols, σ ∈ N → Ω is a sort assignment on
nonterminals such that σ(X) = O∗ for all X ∈ I ,
F ⊆ F is a finite set of function names, and P is a

finite set of production rules, which are elements of
N × F ×N∗. Each production rule is denoted as

X0 ← f⟨X1, . . . , Xn⟩

where X0, . . . , Xn ∈ N and f ∈ FO0,O1,...,On for
σ(Xi) = Oi. For each O ∈ Ω, NO = σ−1(O) ⊆ N
is the set of O-nonterminals which are assigned
the sort O. By G(Σ) we denote the class of Σ-
grammars.

A Σ-grammar defines its language via derivation
trees, which are recursively defined as follows.

• If τi are Xi-derivation trees for i = 1, . . . , n and
ρ is a rule of the form X0 ← f⟨X1, . . . , Xn⟩,
then the term τ0 = ρ[τ1, . . . , τn] is an X0-
derivation tree. Its yield τ̃0 is f̃(τ̃1, . . . , τ̃n) ∈
Oσ(X0) where τ̃i is the yield of τi.

The case where n = 0 gives the base of this re-
cursive definition. An X-derivation tree is com-
plete if X ∈ I . The yield of any X-derivation tree
is called an X-substructure. By S(G,X) we de-
note the set of X-substructures. The language of
G is L(G) =

∪
X∈I S(G,X), which we call a Σ-

language. In other words, L(G) is the set of the
yields of complete derivation trees. The class of Σ-
languages is denoted by L(Σ).

Distributional learning is concerned with what X-
derivation contexts represent. An X-derivation con-
text is obtained by replacing an occurrence of an
X-derivation tree in a complete derivation tree by
a special symbol □σ(X). Accordingly the yield χ̃ of
an X-derivation context χ should be a finite repre-
sentation of a function that gives χ̃[τ] when applied
to τ̃ for any X-derivation tree τ . We assume to have
a set EO of representations of functions from OO to
O∗ for O ∈ Ω to which the yields of derivation con-
texts belong.

• □X is an X-derivation context for all X ∈ I and
its yield □O∗ ∈ EO∗ represents the identity func-
tion on O∗,
• For an X-derivation context χ0, a rule ρ =

X ← f⟨X1, . . . , Xn⟩ and Xi-derivation
trees τi for i ∈ {1, . . . , n} − {j}, the
term χ obtained by replacing □X in χ0

by ρ[τ1, . . . , τj−1,□Xj , τj+1, . . . , τn] is an Xj-
derivation context. Its yield χ̃ ∈ Eσ(Xj), which

88

is denoted as

χ̃ = χ̃0⊙ f̃(τ̃1, . . . , τ̃j−1, □σ(Xj), τ̃j−1, . . . , τ̃n),

represents the function ϕ ∈ Oσ(Xj) → O∗ such
that for all s ∈ Oσ(Xj),

ϕ(s) = ϕ0(f̃(τ̃1, . . . , τ̃j−1, s, τ̃j+1, . . . , τ̃n)) ,

where ϕ0 is the function represented by χ̃0.
The yield of any X-derivation context is called

an X-context. By C(G,X) we denote the set of X-
contexts. For c ∈ C(G,X) and s ∈ S(G,X), c ⊙ s
is the result of the application of the function repre-
sented by c to s.

3 Context-substructure relation

By S and C we denote the set of substructures and
contexts, respectively, which can be obtained by
some grammar in G(Σ):

S =
∪

O∈Ω

SO and C =
∪

O∈Ω

CO where

SO =
∪
{ S(G,X) | X is an O-nonterminal

of some G ∈ G(Σ) }
CO =

∪
{ C(G,X) | X is an O-nonterminal

of some G ∈ G(Σ) }.

We write S∗ for SO∗ . Note that the above definition
is relative to Σ. Even if OO1 = OO2 for different
O1, O2 ∈ Ω, it can be the case that SO1 ̸= SO2 and
CO1 ̸= CO2 . Though usually OO has a definition
independent from Σ, it is possible to specify OO in
terms of the signature so that SO = OO. Clearly if
s ∈ SO and c ∈ CO, then there is a grammar G ∈
G(Σ) generating c⊙s using a nonterminal of sort O.
Therefore, c ⊙ s is well defined for any s ∈ SO and
c ∈ CO without specifying a particular Σ-grammar.
Similarly c⊙ f̃(s1, . . . , sj−1, □Oj , sj+1, sn) is well
defined for any c ∈ CO0 , f ∈ FO0,...,On and si ∈
SOi . This operation is generalized to sets S ⊆ SO

and C ⊆ CO in the straightforward way, like C ⊙
S = { c⊙ s | c ∈ C and s ∈ S }.

Hereafter, whenever we write c ⊙ s and
f̃(s1, . . . , sn), we assume they are well-formed.
That is, the domains of the functions repre-
sented by c and f match the sorts to which s
and s1, . . . , sn belong, respectively. Accordingly

we drop the subscript O from □O and write
f̃(s1, . . . , sj−1, □, sj+1, . . . , sn). When we have a
substructure set S, we assume S ⊆ SO for some
O ∈ Ω. We often identify s with {s} unless confu-
sion arises. Also we assume SO ̸= ∅ for all O ∈ Ω.
The same assumptions apply to contexts.

We are interested in whether the composition c⊙s
belongs to a concerned language L ∈ L(Σ). Clark
(2010b) has introduced syntactic concept lattices to
analyze the context-substring relation on string lan-
guages and particularly to design a distributional
learning algorithm for CFLs. Generalizing his dis-
cussion, we define an O-concept lattice BO(L) of a
language L ⊆ O∗ for respective sorts O ∈ Ω. As-
suming L and O understood from the context, let us
write

S‡ = { c ∈ CO | c⊙ S ⊆ L } ,

C† = { s ∈ SO | C ⊙ s ⊆ L }

for S ⊆ SO and C ⊆ CO. We write S† for S‡† and
C‡ for C†‡ .

We call a pair ⟨S,C⟩ ⊆ SO × CO a concept iff
S† = C and C‡ = S. For any S ⊆ SO and C ⊆
CO, ⟨S†, S‡⟩ and ⟨C†, C‡⟩ are concepts. We call
them the concepts induced by S and C, respectively.
For two concepts ⟨S1, C1⟩ and ⟨S2, C2⟩ in BO(L),
we write ⟨S1, C1⟩ ≤O

L ⟨S2, C2⟩ if S1 ⊆ S2, which
is equivalent to C2 ⊆ C1. With this partial order,
BO(L) is a complete lattice.

We can introduce a partial order to substructure
sets based on the concepts that they induce. Let us
write S1 ≤O

L S2 if S‡
2 ⊆ S‡

1. The relation represents
the substitutability of S1 for S2.

Lemma 1. The following three are equivalent for
S, T ⊆ SO:

• S ≤O
L T ,

• c⊙ T ⊆ L implies c⊙ S ⊆ L for all c ∈ CO,

• T ‡ ⊙ S ⊆ L.

If Si ≤Oi
L Ti for i = 1, . . . , n, then for any

f ∈ FO0,O1,...,On , we have f(S1, . . . , Sn) ≤O0
L

f(T1, . . . , Tn) .

If S1 ≤L S2 and S2 ≤L S1, we write S1 ≡L S2.

89

4 Conditions to be distributionally
learnable

Distributional learning algorithms decompose ex-
amples d ∈ S∗ into contexts c ∈ CO and substruc-
tures s ∈ SO so that c ⊙ s = d. Then a primal
approach uses substructures or sets of substructures
as nonterminals of a conjecture grammar. We want
each nonterminal [[S]] indexed by S ⊆ SO to sat-
isfy S(G, [[S]]) = S†. On the other hand, a dual
approach uses contexts or sets of contexts as non-
terminals where the semantics of the nonterminal is
S(G, [[C]]) = C†. For an object d ∈ S∗, O ∈ Ω and
O⃗ = (O0, . . . , On) with Oi ∈ Ω, we define

SO|d = { s ∈ SO | c⊙ s = d for some c ∈ CO }
CO|d = { c ∈ CO | c⊙ s = d for some s ∈ SO }
FO⃗|d = { f ∈ FO⃗ | c⊙ f(s1, . . . , sm) = d

for some c ∈ CO0|d and si ∈ SOi|d } ,

S|D =
∪d∈D

O∈Ω SO|d, CO|D =
∪d∈D

O∈Ω CO|d and F|D =∪d∈D

O⃗∈Ω∗ FO⃗|d for D ⊆ O∗. Let Ω|D =
∪

d∈D Ω|d for
Ω|d = {O | SO|d ̸= ∅ }.

We require G(Σ) to be a tractable formalism such
that composition and decomposition can be done ef-
ficiently.
Assumption 1. There are polynomial-time algo-
rithms which

• decide whether s ∈ SO from s ∈ S and O ∈ Ω,

• compute f̃(s1, . . . , sn) from si ∈ SOi and f ∈
FO0,O1,...,On ,

• decide whether c ∈ CO from c ∈ C and O ∈ Ω,

• compute c⊙ s from c ∈ CO and s ∈ SO for any
O ∈ Ω.

• decide whether s ∈ L(G) from s ∈ S∗ and G ∈
G(Σ),

Assumption 2. There is p ∈ N such that the arity of
every f ∈ F is at most p.

Assumption 3. There are polynomial-time algo-
rithms that compute SUB(d), CON(d) and FUN(d)
from d ∈ S∗ such that S|d ⊆ SUB(d) ⊆ S, C|d ⊆
CON(d) ⊆ C and F|d ⊆ FUN(d) ⊆ F.

Actually by Assumptions 2 and 3, one can de-
rive the polynomial-time uniform membership de-
cidability. Moreover, it is easy to filter out nonmem-
bers of S|d, C|d and F|d from SUB(d), CON(d) and

FUN(d), respectively, but it is not necessary. As-
sumption 3 implies |Ω|d| is polynomially bounded,
since O ∈ Ω|d iff FO,O1,...,On ̸= ∅ for some
O1, . . . , On.

We write SUBO(D) = SUB(D) ∩ SO,
CONO(D) = CON(D) ∩ CO and FUNO⃗(D) =
FUN(D) ∩ FO⃗.

It is often the case that elements of Ω repre-
sents pairwise disjoint sets. Actually for any sig-
nature Σ, one can find Σ′ = ⟨Ω′, F′, O∗⟩ that sat-
isfies this condition such that L(Σ) = L(Σ′). Let
Ω′ = {O′ | O ∈ Ω } ∪ {O∗} and OO′ = OO ×{O}
for each O ∈ Ω − {O∗}. For f ∈ FO0,...,On with
f̃(s1, . . . , sn) = s0, we have f ′ ∈ F′

O′
0,...,O′

n
with

f̃ ′(s′
1, . . . , s

′
n) = s′

0 where s′
i = (si, Oi) if Oi ∈

Ω − {O∗} and s′
i = si if Oi = O∗. Clearly every

Σ-grammar has an equivalent Σ′-grammar. More-
over, this makes it clear that from s ∈ S one can
immediately specify the unique sort O′ ∈ Ω′ such
that s ∈ OO′ . Similarly we may assume that each
c ∈ C has unique O ∈ Ω such that c ∈ CO and find-
ing that O is a trivial task. Hereafter we work under
this assumption. By O and f we mean OO and f̃ for
notational convenience.

Example 1. A right regular grammar over an alpha-
bet ∆ is a Σreg-grammar for Σreg = ⟨{∆∗}, F, ∆∗⟩.
F has nullary functions which are members of ∆ ∪
{ε} and unary functions fa for fa(w) = aw for all
w ∈ Σ∗ for some a ∈ ∆. Clearly the class of right
regular grammars satisfies Assumptions 1, 2 and 3.

Example 2. A CFG is a Σcfg-grammar for Σcfg =
⟨{∆∗}, F, ∆∗⟩ where each f ∈ F is represented as
an (n + 1)-dimension vector of strings ⟨u0, . . . , un⟩
such that f(v1, . . . , vn) = u0v1u1 . . . vnun for all
vi ∈ ∆∗. The class of CFGs itself satisfies Assump-
tion 1 but not Assumptions 2 and 3, since we have
no limit on n. But several normal forms fulfill As-
sumptions 2 and 3.

Example 3. Let Ω = {O1, O2, . . . } where Om

denotes the set of m-tuples of strings. Linear
context-free rewriting systems, equivalent to non-
deleting multiple CFGs, are Σmcfg-grammars where
O∗ = O1 = ∆∗ and every f ∈ FOm0 ,Om1 ,...,Omn

concatenates strings ui,j occurring in an input
⟨⟨u1,1, . . . , u1,m1⟩, . . . , ⟨un,1, . . . , un,mn⟩⟩ in some
way to form an m0-tuple of strings. The uni-
form membership problem of this class is PSPACE-

90

complete (Kaji et al., 1992). There are infinitely
many ways to decompose a string d into substruc-
tures and contexts as Om ∈ Ω|d for all m. Assump-
tions 1 and 3 will be fulfilled when we restrict ad-
missible functions so that FOm0 ,...,Omn

̸= ∅ only if
n ≤ p and mi ≤ q for all i.

As is the case for multiple CFGs, Assumption 2 is
often needed to make the uniform membership prob-
lem solvable in polynomial-time (Assumption 1).

5 Learning models

Learning algorithms in this paper work under three
different learning models.

A positive presentation (text) of a language L∗ ⊆
O∗ is an infinite sequence d1, d2, · · · ∈ O∗ such that
L∗ = { di | i ≥ 1 }. In the framework of identifica-
tion in the limit from positive data, a learner is given
a positive presentation of the language L∗ = L(G∗)
of the target grammar G∗ and each time a new ex-
ample di is given, it outputs a grammar Gi computed
from d1, . . . , di. We say that a learning algorithm A
identifies G∗ in the limit from positive data if for any
positive presentation d1, d2, . . . of L(G∗), there is
an integer n such that Gn = Gm for all m ≥ n and
L(Gn) = L(G∗). We say that A identifies a class
G of grammars in the limit from positive data iff A
identifies all G ∈ G in the limit from positive data.

We say thatA identifies a class G of grammars in
the limit from positive data and membership queries
when we allow A to ask membership queries (MQs)
to an oracle when it computes a hypothesis grammar.
An instance of an MQ is an object d ∈ O∗ and the
oracle answers whether d ∈ L∗ in constant time.

The third model is the learning with a minimally
adequate teacher (MAT). A learner is not given
a positive presentation but it may ask equivalence
queries (EQs) to an oracle in addition to MQs. An in-
stance of an EQ is a grammar G. If L(G) = L∗, the
oracle answers “Congratulations!” and the learn-
ing process ends. Otherwise, the oracle returns a
counerexample d ∈ (L∗ − L(G)) ∪ (L(G) − L∗),
which is called positive if d ∈ L∗ − L(G) and neg-
ative if d ∈ L(G)− L∗.

When we have an oracle, the learning task itself
is trivial unless we show some favorable property on
the learning efficiency.

6 Learnable subclasses

This section presents how Σ-grammars with distri-
butional properties can be learned. Note that all of
those properties are relative to Σ. We assume Σ-
grammars G∗ = ⟨N∗, σ∗, F∗, P∗, I∗⟩ in this section
have no useless nonterminals or functions. That is,
S(G∗, X) ̸= ∅, C(G∗, X) ̸= ∅ for all X ∈ N∗ and
every f ∈ F∗ appears in some rule in P∗.

6.1 Substitutable Languages
Definition 1 (Clark and Eyraud (2007)). A language
L ∈ L(Σ) is said to be substitutable if for any O ∈
Ω, c1, c2 ∈ CO and s1, s2 ∈ SO,

c1 ⊙ s1, c1 ⊙ s2, c2 ⊙ s1 ∈ L implies c2 ⊙ s2 ∈ L .

The definition can be rephrased as follows:

s‡
1 ∩ s‡

2 ̸= ∅ implies s1 ≡L s2 .

Example 4. Yoshinaka (2008) has proposed a learn-
ing algorithm for k, l-substitutable CFLs, which sat-
isfy the following property:

x1uy1vz1, x1uy2vz1, x2uy1vz2 ∈ L

=⇒ x2uy2vz2 ∈ L

for any xi, yi, zi ∈ ∆∗, u ∈ ∆k and v ∈ ∆l. We
define a signature Σk,l = ⟨Ωk,l, Fk,l, O∗⟩ as fol-
lows. Let Ωk,l = {O∗} ∪ {Ou,v | u ∈ ∆k and v ∈
∆l }∪{Ou | u ∈ ∆<k+l }, where O∗ = ∆∗, Ou,v =
{uwv | w ∈ ∆∗ } and Ou = {u}. Here we put
overlines to make elements of Ω pairwise disjoint.
Let Fk,l = {+α,β | α, β ∈ Ω − {∆∗} } ∪ {□O∗

α |
α ∈ Ω−{O∗} }∪∆. The binary function +α,β con-
catenates two strings from sorts α and β and gives
the right sort in Ω − {O∗}. For example, +α,β ∈ F
with α = Ou,v, β = Ow has codomain Ou,x where
x is the suffix of vw of length l. The unary opera-
tion □O∗

α ∈ FO∗,α simply removes the overline and
“promotes” ū ∈ α to u ∈ O∗. ∆ consists of the
nullary functions giving a single letter from ∆. It is
not hard to see that every CFG has an equivalent Σk,l-
grammar. Note that O∗-nonterminals never occur
on the right hand side of a rule in a Σk,l-grammar.
Hence CO∗ is just the singleton {□O∗} such that
□O∗ ⊙ u = u for all u ∈ ∆∗, whereas Cα ̸= CO∗
contains arbitrary pairs of strings ⟨l, r⟩ ∈ ∆∗ ×∆∗

such that ⟨l, r⟩ ⊙ ū = lur for any ū ∈ α. The Σk,l-
substitutability is exactly the k, l-substitutability.

91

Theorem 1. The class of substitutable Σ-languages
is identifiable in the limit from positive data.

The theorem follows Lemmas 2 and 3 below.
From a finite set D of positive examples, Al-

gorithm 1 computes the grammar SUBSTP(D) =
⟨N, σ, F, P, I⟩ defined as follows:
• NO = { [[s]] | s ∈ SUBO(D) } for O ∈ Ω|D,
• I = { [[s]] | s ∈ D },
• F = FUN(D),
• P consists of the rules of the form

[[s0]]← f⟨[[s1]], . . . , [[sn]]⟩
where f ∈ FUNO0,...,On(D) for [[si]] ∈ NOi if
there is c ∈ CONO(D) such that

c⊙ s0, c⊙ f(s1, . . . , sn) ∈ D .

Since we assume elements of Ω are pairwise dis-
joint, each [[s]] belongs to a unique sort. Otherwise,
each nonterminal should be tagged with a sort like
[[s,O]].

Algorithm 1 Learning substitutable Σ-grammars
Data: A positive presentation d1, d2, . . .
Result: A sequence of grammars G1, G2, . . .
let Ĝ be a grammar such that L(Ĝ) = ∅;
for n = 1, 2, . . . do

let D = {d1, . . . , dn};
if D ⊈ L(Ĝ) then

let Ĝ = SUBSTP(D);
end if
output Ĝ as Gn;

end for

An alternative way to construct a grammar is to
use contexts rather than substructures for nontermi-
nals. One can replace SUBSTP(D) in the algorithm
by SUBSTD(D) which is defined as follows.
• NO = { [[c]] | c ∈ CONO(D) } for O ∈ Ω|D,
• I = { [[□O∗]] },
• F = FUN(D),
• P consists of the rules of the form

[[c0]]← f⟨[[c1]], . . . , [[cn]]⟩
where f ∈ FUNO0,...,On for [[ci]] ∈ NOi if there
are si ∈ SUBOi(D) such that

ci ⊙ si ∈ D for all i and c0 ⊙ f(s1, . . . , sn) ∈ D .

The existing algorithms for different classes of
substitutable languages (Clark and Eyraud, 2007;
Yoshinaka, 2008; Yoshinaka, 2011a) are based on
slight variants of SUBSTP. This paper shows the
correctness of the algorithm using SUBSTD.

Lemma 2. Let D be a finite subset of a Σ-
substitutable language L∗ and G the grammar out-
put by SUBSTD(D). Then L(G) ⊆ L∗.

Proof. One can show by induction on the deriva-
tion that if s ∈ S(G, [[c]]) then c ⊙ s ∈ L∗. Sup-
pose that G has a rule [[c]] ← f⟨[[c1]], . . . , [[cn]]⟩,
si ∈ S(G, [[ci]]) and s = f(s1, . . . , sn). The induc-
tion hypothesis says ci⊙si ∈ L∗ for all i. By the rule
construction, there are ti for i = 1, . . . , n such that
ci ⊙ ti ∈ D ⊆ L∗ and c⊙ f(t1, . . . , tn) ∈ D ⊆ L∗.
We have si ≡L∗ ti since they occur in the same con-
text ci. By Lemma 1, c⊙ f(s1, . . . , sn) ∈ L∗.

Let G∗ = ⟨N∗, σ∗, F∗, P∗, I∗⟩ be a Σ-grammar
generating L∗. Fix sX ∈ S(G∗, X) and cX ∈
C(G∗, X) where cX = □O∗ for X ∈ I∗. Define
D∗ by

D∗ = { cX ⊙ sX | X ∈ N∗ }
∪ { cX0 ⊙ f(sX1 , . . . , sXn)

| X0 ← f⟨X1, . . . , Xn⟩ ∈ P∗ } .

Lemma 3. If D∗ ⊆ D, then S(G∗, X) ⊆
S(SUBSTD(D), [[sX]]) for all X .

Proof. Let G = SUBSTD(D). If G∗ has a rule
X0 ← f⟨X1, . . . , Xn⟩ then G has the correspond-
ing rule [[cX0]]← f⟨[[cX1]], . . . , [[cXn]]⟩, since

cX0 ⊙ f(sX1 , . . . , sXn), cXi ⊙ sXi ∈ D .

In particular since cX for X ∈ I is the identity func-
tion □O∗ , the corresponding nonterminal [[cX]] =
[[□O∗]] is the initial symbol of G, too.

This shows that we do not need too many data to
achieve a right grammar, since |D∗| ≤ |P∗| + |N∗|,
where | · | denotes the cardinality of a set. Moreover,
it is easy to see Algorithm 1 updates its conjecture in
polynomial time in the total size of D by Assump-
tions 1, 2 and 3.

92

6.2 Finite kernel property
Definition 2 (Clark et al. (2009), Yoshinaka
(2011b)). A nonempty finite set S ⊆ Sσ(X) is called
a k-kernel of a nonterminal X if |S| ≤ k and

S(G,X) ≡L(G) S .

A Σ-grammar G is said to have the k-finite kernel
property (k-FKP) if every nonterminal X has a k-
kernel SX .

Theorem 2. Under Assumptions 1, 2 and 3, Algo-
rithm 2 identifies Σ-grammars with the k-FKP in the
limit from positive data and membership queries.

Algorithm 2 Learning Σ-grammars with k-FKP

Data: A positive presentation d1, d2, . . . of L∗;
Result: A sequence of Σ-grammars G1, G2, . . . ;
let D := K := F := J := ∅;
let Ĝ := PRIMALk(K, F, J);
for n = 1, 2, . . . do

let D := D ∪ {dn}; J := CON(D);
if D ⊈ L(Ĝ) then

let K := SUB(D) and F := FUN(D);
end if
output Ĝ = PRIMALk(K,F, J) as Gn;

end for

The conjecture grammar PRIMALk(K, F, J) =
⟨N, σ, F, P, I⟩ of Algorithm 2 is defined from finite
sets of substructures K ⊆ S, functions F ⊆ F and
contexts J ⊆ C. The subsets of those sets corre-
sponding to respective sorts are denoted as KO =
K ∩ SO, JO = J ∩ CO and FO⃗ = F ∩ FO⃗.
• NO = { [[S]] | S ⊆ KO with 1 ≤ |S| ≤ k } for

each O ∈ Ω|D,
• I = { [[S]] ∈ NO∗ | S ⊆ L },
• P consists of the rules of the form

[[S0]]← f⟨[[S1]], . . . , [[Sn]]⟩

where f ∈ FO0,O1,...,On for [[Si]] ∈ NOi if

(S0
‡ ∩ JO0)⊙ f(S1, . . . , Sn) ⊆ L∗ . (1)

The grammar is constructed by the aid of finitely
many MQs. PRIMALk(K,F, J) can be computed
in polynomial time by Assumptions 1, 2 and 3.
A rule [[S0]] ← f⟨[[S1]], . . . , [[Sn]]⟩ is compatible

with the semantics of the nonterminals if S†
0 ⊇

f(S†
1, . . . , S

†
n), which is equivalent to

S0
‡ ⊙ f(S1, . . . , Sn) ⊆ L∗ (2)

by Lemma 1. However, this condition (2) cannot
be checked by finitely many MQs. The condition
(1) can be seen as an approximation of (2), which
is decidable by finitely many MQs. Clearly (2) im-
plies (1) but not vice versa. If a rule satisfies (1) but
not (2), we call the rule incorrect. If a rule is in-
correct, there is a witness c ∈ CO0 − JO0 such that
c⊙ S0 ∈ L∗ and c⊙ f(S1, . . . , Sn) /∈ L∗.

Lemma 4. For every finite K ⊆ S and F ⊆ F there
is J ⊆ C such that Ĝ = PRIMAL(K, F, J) has no
incorrect rules and |J | ≤ |F ||K|k(p+1), in which
case L(Ĝ) ⊆ L∗.

Let SX be a k-kernel of each nonterminal X of a
grammar G∗ = ⟨N∗, σ∗, F∗, P∗, I∗⟩ generating L∗.

Lemma 5. There is a finite subset D ⊆ L∗ such
that SX ⊆ S|D for all X ∈ N∗, F∗ ⊆ F|D and
|D| ≤ k|N∗| + |P∗|. Moreover, if SX ⊆ K for all
X ∈ N∗ and F∗ ⊆ F , then L∗ ⊆ L(Ĝ).

We prove Theorem 2 discussing the efficiency.

Proof of Theorem 2. Clearly Algorithm 2 updates
its conjecture in polynomial time in the data size.
Polynomially (in the size of G∗) many positive ex-
amples will stabilize K and F by Lemma 5. After
K and F stabilized, all the incorrect rules will be re-
moved with at most polynomially (in |K||F |) many
examples by Lemma 4. After that point Algorithm 2
never changes the conjecture, which generates the
target language L∗.

6.3 Congruential grammars
Definition 3 (Clark (2010a)). A Σ-grammar G is
said to be congruential if every s ∈ S(G,X) is a
1-kernel of every X ∈ N .

Congruential Σ-grammars have the 1-FKP. Un-
der the following additional assumption, this special
case will be polynomial-time learnable with a mini-
mally adequate teacher.

Assumption 4. For any derivation tree τ , the size of
its yield τ̃ is polynomially bounded by that of τ .

Theorem 3. Under Assumptions 1, 2, 3 and 4, Al-
gorithm 3 learns any language L∗ generated by a

93

congruential Σ-grammar G∗ with a minimally ad-
equate teacher in time polynomial in |N∗|, |F∗|, ℓ
where ℓ is the total size of counterexamples given
to the learner.

Algorithm 3 Learning congruential Σ-grammars
let K := F := J := ∅;
let Ĝ := PRIMAL1(K,F, J);
for n = 1, 2, . . . do

if L(Ĝ) = L∗ (equivalence query) then
output Ĝ and halt;

else if the given counterexample d is positive
(d ∈ L∗ − L(Ĝ)) then

let K := K∪SUB(d) and F := F∪FUN(d);
else

let J := J ∪WITNESSP(τd,□O∗) where τd

is an (implicit) parse tree of d by Ĝ
end if
let Ĝ = PRIMAL1(K, F, J);

end for

Algorithm 3 uses the same grammar construction
PRIMAL as Algorithm 2 where the parameters K
and F are calculated from positive counterexam-
ples given by the oracle. On the other hand, J is
computed in a different way. By Lemma 4, when
the oracle answers a negative counterexample d to-
wards an EQ, our conjecture Ĝ must use an incorrect
rule to derive d. To find and remove such an incor-
rect rule, Algorithm 3 calls a subroutine WITNESSP
with input (τd,□), where τd is a derivation tree of
Ĝ whose yield is d. To be precise, τd does not
have to be a derivation tree. Rather what we re-
quire is that for each s ∈ S|d, one can compute at
least one tuple of s1, . . . , sn ∈ S|d and f ∈ F|d
such that s = f(s1, . . . , sn) and the height of the
lowest derivation tree of each si is strictly lower
than that of s. Indeed one can do this in polyno-
mial time by a dynamic programming method from
SUB(d) and FUN(d). Yet for explanatory easiness,
we treat such information as an (implicit) derivation
tree τd. The procedure WITNESSP returns a con-
text that witnesses an incorrect rule that contributes
to generating d by searching τd recursively calling
itself. The procedure WITNESSP in general takes a
pair (τ, c) such that τ is an [[s]]-derivation tree of Ĝ
and c ∈ s‡ − τ̃ ‡. Let τ = ρ(τ1, . . . , τn) where ρ =
[[s]]← f⟨[[s1]], . . . , [[sn]]⟩. If c⊙ f(s1, . . . , sn) /∈ L∗

then the rule ρ is incorrect. So WITNESSP returns c
which witnesses the incorrectness of the rule. Oth-
erwise, we have

c⊙ f(s1, . . . , sn) ∈ L∗
c⊙ f(τ̃1, . . . , τ̃n) /∈ L∗

for the yields τ̃i of τi. One can find i such that

c⊙ f(s1, . . . , si−1, si, τ̃i+1, . . . , τ̃n) ∈ L∗
c⊙ f(s1, . . . , si−1, τ̃i, τ̃i+1, . . . , τ̃n) /∈ L∗ .

This means an incorrect rule is in τi. We call
WITNESSP(τi, c⊙ f(s1, . . . , si−1, □, τ̃i+1, . . . , τ̃n)).

Lemma 6. The procedure WITNESSP(τd, □) runs
in polynomial time in ℓ and |d|.

Proof. The number of recursive calls of WITNESSP
is no more than the height of τd, which is at most
|S|d|. Let the instance of the j-th recursive call be
(τj , cj) and χj the derivation context for c = χ̃j .
χj+1 is obtained from χj by replacing at most p
subtrees by a derivation tree whose yield is an el-
ement of K. By Assumption 4, the size of cj and
thus the size of an instance of an MQ is polynomi-
ally bounded by |d|ℓ. WITNESSP runs in polynomial
time.

Lemma 7. Each time Algorithm 3 receives a neg-
ative counterexample, at least one incorrect rule is
removed.

Lemma 8. Let G∗ = ⟨N∗, σ, F∗, P∗, I∗⟩ be a con-
gruential grammar generating L∗. Each time Algo-
rithm 3 receives a positive counterexample, the car-
dinality of the set {X ∈ N∗ | K ∩L(G∗, X) = ∅ }
∪ (F∗ − F) decreases strictly.

Proof of Theorem 3. Time between an EQ and an-
other is polynomially bounded by Lemma 6. By
Lemmas 5 and 8, Algorithm 3 gets at most |N∗| +
|F∗| positive counterexamples. The grammar Ĝ =
PRIMAL(K,F, J) is constructed from those positive
counterexamples, so it has polynomially many rules.
Therefore, by Lemma 7, after getting polynomially
many negative counterexamples, which suppress all
the incorrect rules, Algorithm 3 gets a right grammar
representing L∗.

94

6.4 Finite context property
Definition 4 (Clark (2010b), Yoshinaka (2011b)1).
A nonempty finite set C ⊆ C is called a k-context
of a nonterminal X if |C| ≤ k and

S(G,X) ≡L(G) C† .

A Σ-grammar G is said to have the k-(weak) finite
context property (k-FCP) if every nonterminal X has
a k-context CX .

Theorem 4. Under Assumptions 1, 2 and 3, Algo-
rithm 4 identifies Σ-grammars with the k-FCP in the
limit from positive data and membership queries.

The theorem can be shown by an argument similar
to the proof of Theorem 2 based on Lemmas 9 and
10 below. The discussion on the learning efficiency
of Algorithm 2 is applied to Algorithm 4 as well.

Algorithm 4 Learning Σ-grammars with k-FCP

Data: A positive presentation d1, d2, . . . of L∗;
Result: A sequence of Σ-grammars G1, G2, . . . ;
let D := J := F := K := ∅;
let Ĝ := DUALk(J, F, K);
for n = 1, 2, . . . do

let D := D ∪ {dn}; K := SUB(D);
if D ⊈ L(Ĝ) then

let J := CON(D) and F := FUN(D);
end if
output Ĝ = DUALk(J, F,K) as Gn;

end for

The conjecture grammar DUALk(J, F, K) =
⟨N, σ, F, P, I⟩ of Algorithm 4 is defined from finite
sets of contexts J ⊆ C, functions F ⊆ F and sub-
structures K ⊆ S. For each C ⊆ JO, we write C(K)

to mean C†∩KO. This set can be seen as a finite ap-
proximation of C†, which is computable with MQs.
• NO = { [[C]] | C ⊆ JO with 1 ≤ |C| ≤ k } for

O ∈ Ω|D,
• I = { [[{□∗}]] },
• P consists of the rules of the form

[[C0]]← f⟨[[C1]], . . . , [[Cn]]⟩

where f ∈ FO0,...,On for [[Ci]] ∈ NOi if C0 ⊙
f(C

(K)
1 , . . . , C

(K)
m) ⊆ L∗.

1We adopt the definition by Yoshinaka, which is slightly
weaker than Clark’s.

We say that a rule [[C0]] ← f([[C1]], . . . , [[Cn]]) is
incorrect if C0⊙ f(C†

1, . . . , C
†
n) ⊈ L∗. In that case,

there are si ∈ C†
i such that C0⊙f(s1, . . . , sn) ⊈ L∗.

Lemma 9. For every finite J ⊆ C and F ⊆ F there
is K ⊆ S such that Ĝ = DUAL(J, F, K) has no
incorrect rules and |K| ≤ p|F ||J |k(p+1), in which
case L(Ĝ) ⊆ L∗.

Let G∗ = ⟨N∗, σ∗, F∗, P∗, I∗⟩ generate L∗ and
CX a k-context of each nonterminal X ∈ N∗.

Lemma 10. There is a finite subset D ⊆ L∗ such
that C|D ⊇ CX for all X ∈ N∗, F|D ⊇ F∗ and
|D| ≤ k|N∗| + |P∗|. Moreover, if J ⊇ CX for all
X ∈ N∗ and F ⊇ F∗, then L∗ ⊆ L(Ĝ).

6.5 Context-deterministic grammars
Definition 5 (Shirakawa and Yokomori (1993),
Yoshinaka (2012)2). A Σ-grammar G is said to be
(weakly) context-deterministic if every c ∈ C(G,X)
is a 1-context of every X ∈ NO.

Differently from Theorem 3, we do not need As-
sumption 4 for learning context-deterministic gram-
mars with a minimally adequate teacher.

Theorem 5. Under Assumptions 1, 2 and 3, Al-
gorithm 3 learns any language L∗ generated by a
context-deterministic Σ-grammar G∗ with a min-
imally adequate teacher in time polynomial in
|N∗|, |F∗|, ℓ where ℓ is the total size of counterex-
amples given to the learner.

Proof. By Lemmas 11, 12 and 13 below.

Algorithm 5 uses the same grammar construc-
tion DUAL as Algorithm 4. By Lemma 9, when
the oracle answers a negative counterexample d to-
wards an EQ, our conjecture Ĝ must use an incor-
rect rule to derive d. To find and remove such
an incorrect rule, Algorithm 5 calls a subroutine
WITNESSD with a derivation tree τd of Ĝ whose
yield is d. The procedure WITNESSD returns a fi-
nite set of substructures that witnesses an incorrect
rule that contributes to generating d. An input given
to WITNESSD is in general a [[c]]-derivation tree τ
such that c ⊙ τ̃ /∈ L∗. Let τ = ρ[τ1, . . . , τn] where
ρ = [[c]] ← f⟨[[c1]], . . . , [[cn]]⟩. If there is i such that
ci ⊙ τ̃i /∈ L∗, we recursively call WITNESSD(τi).

2We adopt the definition by Yoshinaka, which is slightly
weaker than Shirakawa and Yokomori’s.

95

Algorithm 5 Learning context-deterministic Σ-
grammars

let J := F := K := ∅;
let Ĝ := DUAL1(J, F, K);
for n = 1, 2, . . . do

if L(Ĝ) = L∗ (equivalence query) then
output Ĝ and halt;

else if the given counterexample d is positive
(d ∈ L∗ − L(Ĝ)) then

let J := J ∪CON(d) and F := F ∪FUN(d);
else

let K := K ∪WITNESSD(τ) where τ is an
(implicit) parse tree of d by Ĝ

end if
let Ĝ = DUAL1(J, F, K);

end for

Otherwise, τ̃i ∈ ci
† for all i, which means the

rule ρ is incorrect. WITNESSD(τ) returns the set
{ τ̃1, . . . , τ̃n }. Differently from the case of WIT-
NESSP, an instance of a recursive call is always an
(implicit) derivation tree of some s ∈ S|d. This ex-
plains why we do not need Assumption 4 in this
case.

Lemma 11. Time between an EQ and another is
polynomially bounded.

Lemma 12. Each time Algorithm 5 receives a neg-
ative counterexample, at least one incorrect rule is
removed.

Lemma 13. Let G∗ = ⟨N∗, σ, F∗, P∗, I∗⟩ be a
context-deterministic grammar for L∗. Each time
Algorithm 5 receives a positive counterexample, the
set {X ∈ N∗ | J ∩ C(G∗, X) = ∅ } ∪ (F∗ − F)
gets shrunk.

6.6 Combined approaches
By combining primal and dual approaches, one
can obtain stronger approaches (Yoshinaka, 2012).
The class of Σ-grammars whose nonterminals ad-
mit either a k-kernel or l-context can be learned by
combining the techniques presented in Sections 6.2
and 6.4 under Assumptions 1, 2 and 3. Also
Σ-grammars whose nonterminals satisfy either the
requirement to be congruential or to be context-
deterministic can be learned with a minimally ade-
quate teacher under Assumptions 1, 2, 3 and 4 (Sec-
tions 6.3 and 6.5).

7 Restricted cases

In some grammar classes, it may be the case that
only (supersets of) C|d and F|d are computable in
polynomial-time but S|d is not, or the other way
around: S|d and F|d are efficiently computable but
C|d is not. For example, in non-permuting paral-
lel multiple CFGs (Seki et al., 1991), elements of
S|d for a string d are tuples of strings of the form
⟨v1, . . . , vm⟩ for d = u0v1u1 . . . vmum and such
substrings are polynomially many if m is fixed.
However, C|d contains exponentially many contexts.
Clark and Yoshinaka (2014) showed that still a dual
approach works for parallel multiple CFGs if nonter-
minals are known to have k-contexts belonging to
a certain subset C ⊆ C such that C|d = C|d ∩ C
is polynomial-time computable. A symmetric re-
sult of a primal approach has also been obtained by
Kanazawa and Yoshinaka (2015) targeting a certain
kind of tree grammars. This section does not postu-
late Assumption 3.

Definition 6. A Σ-grammar G is said to have the
(k,S)-FKP if every nonterminal admits a k-kernel
which is a subset of S.

Assumption 5. There are polynomial-time algo-
rithms that compute SUB(d), CON(d) and FUN(d)
such that S|d ⊆ SUB(d) ⊆ S, C|d ⊆ CON(d) ⊆ C
and F|d ⊆ FUN(d) ⊆ F, where S|d = S ∩ S|d.

It is not hard to see that Algorithm 2 works for
learning Σ-grammars with (k,S)-FKP under As-
sumptions 1, 2 and 5. All discussions in Section 6.2
hold for this restricted case.

The symmetric definition and assumption are as
follows.

Definition 7. A Σ-grammar G is said to have the
(k,C)-FCP if every nonterminal admits a k-context
which is a subset of C.

Assumption 6. There are polynomial-time algo-
rithms that compute SUB(d), CON(d) and FUN(d)
such that S|d ⊆ SUB(d) ⊆ S, C|d ⊆ CON(d) ⊆ C
and F|d ⊆ FUN(d) ⊆ F.

It is not hard to see that under Assumptions 1, 2
and 6, Algorithms 4 work for learning Σ-grammars
with (k,C)-FCP Σ-grammars. All discussions in
Section 6.4 hold for this restricted case.

When learning substitutable languages, even a
weaker assumption suffices.

96

Assumption 7. There are sets S ⊆ S and C ⊆ C
such that for every nonterminal X of G ∈ G(Σ),
we have S(G, X) ∩ S ̸= ∅ and C(G,X) ∩C ̸= ∅.
Moreover, there are polynomial-time algorithms that
compute SUB(d), CON(d) and FUN(d) such that
S|d ⊆ SUB(d) ⊆ S, C|d ⊆ CON(d) ⊆ C and
F|d ⊆ FUN(d) ⊆ F.

Under Assumptions 1, 2 and 7, Algorithm 1
works using either SUBSTP or SUBSTD.

On the other hand, the results on the polynomial-
time MAT learnability of congruential and context-
deterministic Σ-grammars do not hold anymore un-
der any of Assumptions 5, 6 and 7.

8 Extending learnable classes

This section compares learnable classes of Σ-
languages for different Σ with the same special sort
O∗. For Σ1 and Σ2 with Σi = ⟨Ωi, Fi, O∗⟩, if
Ω1 ⊆ Ω2 and F1 ⊆ F2, every Σ1-grammar is a
Σ2-grammar, so L(Σ1) ⊆ L(Σ2). However, since
the distributional properties defined so far are rela-
tive to a signature, a Σ1-grammar with a distribu-
tional property under Σ1 does not necessarily have
the corresponding property under Σ2. Yet if SO and
CO are preserved by moving from Σ1 to Σ2, the dis-
tributional properties other than the substitutability
are preserved.

Let us define the direct union Σ0 = ⟨Ω0, F0, O∗⟩
of arbitrary signatures Σ1 and Σ2 by Ω0 = {O∗} ∪
{ (O, i) | O ∈ Ωi with i ∈ {1, 2} } where O(O,i) =
{ (s, i) | s ∈ O } and F0 = G1 ∪ G2 ∪ {□1, □2},
where Gi is a trivial variant of Fi working on the
new domain and codomain of the form (O, i) and
□i(s, i) = s for all s ∈ O∗. Then every Σi-grammar
G can be seen as a special type of Σ0-grammar by
adding a new initial symbol Z and rules of the form
Z ← □Σi⟨X⟩ for all initial symbols X of G. We
have L(Σ1) ∪ L(Σ2) ⊆ L(Σ0). Every Σi-grammar
that is congruential, context-deterministic, with the
k-FKP or with the k-FCP for i = 1, 2 can be seen as
a Σ0-grammar with those properties. Note that CO∗
is the singleton of the identity function in Σ0, which
means any element of L(G) is a 1-kernel of the new
initial symbol Z. In this way, from two signatures,
one can obtain a richer learnable class of languages.

The above argument on signature generalization
does not hold for substitutable case. Rather the op-

posite holds. If Ω1 ⊆ Ω2 and F1 ⊆ F2, then a lan-
guage substitutable under Σ2 is substitutable under
Σ1 but not vice versa.

Let us say that Σ2 is finer than Σ1 if every sort
of Ω1 is partitioned into finite number of sorts in Ω2

and every function of F2 is a subfunction of some
function in F1 which accords with the partition. That
is, every sort O of Ω1 has a finite set Ω2

O ⊆ Ω2 such
that O =

∪
Ω2

O and F1
O0,...,On

=
∪{F2

O′
0,...,O′

n
|

O′
i ∈ Ω2

Oi
}. For instance, Σk,l is finer than Σk′,l′

for k′ ≤ k and l′ ≤ l in Example 4. If Σ2 is
finer than Σ1, L(Σ1) = L(Σ2) holds. Every lan-
guage substitutable under Σ1 is substitutable under
Σ2 but not vice versa. Moreover, every congruen-
tial (resp. context-deterministic) Σ1-grammar has an
equivalent congruential (resp. context-deterministic)
Σ2-grammar but not vice versa.

9 Grammars with partial functions

Yoshinaka (2015) showed that a dual approach can
be applied to the learning of conjunctive grammars.
Conjunctive grammars (Okhotin, 2001) are CFGs ex-
tended with the conjunctive operation & so that one
can extract the intersection of the languages of non-
terminals. For example, a conjunctive rule A0 →
A1&A2 means that if both A1 and A2 generate the
same string u then so does A0. Conjunctive gram-
mars cannot be seen as Σ-grammars, since the con-
junctive operation & is a partial function whose do-
main is not represented as the direct product of two
sorts, which is not legitimate in the general frame-
work of Σ-grammars.

A partial signature is a triple Π = ⟨Ω, F, O∗⟩
which is defined in the way similar to a (total) sig-
nature but F may have partial functions. Accord-
ingly contexts in C will be partial functions. We do
not have C(G,X) ⊙ S(G,X) ⊆ L(G) any more,
since c ⊙ s may not be defined for some elements
c ∈ C(G,X) and s ∈ S(G, X). The correspon-
dence between O-concept lattices and Σ-grammars
collapses. This prevents the application of the theory
of distributional learning developed in this paper to
Π-grammars. Still we can generalize the discussion
on the learning of conjunctive grammars.

Definition 8. A Π-grammar G is said to have the
strong k-FCP if for any X ∈ NO, there is a finite set

97

CX ⊆ CO with |CX | ≤ k such that

S(G, X) = { s | c⊙ s ∈ L for all c ∈ CX } .

Definition 8 requires every c ∈ CX to be to-
tal on S(G,X). One can learn Π-grammars with
the strong k-FCP under Assumptions 1, 2 and 6,
where C consists of total functions only. The gram-
mar construction DUALk should be modified so that
we have a rule [[C0]] ← f⟨[[C1]], . . . , [[Cn]]⟩ if c ⊙
f(s1, . . . , sn) ∈ L∗ for any c ∈ C0 and si ∈ C

(K)
i

such that f(s1, . . . , sn) is defined. One might think
that one can naturally define context-deterministic
grammars accordingly: Every c ∈ C(G, X) should
be a 1-context of X . However, this means that func-
tions in such a Π-grammar are essentially total.

Acknowledgments

The view presented in this paper has been sharpened
through the interactions and discussions with sev-
eral researchers with whom I worked on the distri-
butional learning of generalized CFGs. I would like
to show my deepest gratitude to Alexander Clark,
Makoto Kanazawa, Anna Kasprzik and Gregory Ko-
bele. Without those people this work would have
been hard to accomplish. Any insufficiency or er-
rors in this paper are of course of my own.

References

Alexander Clark and Rémi Eyraud. 2007. Polynomial
identification in the limit of substitutable context-free
languages. Journal of Machine Learning Research,
8:1725–1745.

Alexander Clark and Ryo Yoshinaka. 2014. Distribu-
tional learning of parallel multiple context-free gram-
mars. Machine Learning, 96(1-2):5–31.

Alexander Clark, Rémi Eyraud, and Amaury Habrard.
2009. A note on contextual binary feature grammars.
In EACL 2009 workshop on Computational Linguistic
Aspects of Grammatical Inference, pp. 33–40.

Alexander Clark. 2010a. Distributional learning of
some context-free languages with a minimally ade-
quate teacher. In J. Sempere and P. Garcı́a, editors,
ICGI, LNCS 6339, pp. 24–37. Springer.

Alexander Clark. 2010b. Learning context free gram-
mars with the syntactic concept lattice. In J. Sempere
and P. Garcı́a, editors, ICGI, LNCS 6339, pp. 38–51.
Springer.

Alexander Clark. 2010c. Towards general algorithms
for grammatical inference. In M. Hutter, F. Stephan,
V. Vovk, and T. Zeugmann, editors, ALT, LNCS 6331,
pp. 11–30. Springer.

Yuichi Kaji, Ryuichi Nakanishi, Hiroyuki Seki, and
Tadao Kasami. 1992. The universal recognition prob-
lems for parallel multiple context-free grammars and
for their subclasses. IEICE Transaction on Informa-
tion and Systems, E75-D(7):499–508.

Makoto Kanazawa and Ryo Yoshinaka. 2015. Distribu-
tional learning and context/substructure enumerability
in non-linear tree grammars. In Formal Grammar -
20th International Conference, FG 2015, Barcelona,
Spain, August 8-9, 2015. Proceedings. to appear.

Anna Kasprzik and Ryo Yoshinaka. 2011. Distribu-
tional learning of simple context-free tree grammars.
In J. Kivinen, C. Szepesvári, E. Ukkonen, and T.
Zeugmann, editors, ALT, LNCS 6925, pp. 398–412.
Springer.

Alexander Okhotin. 2001. Conjunctive grammars.
Journal of Automata, Languages and Combinatorics,
6(4):519–535.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and
Tadao Kasami. 1991. On multiple context-free gram-
mars. Theoretical Computer Science, 88(2):191–229.

Hiromi Shirakawa and Takashi Yokomori. 1993.
Polynomial-time MAT learning of c-deterministic
context-free grammars. Transaction of Information
Processing Society of Japan, 34:380–390.

Ryo Yoshinaka and Makoto Kanazawa. 2011. Distribu-
tional learning of abstract categorial grammars. In S.
Pogodalla and J.-P. Prost, editors, LACL, LNCS 6736,
pp. 251–266. Springer.

Ryo Yoshinaka. 2008. Identification in the limit of
k, l-substitutable context-free languages. In A. Clark,
F. Coste, and L. Miclet, editors, ICGI, LNCS 5278,
pp. 266–279. Springer.

Ryo Yoshinaka. 2011a. Efficient learning of multiple
context-free languages with multidimensional substi-
tutability from positive data. Theoretical Computer
Science, 412(19):1821–1831.

Ryo Yoshinaka. 2011b. Towards dual approaches for
learning context-free grammars based on syntactic
concept lattices. In G. Mauri and A. Leporati, editors,
DLT, LNCS 6795, pp. 429–440. Springer.

Ryo Yoshinaka. 2012. Integration of the dual approaches
in the distributional learning of context-free grammars.
In A. H. Dediu and C. Martı́n-Vide, editors, LATA,
LNCS 7183, pp. 538–550. Springer.

Ryo Yoshinaka. 2015. Learning conjunctive grammars
and contextual binary feature grammars. In A. H.
Dediu, E. Formenti, C. Martı́n-Vide, and B. Truthe,
editors, LATA, LNCS 8977, pp. 623–635. Springer.

98

Proceedings of the 14th Meeting on the Mathematics of Language (MoL 14), pages 99–111,
Chicago, USA, July 25–26, 2015. c©2015 Association for Computational Linguistics

Canonical Context-Free Grammars and Strong Learning: Two Approaches

Alexander Clark
Department of Philosophy,

King’s College London
alexander.clark@kcl.ac.uk

Abstract

Strong learning of context-free grammars is
the problem of learning a grammar which is
not just weakly equivalent to a target gram-
mar but isomorphic or structurally equivalent
to it. This is closely related to the problem
of defining a canonical grammar for the lan-
guage. The current proposal for strong learn-
ing of a small class of CFGs uses grammars
whose nonterminals correspond to congruence
classes of the language, in particular to a sub-
set of those that satisfy a primality condition.
Here we extend this approach to larger classes
of CFGs where the nonterminals correspond
instead to closed sets of strings; to elements
of the syntactic concept lattice. We present
two different classes of canonical context-free
grammars. One is based on all of the primes in
the lattice: the other, more suitable for strong
learning algorithms is based on a subset of
primes that are irreducible in a certain sense.

1 Introduction

This paper is concerned with the problem of strong
learning of context-free grammars in the distribu-
tional framework. One approach, initiated in (Clark,
2014) is to develop strong learning algorithms by
defining canonical grammars based on properties of
algebraic structures associated with the language:
specifically the syntactic monoid of the language. In
that paper a strong learning result was presented for
a subclass of the class of substitutable languages,
languages which have a simple language theoretic
closure property.

In this paper we will extend the canonical gram-
mar ideas to a larger class of grammars, while not
presenting a full strong learning result, for reasons
of space and some technical details not yet resolved.
Rather than using the syntactic monoid, we use
the syntactic concept lattice (SCL), (Clark, 2013),
a richer structure that is suitable for modeling all
context-free grammars. In the case of substitutable
languages the syntactic monoid is almost identical
to the syntactic concept lattice.

We want these canonical grammars to be as un-
ambiguous as possible, and to use as few nontermi-
nals as possible. These two obvious principles pull
in the same direction: a grammar with extra nonter-
minals will typically have extra derivations and thus
a higher degree of ambiguity. Finding some global
minimum leads in general to intractable computa-
tional problems – the set covering problem, a clas-
sic NP-hard problem – and the answer may be in-
determinate (in that there may be two structurally
distinct minima). So rather we stipulate some tech-
nical notion which is more determinate, and can be
efficiently identified (though we do not talk about
the algorithmic issues here). In particular, we want
the grammars defined to be compatible with effi-
cient learning algorithms for context-free grammars
(Yoshinaka, 2012a; Leiß, 2014).

In the case of the monoid, we only have one op-
eration, concatenation, and given a derivation tree
with unlabeled interior nodes, each node in the tree
can only be legally labeled with the unique congru-
ence class of the yield of the subtree. Thus given the
unlabeled trees, the labeling is determined.

In the case of the SCL, we have a lattice struc-

99

ture, and so there are many different possible ways
of modeling the structure, and many different ways
of labeling a given tree from the very specific to the
very general. We previously argued in (Clark, 2011)
that the most general labelings would be optimal;
that view now seems simplistic.

We argue that we should only model those unpre-
dictable parts of the structure, that is to say those
places where the structure differs from the free struc-
ture P(Σ∗). The grammar does not need to state that
{u}◦{v} = {uv} or that {u}∪{v} = {u, v}: these
are true in the free structure. It is only when these are
not equal that we need to represent the difference.

We will give definitions of the basic mathematical
concepts we use in Section 2, including a brief intro-
duction to the syntactic concept lattice in Section 2.4
to make the paper self-contained.

In Section 3 we explain the relation between
strong learning and canonical grammars.

Then in Section 4 we extend the definition of
primes from congruence classes to closed sets of
strings. Section 5 presents our first family of canon-
ical grammars that are based directly on all of the
primes in the language.

In the case of concepts the lattice structure means
that there may be many different concepts that con-
tain a given string, and so in Section 6 we discuss
how to exploit the lattice structure to select a smaller
set of categories that are irreducible in some sense;
and then in Section 7 we present a second family of
canonical grammars based on this restricted subset
of the primes. We finish with a worked example to
illustrate the abstract mathematical discussion and
some discussion.

2 Preliminaries

2.1 Strings, Languages and Contexts

We assume a fixed alphabet Σ and write Σ∗ for the
set of strings. A language is a subset of Σ∗, we
write concatenation of languages L,M as L · M ,
or sometimes just LM . The empty string is λ. We
take a symbol � 6∈ Σ, and using this we define a
context as an element of Σ∗�Σ∗, written l�r. We
define � as l�r � w = lwr, and extend these to
sets of strings and contexts in the usual way. The
empty context λ�λ = � is particularly important:
of course �� w = w.

2.2 Grammars
We define CFGs standardly as a tuple 〈Σ, V, S, P 〉
where S ∈ V is a single start symbol, V is the set
of nonterminals and P is a finite subset of V × (Σ∪
V)∗, written as N → α. The derivation process is
denoted by⇒ and⇒∗. We define

L(G,N) = {w ∈ Σ∗ | N ⇒∗G w}
and define L(G) = L(G,S). We also define the set
of derivation contexts:

C(G,N) = {l�r ∈ Σ∗�Σ∗ | S ⇒∗G lNr}
The following property corresponds to the context-
free property of the derivation process:

C(G,N)� L(G,N) ⊆ L(G).

Two grammars G1 = 〈Σ, V1, S1, P1〉, G2 =
〈Σ, V2, S2, P2〉 are weakly equivalent if L(G1) =
L(G2). They are isomorphic if there is a bijection
φ : V1 → V2, such that φ(S1) = S2 and φ(P1) =
P2, extending φ to productions and sets of produc-
tions in the natural way. Isomorphic grammars are
identical except for a relabeling of the nonterminal
symbols. Clearly isomorphism implies weak equiv-
alence.

2.3 Lattices
We assume some familiarity with lattices: see
(Davey and Priestley, 2002) for basic definitions. We
write >,⊥,∨,∧ as standard. An element x is join-
irreducible iff x = a ∨ b implies a = x or b = x;
dually it is meet irreducible iff x = a ∧ b implies
a = x or b = x. For some lattices, the set of
join irreducible elements and the set of meet irre-
ducible elements can form a “basis” for the lattice, in
that every element can be represented as a finite join
of join-irreducible elements and/or a finite meet of
meet-irreducible elements. In the lattice of all sub-
sets of Σ∗, P(Σ∗) the join irreducible sets are the
singleton sets {w} for any string, and the meet irre-
ducible sets are Σ∗ \ {w}.

A descending chain is a strictly descending se-
quence of elements of a lattice X0 ⊃ X2 ⊃ . . . Xn.
A lattice satisfies the descending chain condition
(DCC) if there are no infinite descending chains. If a
lattice satisfies the DCC, then every nonempty sub-
set has at least one minimal element. We define the
ascending chain condition (ACC) dually.

100

2.4 The Syntactic Concept Lattice
We now describe the syntactic concept lattice
briefly; for fuller descriptions see e.g. (Clark, 2013;
Leiß, 2014; Wurm, 2012). Given a fixed languageL,
we have a Galois connection between sets of strings
and sets of contexts defined, where S is a set of
strings and C is a set of contexts:

S. = {l�r | l�r � S ⊆ L}

and
C/ = {w ∈ Σ∗ | C � w ⊆ L}

.
A closed set of strings is a set of strings S such

that S = S./, a closed set of contexts is one such
that C = C/.. A concept is an ordered pair 〈S,C〉
such that S = C/ and C = S.. In this case both
S and C are closed. We will therefore often re-
fer to a concept through the corresponding closed
set of strings. Note that for any such concept, the
following property holds, which corresponds to the
context-free property of the CFG derivations:

C � S ⊆ L

Clearly w ∈ L iff � ∈ {w}., and so L is closed.
The Syntactic Concept Lattice of L, written B(L)

is the collection of concepts, with the following con-
stants, relations and operations, which we define in
terms of the closed sets of strings alone: S ∨ T =
(S ∪ T)./, S ∧ T = S ∩ T , S ◦ T = (S · T)./,
S ≤ T iff S ⊆ T , > = Σ∗, ⊥ = ∅./. With these
operations B(L) is a complete idempotent semiring,
and furthermore a complete residuated lattice.

This lattice forms a hierarchy of all distribution-
ally definable sets of strings in the language. There
will be a finite number of elements iff the language is
regular. Minimal grammars will have nonterminals
that correspond to elements of the syntactic concept
lattice as shown by (Clark, 2013). Given a context-
free grammar G such that L(G) = L, we define
a universal morphism hL : V → B(L) given by
hL(N) = L(G,N)./. We extend this to a CFG-
morphism in the obvious way. (Clark, 2013) proved
that for all CFGs L(hL(G)) = L. Therefore any
CFG for L can be mapped to a possibly smaller
grammar whose nonterminals are elements of B(L).
We can therefore assume that the nonterminals of the
grammar are elements of B(L).

3 Weak and Strong Learning

We will not present any learning algorithms here,
but the work is motivated by learning considerations
and so we need to make the background assumptions
clear. In standard models of learning, there is a tar-
get grammar G∗ and the learner, using information
only about L(G∗), must eventually return a gram-
mar Ĝ such that L(Ĝ) = L(G∗). In strong learning
(Clark, 2014) in contrast, given the same informa-
tion source, the learner must pick a Ĝ such that Ĝ is
isomorphic to G∗.

(Clark, 2014) observes that the existence of a
canonical grammar is a necessary condition for a
strong learning algorithm. Any strong learning algo-
rithm will implicitly define a canonical grammar for
any language in the class of languages that it learns.
Much of that paper is in fact concerned with pre-
cisely that definition. Accordingly in this paper we
focus on defining a canonical grammar rather than
directly presenting a learning algorithm.

The universal property of the syntactic concept
lattice is an important tool. This means that rather
than dealing directly with CFGs which are arbitrary
and intractable we can deal with the lattices B(L)
which have nice mathematical properties. We can
assume without loss of generality that the nonter-
minals of the grammar will correspond to concepts
or closed sets of strings: to elements of the lattice.
Given this, there is a natural notion of a produc-
tion being correct: X → w is correct if w ∈ X ,
X → Y1 . . . Yn is correct if X ⊇ Y1 · · · · · Yn.

Given that a language that is not regular will have
an infinite number of concepts, we need a principled
way of selecting a finite number of these in an ap-
propriate way so that we have a finite grammar. The
general approach we take is to identify some ele-
ments that are irreducible in some sense with respect
to the algebraic structure of the residuated lattice.

In the case of substitutable grammars, the closed
sets of strings are almost exactly the congruence
classes—except for >,⊥ and {λ}./, every closed
set of strings is either equal to a congruence class
or a congruence class together with λ. There seems
to be only one plausible way to define a grammar,
given that the mathematical structure of the congru-
ence classes is just a monoid. Since this structure is
so simple, there is only one reasonable irreducibility

101

property that we can use to select from the congru-
ence classes: primality, which we define later. In the
case of general CFLs things are unsurprisingly much
more complicated. There seem to be two different
factors to be considered. One factor concerns, as in
the case of the monoid, the concatenation structure
of the strings—the monoid structure of B(L)—and
the other concerns the partial order: the lattice struc-
ture of B(L).

We start by discussing the concatenation structure
in Section 4 and discuss the lattice structure later in
Section 6.

4 Primes

Since a monoid is a very simple algebraic structure,
with a single associative binary operation, there is
only one reasonable technique to define a subset of
elements of the syntactic monoid in such a way that
the grammar based on those elements is well be-
haved. (Clark, 2014) argues that we should repre-
sent only those elements where concatenation differs
from the free operation of concatenation: in other
words where [uv] ⊃ [u][v]. Language theoretically
these represent places where the monoid has some
nontrivial structure and grammatically they provide
evidence for a nontrivial nonterminal: a nontermi-
nal which occurs on the left hand side of more than
one production. Congruence classes which have this
desirable property are called primes.

For a congruence class the definition of a prime
is straightforward. If a nonzero nonunit1 congru-
ence class X has a nontrivial decomposition into
two congruence classes Y, Z such that X = Y · Z
then it is composite. The trivial decompositions are
X = X · [λ] = [λ] · X , where [λ] = {w ∈ Σ∗ |
{w}. = {λ}.}.

In the case of a CFL which is not substitutable,
we need a different criterion, since we may use con-
cepts that are not congruence classes but unions of
congruence classes. This is complicated by the fact
that the empty string may occur in many different
closed sets of strings.

Definition 1. X ∈ B(L∗) is composite if there are
Y,Z ∈ B(L) such that X 6= Y and X 6= Z and
X = Y ·Z. An element of B(L∗) is prime if it is not

1The zero congruence class, if it exists, is ∅/ and the unit is
[λ].

composite. We write P(L∗) for the set of primes of
a language L∗. The unit prime is {λ}./.

We define P(L∗)λ = P(L∗) \ {{λ}./}, the set of
nonunit primes.

Note that here we do not exclude {λ}./. Clearly
for any closed set of strings X = X · {λ}./ =
{λ}./ · X . For the condition to be nontrivial, we
clearly need to exclude such cases, but we also want
to exclude cases such as a∗ = a∗ · a∗ and a∗b∗ =
(a∗b∗) · b∗.
Lemma 1. For every a ∈ Σ, {a}./ is prime.

Proof. Supppose {a}./ = B · C. Since a ∈ {a}./
either a ∈ B and λ ∈ C or vice versa. Assume the
former. Since a ∈ B, this means that B ⊇ {a}./
and since λ ∈ C, this means that B ⊆ {a}./.
Therefore B = {a}./, or, by a similar argument
C = {a}./. Therefore it is prime.

Lemma 2. {λ}./ is prime.

Proof. Suppose {λ}./ = X ·Y . Clearly λ ∈ X,λ ∈
Y . Therefore X ⊆ {λ}./ and Y ⊆ {λ}./. But
if X,Y are in B(L∗), they must both be equal to
{λ}./ since that is the smallest concept that contains
λ.

Definition 2. If X ∈ B(L) and α ∈ P(L)+,
a nonempty string of primes, we write ᾱ for the
concatenation of the primes in α. So if α =
〈A1, . . . , An〉 then ᾱ = A1 · · · · · An. We say that
α is a prime decomposition of X iff ᾱ = X , and
none of the elements of α are unit. In the special
case where X = {λ}./ we consider 〈{λ}./〉 to be a
prime decomposition.

Example 1. If L = {anbn | n > 0}, then the
primes are {a}, {b} and L′ = L ∪ {λ}, together
with >,⊥ and {λ}./. L has the prime decomposi-
tion 〈{a}, L′, {b}〉.

We need to consider two cases: one where a prime
contains λ and one where it does not. If a closed
set of strings contains the empty string, that means
that it represents an optional category; it can be re-
placed by the empty string. If X is a closed set of
strings that contains λ and X = Y · Z, then clearly
λ ∈ Y ∩Z and Y ⊆ X and Z ⊆ X . Therefore a de-
composition of a concept that contains λ will be into

102

proper subsets of that concept. Decompositions us-
ing concepts with λ may not terminate, if the lattice
has infinite descending chains.

Example 2. Let L1 = (ba)∗, and Ln = Ln−1 ·
(ban)∗. Consider the language L =

⋃
n Ln. This

is a closed set of strings with an infinite descending
chain L ⊃ L \ L1 ⊃ L \ (L1 ∪ L2) · · · . For each
n, (ban)∗ is closed and prime, and L has no finite
prime decomposition.

Lemma 3. If B(L∗) satisfies DCC then every ele-
ment has a prime decomposition.

Proof. IfX is prime, then it has a length one decom-
position, 〈X〉. Define the width of a non empty set
of strings to be the minimum length of a string in the
set. If it contains the empty string, then the width is
zero.

Let M be the set of all non-zero non-unit con-
cepts without prime decompositions. Suppose it is
nonempty; then it has at least one minimal element,
by the DCC. Take a minimal element of minimal
width, X . Suppose X has width n. It is not prime
by assumption and so X = Y · Z. Case 1: width
of X is zero and so both Y and Z contain the empty
string: therefore Y, Z are both proper subsets of X .
Therefore they are not in M (since X is minimal).
Moreover they are not zero or unit, therefore they
have prime decompositions such that Y = ᾱ and
Z = β̄ and therefore αβ is a decomposition of X .
Case 2: the width of X is greater than zero; and the
width of Y and Z are both less than width of X .
Then Y and Z are both not in M and therefore both
have prime decompositions and therefore so doesX .
Case 3: the width of X is greater than zero, and one
of Y or Z had width zero. Assume that λ ∈ Y (the
other case is identical), then Z is a proper subset of
X and therefore has a prime decomposition, and Y
has width less than X and is therefore also has a
prime decomposition.

These decompositions aren’t necessarily unique,
but this lemma shows that the set of primes is suffi-
ciently large to express any concept we want through
finite concatenations.

It is not the case that every closed set of strings
that is composite has a unique prime decomposition;
even if we restrict ourselves to maximal decomposi-
tions: decompositions where no element can be re-

placed with a larger one. Clearly we can decompose,
for example a∗ into {λ, ak} · (a∗ \ {ak}) for any k,
and for a suitable language these can be prime.

Example 3. Consider the language L = {a, aa}
this has closed sets of strings A = {a} and B =
{λ, a}. L = A · B = B · A. So L is composite
and it has two distinct prime factorisations, which
are clearly both maximal.

It simplifies the analysis here if we assume that
all the concepts in a language have unique prime de-
compositions; accordingly we will restrict ourselves
to that case for the moment, though we will remove
this requirement in Section 7.

Definition 3. A language has the unique factorisa-
tion property (UFP) if every closed set of strings
with a nonempty distribution has a unique maxi-
mal prime factorisation; as before we stipulate that
{λ}./ has such a unique factorisation.

If a language has the UFP, and P is a closed set
of strings, then we can write Φ(P) for the unique
prime factorisation, which is a string of primes, in
the case of P , is the length 1 string. If α = Φ(P)
then ᾱ = P .

Now if we have languages which are UFP, DCC
and a finite number of primes, then we can define a
unique grammar.

Definition 4. We define the class of languages LP

to be the set of languages which satisfy all of the
following three conditions:

1. the unique prime decomposition property,

2. have no infinite ascending or descending
chains,

3. and have a finite number of primes.

All substitutable context free languages with a fi-
nite number of primes satisfy these conditions and
so this is an extension of the approach in (Clark,
2014). All regular languages have a finite number
of primes and therefore satisfy the chain conditions,
but may not be uniquely decomposable.

Suppose we have a language L ∈ LP and a prime
N , we can construct a set of productions with N on
the left hand side as follows.

Definition 5. Let Γ ⊆ B(L)+. We define a preorder
on these strings by α - β iff ᾱ ⊆ β̄.

103

The maximal elements of Γ wrt this pre-order are
the elements

max Γ = {α ∈ Γ | ∀β ∈ Γ, β̄ ⊇ ᾱ⇒ ᾱ = β̄}.

Definition 6. Define Γ(N) = {α ∈ P(L)+λ | N ⊃
ᾱ}. We can take the maximal elements of this set:

max(Γ(N)) = {α ∈ Γ(N) | ∀α′ ∈ Γ(N), ᾱ′ ⊇
ᾱ⇒ α′ = α}

The elements of max(Γ(N)) will be the right
hand sides of productions with N on the left hand
side.

Lemma 4. If α ∈ Γ(N) then there is an α′ ∈
max(Γ(N)) such that ᾱ ⊆ ᾱ′.

Proof. Consider the set {γ ∈ Γ(N) | γ̄ ⊇ ᾱ}. If
B(L) has no infinite ascending chains, then every
non empty set has a maximal element; so let α′ be
a maximal element of this set which clearly satisfies
the condition required.

Note that 〈N〉 is not in Γ(N), since we require a
strict superset relation; this saves the definition from
vacuity. If we have infinite ascending chains then we
may not have a maximal element. This motivates the
use of an ascending chain condition.

5 Canonical Grammar based on primes

We are now in a position to define a set of canonical
grammars for LP. Given the nature of the problem it
is inevitable that we will have to have a large num-
ber of restrictions on the sorts of grammars that we
can learn. There are two ways of framing these re-
strictions either as restrictions on the grammars that
generate the language or as language theoretic re-
strictions themselves. Here we stick to the latter ap-
proach; we take a language, and define criteria that
define a class of languages. As the reader will see
though, we can express the constraints we need in
purely language theoretic terms, though those con-
straints will correspond naturally to finiteness con-
straints on the various sets of nonterminals and pro-
ductions.

Definition 7. For each language L ∈ LP we define
the grammar GP(L) as the tuple 〈Σ, V, S, P 〉 where

• S is a distinguished symbol,

• V = {S} ∪P(L)λ. If >. = ∅ then we remove
> from V : if ⊥ = ∅ then we remove ⊥,

• P is the union of the following sets of produc-
tions, for all N ∈ P(L)λ

N → a if a ∈ N , and a ∈ Σ

N → λ if λ ∈ N
N → α for all α ∈ max(Γ(N))

S → Φ(L).

Lemma 5. For every prime N , L(G,N) ⊇ N .

Proof. Induction on length of w. Base case; |w| ≤
1. in which case if w ∈ N then there is a rule N →
w. Otherwise if w ∈ N and w = a1 . . . an where
ai ∈ Σ, then since N ⊇ a./1 . . . a./n , and each a./i
is prime, we know that we have a correct production
〈a./1 . . . a./n 〉 ∈ β(N). Therefore there is some α ∈
γ(N) such that w ∈ ᾱ, and a production N → α.
Since w ∈ ᾱ we must have strings w1 . . . wk = w
such that k = |α|, and for each 1 ≤ i ≤ k wi ∈ Ni

and α = N1 . . . Nk.
By induction otherwise each wi has length less

than n and thus Ni
∗⇒ wi, and therefore N ∗⇒ w.

We should also consider the case where k = 1, in
which case we have a unary rule, and the case where
all but one of the wi have length 0. In both cases
we have one prime Q strictly less than N , and since
we have a finite number of primes, and no unary cy-
cles a simple induction on the derivation height will
suffice.

Lemma 6. The canonical grammar for G is finite
and generates L.

Proof. Note that all rules are correct and thus by in-
duction we can show that L(G,N) ⊆ N , which
combined with the previous lemma tells us that
L(G,P) = P for all primes.

It is finite since we cannot have two productions
whose right hand sides start with the same prime.
Note that B(L) is a residuated lattice and that for
any two closed sets of strings X,Y , X\Y = {w |
X · {w} ⊆ Y } is closed. If P → Nα and P → Nβ
are both productions with |α| > 0, |β| > 0 then
since α ≤ N\P we have that α = β since they
are both equal to the unique prime factorisation of
N\P . Therefore if there are only n primes, we can

104

have at most 2n+ |Σ|+1 productions with P on the
left hand side.

Finally we verify that S generates the right
strings, which is immediate. Either L is prime, in
which case it is trivial since we have a production
S → L, or L has prime decomposition N1 . . . Nk,
in which case we can see that the production S →
N1 . . . Nk combined with the fact that L(Ni) = Ni,
gives the fact that L(S) = L.

This gives us a canonical grammar class for LP but
the grammars are still very redundant and ambigu-
ous. In the next section we consider how to select a
smaller set of nonterminals.

Lemma 7. Every language with a finite number of
primes and no infinite chains is a context free lan-
guage.

Proof. Clearly LP is a proper subset of the context
free languages, but even if we have no unique prime
decomposition, we can still get a CFG by picking
some shortest prime decomposition nondeterminis-
tically.

We can weaken these conditions as we shall see as
they are not necessary conditions; here is an example
of a CFL with infinite chains that still receives an
adequate canonical grammar.

Example 4. Let L = {w ∈ {a, b}+ : |w|a > |w|b}
The congruence classes are obviously indexed by
|w|a − |w|b. Call these En = {w | |w|a − |w|b =
n}. The closed sets of strings are Cn = {w |
|w|a − |w|b ≥ n}. L = C1 is prime, C−1 is
prime, C0 is prime. Cn for n > 1 are composite.
Cn ◦ Cm = Cn+m.
C2 = C1 ◦ C1 = b./ ◦ b./ and it is composite.

Since C1 = E1 ∪ C0, C1 · C1 = (E1 ∪ C0) · (E1 ∪
C0) = E1 ·E1 ∪ (E1 ·C0) ∪ (C0 ·C0) ∪ (C0 ·E1).
Since λ ∈ C0 this means that C1 · C1 ⊇ C0 ∪ E1 ∪
E2 = C2. Ergo this is composite. Therefore there
are exactly three primes. However this still has a
simple canonical grammar.

6 Lattice structure

For general context-free languages there may be
very many prime concepts, and as a result gram-
mars based on all primes may be excessively am-
biguous, and unsuitable for the description of natural

languages.2 Indeed there are finite languages where
the number of primes is exponential in the number
of strings in the language.

Example 5. For some large Σ = {a1, . . . , an} de-
fine L = {aiaj | i 6= j}. Clearly |L| = n(n − 1).
Every nonempty proper subset X of Σ is closed; de-
fined by the set of contexts {�ai | ai 6∈ X}. B(L)
therefore has 2n + 1 concepts, none of which are
composite.

In as case such as this the grammar defined by
GP(L) will be exponentially larger than |L|; which
is clearly undesirable.

Moreover, the previous approach relies on the
number of primes in the language being finite. Many
simple languages have an infinite number of primes
though, and so it is natural to try to extend this ap-
proach by considering some additional properties
that might serve to pick out a finite subset of these
primes. We need some additional constraints to get
smaller and less ambiguous grammars. While it is
natural to look to the meet and join irreducible ele-
ments of the syntactic concept lattice, it seems better
to use a slightly larger set; the images of the irre-
ducible elements of the free lattice. We call these
semi-irreducible; we would like to use the terms
join-prime and meet-prime, but these already have
different meanings in lattice theory.

Definition 8. Suppose X ∈ B(L); we say that X is
join-semi-irreducible (JSI) if X = {w}./ for some
w ∈ Σ∗. we say that X is meet-semi-irreducible
(MSI) if X = {l�r}/ for some l, r ∈ Σ∗.

Observe that if X is join-semi-irreducible then it
contains some strings that are not in any lower con-
cepts. Similarly if X is meet-semi-irreducible then
it contains some contexts that do not occur in any
higher concepts. Note that L is always MSI.

We will illustrate this with a simple example, us-
ing a finite language.

Example 6. Consider the language generated by the
CFG, S → AX,S → BY , A → a,A → c, A →
m,B → b, B → c, X → x,X → z,X → m,Y →
y, Y → z. This is a finite language which consists
of 11 strings, all of length 2. The string cz receives
two parses under this grammar:

2We do not discuss here the difficult question of whether nat-
ural language grammars exhibit spurious ambiguity—syntactic
ambiguity that does not relate to semantic ambiguity.

105

S

X

z

A

c

S

Y

z

B

c

Figure 1 shows the lattice for this language. Note
that the ambiguous letters/words {c,m, z} are at the
bottom of the diagram. For example {c}. = C(A)∪
C(B); this is clearly JSI, since it is defined by c, but
not MSI. At the top of the diagram are concepts that
are MSI, but not JSI. In the middle, marked with
boxes we have the concepts that are MSI-JSI.

We can represent every element either as a meet
of MSI-concepts or a join of JSI-concepts.

Lemma 8. For any X ∈ B(L), X =
⋃{{w}./ |

w ∈ X} and X. =
⋃{{l�r}/. | l�r ∈ X.}.

We can now discuss the role of these concepts.
Suppose we have some derivation in a grammar
S
∗⇒ lNr

∗⇒ lwr, where N is the nonterminal cor-
responds to some concept.

This places two constraints on N . On the one
hand l�r ∈ N., in other words N ≤ {l�r}/,
which is an MSI-concept. On the other hand w ∈ N
in other words N ≥ w./, a JSI-concept. Clearly
{l�r}/ ≥ w./ since lwr ∈ L. In the special case
where {l�r}/ = w./, we know then that this must
be the value of N . Therefore the elements that are
MSI, JSI and primes are very special.

Definition 9. A closed set of strings is an MSI-JSI-
prime, if it is MSI, JSI and prime.

7 Grammar based on MSI-JSI-primes

We now consider how to define a class of grammars
where the nonterminals consist only of the set of
MSI-JSI-primes. Rather than requiring that the lat-
tice contains no infinite chains, and using the UFP,
we define a weaker property, which more directly
determines the finiteness of the relevant sets of pro-
ductions. We define the non-standard term finitely
Noetherian.

Definition 10. We say that a set Γ ⊆ B(L)+, with
the pre-order -, is finitely Noetherian if |max Γ| is
finite and every element of Γ is less than some max-
imal element.

A set can fail to be finitely Noetherian either be-
cause it has infinite ascending chains with no max-
imal elements, or because it has an infinite number
of maximal elements.

Definition 11. LMJ is the set of all languages L such
that

1. L is nonempty and does not contain λ.

2. There are a finite number of MSI-JSI-primes;
we let V denote the set of MSI-JSI-primes, ex-
cept for {λ}./, > if >. = ∅, and ⊥ if ⊥ = ∅.

3. For each a ∈ Σ and each l�r ∈ a. there is
some X ∈ V such that a ∈ X and l�r ∈ X..

4. For every X ∈ V , {α ∈ V + | ᾱ ⊂ X} is
finitely Noetherian.

5. {α ∈ V + | ᾱ ⊆ L} is finitely Noetherian.

LMJ is incomparable with LP, as the following two
examples show.

Example 7. L = {ax, bx, ay, cy, bz, cz}. This lan-
guage in is LP but not LMJ as there are no MSI-JSI-
primes that contain for example a. {a, b} is MSI as it
is defined by �x, but not JSI. {a} on the other hand
is JSI but not MSI.

Example 8. L = {anxbn | x ≥ 0} ∪ {anxbn |
x ≥ 0}. This is in LMJ but not LP. Note that for all
n, {bn, cn} is closed and MSI as it is defined by the
single context anx�, and is clearly prime, but not
JSI. Therefore there are infinitely many primes. The
MSI-JSI-primes are only {anxbn | x ≥ 0}, {anxcn |
x ≥ 0}, {a}, {b}, {c} and {x}.
Definition 12. If L ∈ LMJ and V is the set of MSI-
JSI-primes, then for a set of strings X we write
Γ(X) = {α ∈ V + | ᾱ ⊂ X}, and ∆(X) = {α ∈
V + | ᾱ ⊆ X}.
Definition 13. For every language L in LMJ, we de-
fine a grammar

GMJ(L) = 〈V ∪ {S}, S, PL ∪ PB ∪ PS〉

where

• V is the set of MSI-JSI-primes of L.

• S is a distinguished symbol.

106

>

{b, c} {a, c,m} {z, x,m} {z, y}

{z}{c}

{a, b, c,m} {x, y, z,m}

{m}

L {λ}

⊥

Figure 1: Hasse diagram of the syntactic concept lattice of language in Example 6. All of these elements are prime.
The boxed elements are those which are both MSI and JSI, which, apart from the empty string concept, correspond to
the nonterminals of the original grammar. {a, b, c,m} is MSI, since it is equal to {�z}/, but it is not JSI.

• PL is the set of all productions X → a such
that X ∈ V , a ∈ Σ ∪ λ and a ∈ X , and there
is no Y ∈ V such that a ∈ Y and Y < X .

• PB is the set of productions X → α for every
X ∈ V and for every α ∈ max Γ(X)

• PS is the set of productions S → α for every
α ∈ max ∆(L).

Note that by Definition 11, this is finite and a CFG.
We now show that this grammar will generate all

of the strings in the language. We do this by a joint
induction on the length of the strings and the height
of the nonterminals in the lattice; it seems easier to
write these proofs as reductios.

Lemma 9. For any X ∈ V , If λ ∈ X then

X
∗⇒G∗ λ.

Proof. Suppose this is false. Take a minimalX ∈ V
such that λ ∈ X but it is not the case thatX ∗⇒G∗ λ.
If X is a minimal element of the set of nontermi-
nals that contain λ then there would be a produc-
tion X → λ in G∗; therefore X is not minimal.
Let Y be some nonterminal less than X such that
λ ∈ Y . Since X is minimal we have Y ∗⇒ λ. Now
〈Y 〉 ∈ Γ(X) so there is some production X → α
such that ᾱ ⊇ Y . Now if α = Z1 . . . Zk then each
of the Zi must be a proper subset of X that contains

λ, (since λ ∈ Y ⊆ ᾱ). Since they are proper sub-
sets we have Zi

∗⇒ λ and thus X ∗⇒ λ which is a
contradiction.

Lemma 10. For any a ∈ Σ and X ∈ V , if a ∈ X
then

X
∗⇒G∗ a.

Proof. We use just the same argument as the pre-
vious proof, except that when we consider α =
Z1 . . . Zk, there must be at least one i such that a ∈
Zi and λ ∈ Zj for all j 6= i. By Lemma 9, Zj

∗⇒ λ,
by minimality of the counterexample Zi

∗⇒ a, and
therefore X ∗⇒ a.

Lemma 11. For any w = a1 . . . an ∈ {l�r}/ for
some l�r, there are A1, . . . , An ∈ V such that ai ∈
Ai, and

〈A1 . . . An〉 ⊆ {l�r}/.
Proof. By induction on n. Base case, n = 1 is trivial
by Part 3 of Definition 11.

Clearly a1 ∈ {l�a2 . . . anr}/. Pick some A1 ∈
V such that a1 ∈ A1 and l�a2 . . . anr ∈ A.1. Since
A1 ∈ V there is some v1 such that A1 = v./1 . Since
a2 . . . an ∈ {lv1�r}/ then by the inductive hypoth-
esis there are A2, . . . , An such that 〈A2 . . . An〉 ⊆
{lv1�r}/, and therefore

〈A1 . . . An〉 ⊆ {l�r}/.
The result then follows by induction.

107

Lemma 12. For anyX ∈ V , w ∈ X if |w| > 1 then

X
∗⇒ w.

Proof. Suppose this is false for some w and X; pick
a shortest w and a minimal X .

By Lemma 10, |w| > 1. Let w = a1 . . . an. Let
l�r be some context such that X = {l�r}/. By
Lemma 11, we know that we have some A1 . . . An
such that 〈A1 . . . An〉 ⊆ X , ai ∈ Ai, for 1 ≤ i ≤ n.
Since X is a prime, we know that 〈A1 . . . An〉 ⊂
X . Therefore there is some X → β such that
〈A1 . . . An〉 ⊆ β̄. Let β = B1 . . . Bk for some
k ≥ 1. Now w ∈ β̄. Therefore there are strings
v1 . . . vk = w such that vj ∈ Bj , 1 ≤ j ≤ k. Now
for each vj , Bj either |vj | < |w| or Bj ⊂ X , and
so by the assumption at the beginning of the proof,
Bj

∗⇒ vj . Therefore X ⇒ B1 . . . Bk ⇒ v1 . . . vk =
w which is a contradiction.

Theorem 1. For every L∗ ∈ LMJ, L(GMJ(L∗)) =
L∗.

Proof. Write G∗ for GMJ(L∗). It is easy to see that
each production X → α is correct. A simple in-
duction establishes that L(G∗) ⊆ L∗. The nontriv-
ial part of the proof is to show that every string in
L∗ is generated from S. Given the previous lemmas,
this is straightforward; the proofs are a bit repetitive,
following the earlier lemmas with minor variations.
Suppose w ∈ L∗.

• If w = a for some a ∈ Σ then pick some
X ∈ V such that � ∈ X. and a ∈ X . By
Lemma 10, X ∗⇒ a and X ⊆ L; If X = L
then there is a unary rule S → X . Otherwise
〈X〉 ∈ ∆(L) and so there is some production
S → B1 . . . Bk such that a ∈ 〈B1 . . . Bk〉. So
there must be some Bi such that a ∈ Bi and
λ ∈ Bj for j 6= i, and the result follows by
Lemmas 10 and 9.

• If |w| > 1, then there are two cases. First
it might be that L ∈ V , in which case there
is a single rule S → L, and it is immedi-
ate by Lemma 12. If not, then we can use
the same argument as in Lemma 12, which
we take rapidly here. If w = a1 . . . an ∈
L, then we have some A1, . . . , An such that
〈A1 . . . An〉 ∈ ∆(L) and Ai

∗⇒ ai for 1 ≤

Label Strings Context
OAUX can, λ eagles � eat.
AUX can � eagles eat?

N eagles � that eat fly.
NP eagles that eat � can eat.
RC that can eat, λ, . . . eagles � can fly.
VI eat, fly eagles that eat can �.
VP can eat, died eagles that � can fly.
C that eagles � can fly fly.

STOP . eagles fly �
Q ? can eagles fly �

Table 1: Prime concepts of the example; note that they
are all MSI-JSI-primes except for OAUX.

i ≤ n. Therefore we have some rule S →
B1 . . . Bk where w ∈ 〈B1, . . . Bk〉 and there-
fore strings v1, . . . vk such that w = v1 . . . vk
and vi ∈ Bi; therefore S ⇒ B1 . . . Bk

∗⇒
v1 . . . vk = w.

Therefore L(G∗) ⊇ L∗ which establishes the theo-
rem.

8 Example

We will illustrate some properties of our proposed
solution with a simple toy example, based approx-
imately on an example in (Berwick et al., 2011).
We use a finite language as this shows most sharply
the distinction between weak learning, which is triv-
ial, and strong learning, which even in the case of
acyclic CFGs is either impossible or intractable in
the general case, depending on how it is formalised.
The language is generated by the following gram-
mar; optional elements are in brackets.

S→ NP VP ., S→ CAN NP VI ?
NP→ EAGLES (RC), NP→ THEY

RC→ THAT VP
VP→ (CAN) VI
VP→ DIED

VI→ EAT, VI→ FLY
It contains examples like “can eagles that fly eat?”

and “eagles that can fly can eat.” “can eagles that
died eat?”. The language contains some optional
elements and as a result is not substitutable. This
is not the minimal example as for technical reasons
the example needs to be sufficiently complex. Very
simple examples may not contain enough informa-

108

S

STOP

.

VP

V

fly

OAUX

can

NP

RC

λ

N

eagles

S

STOP

.

VP

V

fly

OAUX

can

NP

RC

VP

V

eat

OAUX

λ

that

N

eagles

Figure 2: Example parse trees using GP(·). Note that where optional elements do not appear, we have an empty
(phonologically null) constituent. This is a notational variant of having a unary rule.

tion to indicate the structure unequivocally. So for
example, we added a word “died”. This alters the
structure of the lattice and means that the class VP
is then a prime. Without this addition, the con-
cept corresponding to VP would be decomposable as
{CAN, λ}·{EAT, FLY}. Similarly we added the word
THEY to the class of NP. Without these additions, the
language would not contain enough information to
distinguish whether, for example, the relative clause
attaches to the preceding noun or the following verb.
Consider the language L = {ab, acb}. There is no
motive, based on the strings, for the claim that c at-
taches to the left or the right. But if we enlarge it
slightly to {ab, acb, ad} it is more natural to attach
the c optionally to the b.

The lattice contains 43 elements of which 10
are prime, which are listed in Table 1; we la-
bel each prime with a mnemonic label, reusing
the nonterminal symbols from the target gram-
mar for ease of reading. The composite ele-
ments contain for example the set of four strings
{EAT EAT, EAT FLY, FLY EAT, FLY FLY } which is
clearly not prime.

Figure 2 and 3 show some trees of some of the
sentences that illustrate the structure of the derived
grammars.

9 Discussion and Conclusion

The two methods we present here do not exhaust
the possibilities: rather they present two extremes.
One method uses all primes, the other uses what

RC OAUX

AUX{λ}

NP

N

VP

VI

Figure 4: Lattice fragments showing some of the primes.
The word CAN, forms a concept on its own, AUX, since
when it occurs at the beginning of a sentence, it is obliga-
tory. The concept RC which contains the sequences THAT
EAT, THAT CAN FLY and so on, is always optional, and so
there is no corresponding concept that does not contain λ.

seems to be the smallest possible set of primes that
we can define using these techniques. Our reliance
on individual contexts and substrings in the defi-
nition of MSI-JSI-primes is both natural but inad-
equate. In terms of earlier traditions of analytical
linguistics, we are following Sestier-Kunze domi-
nation rather than Dobrushin-domination (Marcus,
1994). (Kunze, 1967 1968) argues that for the ade-
quate description of German lexical categories sim-
ple Dobrushin domination is inadequate. Note also
the similar notions in (Adriaans, 1999) of context-
separability and expression-separability. The set of
MSI-JSI-primes may well be too restricted; it seems
necessary to have nonterminals that correspond to
cases where {l�r}/) {w}./. We leave this prob-
lem for future work.

It also seems quite natural to define a dual of pri-
mality. For a closed set of strings X , we can de-

109

S

Q

?

V

fly

NP

RC

VP

eat

that

N

eagles

AUX

can

S

Q

?

V

fly

NP

RC

λ

N

eagles

AUX

can

S

STOP

.

VP

V

fly

AUX

can

NP

RC

VP

V

eat

that

N

eagles

Figure 3: Example parse trees using the second approach, GMJ(·). Here we do not have OAUX, and so we have unary
rules VP→ V.

fine conditions X. = Y�Z, for some closed sets
of strings Y, Z. There are also weaker variants of
this. These correspond to a condition that the non-
terminal occur on the left hand side of more than one
production.

From a linguistic point of view, it is interesting
that these approaches give local trees of potentially
unbounded ranks as well as empty constituents and
unary rules. This therefore means that the claim that
natural languages only use a binary syntactic opera-
tion (MERGE) becomes a contentful empirical claim.

There is a close relation between the models used
here and the primal and dual weak learning algo-
rithms presented in (Yoshinaka, 2012b); in partic-
ular, the categories that are MSI, have the 1-finite-
context-property (FCP) and the JSI-concepts have
the 1-finite-kernel-property (FKP). The languages in
LMJ therefore will be weakly learnable under certain
paradigms. In order to turn the results here into a
full strong learning result requires then the efficient
computation of the canonical grammar given a suffi-
ciently large weakly correct grammar. There do ap-
pear to be some technical problems to overcome: for
example showing that the number of errors made in
selecting the MSI-JSI-primes will only ever be finite.

Given the extension of distributional learning to
multiple context-free grammars (MCFGs) (Seki et
al., 1991) by (Yoshinaka, 2011), and the extension
of the syntactic concept lattice in (Clark and Yoshi-
naka, 2014), it seems possible to straightforwardly
extend these methods to at least some MCFGs. In
particular the notion of a closed set of strings being

composite is naturally generalised by replacing the
single concatenation operation ·, with the family of
all non-deleting non-permuting linear regular func-
tions of appropriate arities.

The existence of these canonical grammars seems
to be related in an interesting way to algebraic prop-
erties of the syntactic concept lattice. Indeed the
finite cardinality of the lattice is exactly equivalent
to the regularity of the language. It seems that
other finiteness properties of the lattice—for exam-
ple, compactness, the chain conditions etc.—may be
crucial. More generally, the results presented here
show that it may be possible to have strong learn-
ing algorithms for some quite large classes of lan-
guages. This suggests that the orthodox view that
semantic information is required to learn syntactic
structure may be mistaken; the set of strings of the
language may define an intrinsic structure that can
be learned purely distributionally. If the structures
so defined can support compositional interpretation
of the semantics, then this would provide strong em-
pirical support for this approach.

Acknowledgments

I am grateful to Ryo Yoshinaka, Makoto Kanazawa
and Greg Kobele, for technical comments; and to
Bob Berwick, Paul Pietroski and George Walkden
for discussions that have helped to motivate this ap-
proach.

110

References

Pieter Adriaans. 1999. Learning shallow context-free
languages under simple distributions. Technical Re-
port ILLC Report PP-1999-13, Institute for Logic,
Language and Computation, Amsterdam.

R.C. Berwick, P. Pietroski, B. Yankama, and N. Chom-
sky. 2011. Poverty of the stimulus revisited. Cogni-
tive Science, 35:1207–1242.

Alexander Clark and Ryo Yoshinaka. 2014. An algebraic
approach to multiple context-free grammars. In Sergei
Soloviev and Nicholas Asher, editors, Logical Aspects
of Computational Linguistics. Springer.

Alexander Clark. 2011. A language theoretic approach
to syntactic structure. In Makoto Kanazawa, András
Kornai, Marcus Kracht, and Hiroyuki Seki, editors,
The Mathematics of Language, pages 39–56. Springer
Berlin Heidelberg.

Alexander Clark. 2013. The syntactic concept lat-
tice: Another algebraic theory of the context-free lan-
guages? Journal of Logic and Computation.

Alexander Clark. 2014. Learning trees from strings:
A strong learning algorithm for some context-free
grammars. Journal of Machine Learning Research,
14:3537–3559.

B. A. Davey and H. A. Priestley. 2002. Introduction to
Lattices and Order. Cambridge University Press.

J. Kunze. 1967–1968. Versuch eines objektivierten
Grammatikmodells I, II. Z. Zeitschriff Phonetik
Sprachwiss. Kommunikat, 20-21.

Hans Leiß. 2014. Learning context free grammars with
the finite context property: A correction of A.Clark’s
algorithm. In Glyn Morrill, Reinhard Muskens, Rainer
Osswald, and Frank Richter, editors, Formal Gram-
mar, volume 8612 of Lecture Notes in Computer Sci-
ence, pages 121–137. Springer Berlin Heidelberg.

S Marcus. 1994. The status of research in the field of
analytical algebraic models of language. In Carlos
Martı́n-Vide, editor, Current Issues in Mathematical
Linguistics, pages 3–23. Elsevier.

H. Seki, T. Matsumura, M. Fujii, and T. Kasami. 1991.
On multiple context-free grammars. Theoretical Com-
puter Science, 88(2):229.

Christian Wurm. 2012. Completeness of full Lambek
calculus for syntactic concept lattices. In Proceed-
ings of the 17th conference on Formal Grammar 2012
(FG).

R. Yoshinaka. 2011. Efficient learning of multiple
context-free languages with multidimensional substi-
tutability from positive data. Theoretical Computer
Science, 412(19):1821 – 1831.

R. Yoshinaka. 2012a. Integration of the dual approaches
in the distributional learning of context-free grammars.

In Adrian-Horia Dediu and Carlos Martı́n-Vide, ed-
itors, Language and Automata Theory and Applica-
tions, volume 7183 of Lecture Notes in Computer Sci-
ence, pages 538–550. Springer Berlin Heidelberg.

Ryo Yoshinaka. 2012b. Integration of the dual ap-
proaches in the distributional learning of context-free
grammars. In Adrian-Horia Dediu and Carlos Martı́n-
Vide, editors, Language and Automata Theory and Ap-
plications, volume 7183 of Lecture Notes in Computer
Science, pages 538–550. Springer Berlin Heidelberg.

111

Proceedings of the 14th Meeting on the Mathematics of Language (MoL 14), pages 112–125,
Chicago, USA, July 25–26, 2015. c©2015 Association for Computational Linguistics

Output Strictly Local Functions

Jane Chandlee
University of Delaware
janemc@udel.edu

Rémi Eyraud
QARMA Team
LIF Marseille

remi.eyraud@
lif.univ-mrs.fr

Jeffrey Heinz
University of Delaware
heinz@udel.edu

Abstract

This paper characterizes a subclass of subse-
quential string-to-string functions called Out-
put Strictly Local (OSL) and presents a learn-
ing algorithm which provably learns any OSL
function in polynomial time and data. This al-
gorithm is more efficient than other existing
ones capable of learning this class. The OSL
class is motivated by the study of the nature of
string-to-string transformations, a cornerstone
of modern phonological grammars.

1 Introduction

Motivated by questions in phonology, this paper
studies the Output Strictly Local (OSL) functions
originally defined by Chandlee (2014) and Chandlee
et al. (2014). The OSL class is one way Strictly
Local (SL) stringsets can be generalized to string-
to-string maps. Their definition is a functional ver-
sion of a defining characteristic of SL stringsets
called Suffix Substitution Closure (Rogers and Pul-
lum, 2011). Similar to SL stringsets, the OSL func-
tions contain nested subclasses parameterized by a
value k, which is the length of the suffix of output
strings that matters for computing the function.

As Chandlee (2014) argues, almost all local
phonological processes can be modeled with Input
Strictly Local (ISL) functions. Yet there is one no-
table class of exceptions: so-called spreading pro-
cesses, in which a feature like nasality iteratively as-
similates over a contiguous span of segments. As we
show, the OSL functions are needed to describe this
sort of phenomenon.

Here we provide a slight, but important, revision
to the original definition of OSL functions in Chan-
dlee (2014) and Chandlee et al. (2014), which allows
two important theoretical contributions while pre-
serving the previous results The first is a finite-state
transducer (FST) characterization of OSL functions,
which leads to the second result, the OSLFIA (OSL
Function Inference Algorithm) and a proof that it ef-
ficiently identifies the k-OSL functions from posi-
tive examples. We compare this algorithm to OS-
TIA (Onward Subsequential Transducer Inference
Algorithm, Oncina et al. (1993)) which identifies to-
tal subsequential functions in cubic time, its modi-
fications OSTIA-D and OSTIA-R, which can learn
particular subclasses of subsequential functions us-
ing domain and range information, respectively, in
at least cubic time (Oncina and Varò, 1996; Castel-
lanos et al., 1998), and SOSFIA (Structured On-
ward Subsequential Inference Algorithm, Jardine et
al. (2014)), which can learn particular subclasses of
subsequential functions in linear time and data. We
show these algorithms either cannot learn the OSL
functions or do so less efficiently than the OSLFIA.
These contributions were missing from the initial re-
search on OSL functions (except for a preliminary
FST characterization in Chandlee (2014)). Finally,
we explain how a unified theory of local phonol-
ogy will have to draw insights from both the ISL
and OSL classes and offer an idea of how this might
work. Thus, this paper is a crucial and necessary in-
termediate step towards an empirically adequate but
restrictive characterization of phonological locality.

The remainder of the paper is organized as fol-
lows. Motivation and related work are given in sec-

112

tion 2, including an example of the spreading pro-
cesses that cannot be modeled with ISL functions.
Notations and background concepts are presented in
section 3. In section 4 we define OSL functions,
and the theoretical characterization and learning re-
sults are given in sections 5 and 6. In section 7, we
explain how OSL functions model spreading pro-
cesses. In section 8 we elaborate on a few important
areas for future work, and in section 9 we conclude.

2 Background and related work

A foundational principle of modern generative
phonology is that systematic variation in morpheme
pronunciation is best explained with a single under-
lying representation of the morpheme that is trans-
formed into various surface representations based on
context (Kenstowicz and Kisseberth, 1979; Odden,
2014). Thus, much of generative phonology is con-
cerned with the nature of these transformations.

One way to better understand the nature of
linguistic phenomena is to develop strong com-
putational characterizations of them. Discussing
SPE-style phonological rewrite rules (Chomsky and
Halle, 1968), Johnson (1972, p. 43) expresses the
reasoning behind this approach:

It is a well-established principle that any
mapping whatever that can be computed
by a finitely statable, well-defined proce-
dure can be effected by a rewriting sys-
tem (in particular, by a Turing machine,
which is a special kind of rewriting sys-
tem). Hence any theory which allows
phonological rules to simulate arbitrary
rewriting systems is seriously defective,
for it asserts next to nothing about the sorts
of mappings these rules can perform.

This leads to the important question of what kinds of
transformations ought a theory of phonology allow?

Earlier work suggests that phonological theo-
ries ought to exclude nonregular relations (Johnson,
1972; Kaplan and Kay, 1994; Frank and Satta, 1998;
Graf, 2010). More recently, it has been hypothe-
sized that phonological theory ought to only allow
certain subclasses of the regular relations (Gainor
et al., 2012; Chandlee et al., 2012; Chandlee and
Heinz, 2012; Payne, 2013; Luo, 2014; Heinz and

Lai, 2013). This research places particular em-
phasis on subsequential functions, which can infor-
mally be characterized as functions definable with a
weighted, deterministic finite-state acceptor where
the weights are strings and multiplication is con-
catenation. The aforementioned work suggests that
this hypothesis enjoys strong support in segmental
phonology, with interesting and important excep-
tions in the domain of tone (Jardine, 2014).

Recent research has also showed an increased
awareness and understanding of subregular classes
of stringsets (formal languages) and their impor-
tance for theories of phonotactics (Heinz, 2007;
Heinz, 2009; Heinz, 2010; Rogers et al., 2010;
Rogers and Pullum, 2011; Rogers et al., 2013).
While many of these classes and their properties
were studied much earlier (McNaughton and Papert,
1971; Thomas, 1997), little to no attention has been
paid to similar classes properly contained within the
subsequential functions. Thus, at least within the do-
main of segmental phonology, there is an important
question of whether stronger computational charac-
terizations of phonological transformations are pos-
sible, as seems to be the case for phonotactics.

As mentioned above, Chandlee (2014) shows that
many phonological processes belong to a subclass
of subsequential functions, the Input Strictly Lo-
cal (ISL) functions. Informally, a function is k-
ISL if the output of every input string a0a1 · · · an
is u0u1 · · ·un where ui is a string which only de-
pends on ai and the k − 1 input symbols before ai
(so ai−k+1ai−k+2 · · · ai−1). (A formal definition is
given in section 4). ISL functions can model a range
of processes including local substitution, epenthesis,
deletion, and metathesis. For more details on the ex-
act range of ISL processes, see Chandlee (2014) and
Chandlee and Heinz (to appear).

Processes that aren’t ISL include long-distance
processes as well as local iterative spreading pro-
cesses. As an example of the latter, consider nasal
spreading in Johore Malay (Onn, 1980). As shown
in (1), contiguous sequences of vowels and glides
are nasalized following a nasal:

(1) /p@Nawasan/ 7→ [p@Nãw̃ãsan], ‘supervision’

This process is not ISL, because the initial trigger of
the spreading (the nasal) can be arbitrarily far from a
target (as suggested by the nasalization of the glide

113

and the second [ã]) when the distance is measured
on the input side. However, on the output side, the
triggering context is local; the second [ã] is nasal-
ized because the preceding glide on the output side
is nasalized. Every segment between the trigger and
target is affected; nasalization applies to a contigu-
ous, but arbitrarily long, substring. It is this type
of process that we will show requires the notion of
Output Strict Locality.

Processes in which a potentially unbounded num-
ber of unaffected segments can intervene between
the trigger and target - such as long-distance conso-
nant agreement (Hansson, 2010; Rose and Walker,
2004), vowel harmony (Nevins, 2010; Walker,
2011), and consonant dissimilation (Suzuki, 1998;
Bennett, 2013) - are neither ISL nor OSL. More will
be said about such long-distance processes in §7.

3 Preliminaries

The set of all possible finite strings of symbols from
a finite alphabet Σ and the set of strings of length ≤
n are Σ∗ and Σ≤n, respectively. The cardinality of a
set S is denoted card(S). The unique empty string
is represented with λ. The length of a stringw is |w|,
so |λ| = 0. If w1 and w2 are strings then w1w2 is
their concatenation. The prefixes of w, Pref(w), is
{p ∈ Σ∗ | (∃s ∈ Σ∗)[w = ps]}, and the suffixes of
w, Suff(w), is {s ∈ Σ∗ | (∃p ∈ Σ∗)[w = ps]}. For
all w ∈ Σ∗ and n ∈ N, Suffn(w) is the single suffix
of w of length n if |w| ≥ n; otherwise Suffn(w) =
w. The following reduction will prove useful later.

Remark 1. For all w, v ∈ Σ∗, n ∈ N,
Suffn

(
Suffn(w)v

)
= Suffn(wv).

If w = uv is a string then let v = u−1 · w and
u = w · v−1. Trivially, λ−1 · w = w = w · λ−1,
uu−1 · w = w, and w · v−1v = w.

We assume a fixed but arbitrary total order < on
the letters of Σ. As usual, we extend < to Σ∗ by
defining the hierarchical order (Oncina et al., 1993),
denoted �, as follows: ∀w1, w2 ∈ Σ∗, w1 � w2 iff



|w1| < |w2| or
|w1| = |w2| and ∃u, v1, v2 ∈ Σ∗, ∃a1, a2 ∈ Σ
s.t. w1 = ua1v1, w2 = ua2v2 and a1 < a2.

� is a total strict order over Σ∗, and if Σ = {a, b}
and a < b, then λ�a�b�aa�ab�ba�bb�aaa�. . .

The longest common prefix of a set of strings S,
lcp(S), is p ∈ ∩w∈SPref(w) such that ∀p′ ∈
∩w∈SPref(w), |p′| < |p|. Let f : A→ B be a func-
tion f with domain A and co-domain B. When A
and B are stringsets, the input and output languages
of f are pre image(f) = {x | (∃y)[x 7→f y]} and
image(f) = {y | (∃x)[x 7→f y]}, respectively.

Jardine et al. (2014) introduce delimited subse-
quential FSTs (DSFSTs). The class of functions
describable with DSFSTs is exactly the class repre-
sentable by traditional subsequential FSTs (Oncina
and Garcia, 1991; Oncina et al., 1993; Mohri, 1997),
but DSFSTs make explicit use of symbols marking
both the beginnings and ends of input strings.
Definition 1. A delimited subsequential FST (DS-
FST) is a 6-tuple 〈Q, q0, qf ,Σ,∆, δ〉 where Q is a
finite set of states, q0 ∈ Q is the initial state, qf ∈ Q
is the final state, Σ and ∆ are finite alphabets of
symbols, δ ⊆ Q × (Σ ∪ {o,n}) × ∆∗ × Q is the
transition function (where o 6∈ Σ indicates the ‘start
of the input’ and n 6∈ Σ indicates the ‘end of the in-
put’), and the following hold:

1. if (q, σ, u, q′) ∈ δ then q 6= qf and q′ 6= q0,
2. if (q, σ, u, qf) ∈ δ then σ = n and q 6= q0,
3. if (q0, σ, u, q

′) ∈ δ then σ = o and if
(q,o, u, q′) ∈ δ then q = q0,

4. if (q, σ, w, r), (q, σ, v, s) ∈ δ then (r = s) ∧
(w = v).

In words, in DSFST, initial states have no incom-
ing transitions (1) and exactly one outgoing transi-
tion for input o (3) which leads to a nonfinal state
(2), and final states have no outgoing transitions (1)
and every incoming transition comes from a non-
initial state and has input n (2). DSFSTs are also
deterministic on the input (4). In addition, the tran-
sition function may be partial. We extend the transi-
tion function to δ∗ recursively in the usual way: δ∗ is
the smallest set containing δ and which is closed un-
der the following condition: if (q, w, u, q′) ∈ δ∗ and
(q′, σ, v, q′′) ∈ δ then (q, wσ, uv, q′′) ∈ δ∗. Note no
elements of the form (q, λ, λ, q′) are elements of δ∗.

The size of a DSFST T = 〈Q, q0, qf ,Σ,∆, δ〉 is
|T | = card(Q) + card(δ) +

∑
(q,a,u,q′)∈δ |u|.

A DSFST T defines the following relation:

R(T) =
{

(x, y) ∈ Σ∗ ×∆∗ |
[
(q0,oxn, y, qf) ∈ δ∗

]}

114

Since DSFSTs are deterministic, the relations they
recognize are (possibly partial) functions. Sequen-
tial functions are defined as those representable with
DSFSTs for which for all (q,n, u, qf) ∈ δ, u = λ.1

For any function f : Σ∗ → ∆∗ and x ∈ Σ∗, let
the tails of x with respect to f be defined as

tailsf (x) =
{

(y, v) | f(xy) = uv ∧
u = lcp(f(xΣ∗))

}
.

If x1, x2 ∈ Σ∗ have the same set of tails with respect
to f , they are tail-equivalent with respect to f , writ-
ten x1 ∼f x2. Clearly,∼f is an equivalence relation
which partitions Σ∗.

Theorem 1 (Oncina and Garcia, 1991). A function
f is subsequential iff ∼f partitions Σ∗ into finitely
many blocks.

The above theorem can be seen as the functional
analogue to the Myhill-Nerode theorem for regular
languages. Recall that for any stringset L, the tails
of a word w w.r.t. L is defined as tailsL(w) =
{u | wu ∈ L}. These tails can be used to partition
Σ∗ into a finite set of equivalence classes iff L is
regular. Furthermore, these equivalence classes are
the basis for constructing the (unique up to isomor-
phism) smallest deterministic acceptor for a regular
language. Likewise, Oncina and Garcia’s proof of
Theorem 1 shows how to construct the (unique up
to isomorphism) smallest subsequential transducer
for a subsequential function f . With little modifi-
cation to their proof, the smallest DSFST for f can
also be constructed. We refer to this DSFST as the
canonical DSFST for f and denote it TC(f). (If f is
understood from context, we may write TC .) States
of TC(f) which are neither initial nor final are in
one-to-one correspondence with tailsf (x) for all
x ∈ Σ∗ (Oncina and Garcia, 1991). To construct
TC(f) we first let, for all x ∈ Σ∗ and a ∈ Σ,
the contribution of a w.r.t. x be contf (a, x) =
lcp(f(xΣ∗)−1 · lcp(f(xaΣ∗)). Then,

• Q = {tailsf (x) | x ∈ Σ∗} ∪ {q0, qf},
•
(
q0,o, lcp(f(Σ∗)), tailsf (λ)

)
∈ δ

• For all x ∈ Σ∗,(
tailsf (x),n, lcp(f(xΣ∗))−1 · f(x), qf

)
∈

δ iff x ∈ pre image(f)

1Sakarovitch (2009) inverts these terms.

• For all x ∈ Σ∗, a ∈ Σ, if ∃y ∈ Σ∗

with xay ∈ pre image(f) then
(
tailsf (x),

a, contf (a, x), tailsf (xa)
)
∈ δ.

• Nothing else is in δ.

Observe that unlike the traditional construction, the
initial state q0 is not tailsf (λ). The single outgo-
ing transition from q0, however, goes to this state
with the input o. Canonical DSFSTs have an im-
portant property called onwardness.

Definition 2 (onwardness). A DSFST T is onward if
for every w ∈ Σ∗, u ∈ ∆∗, (q0,ow, u, q) ∈ δ∗ ⇐⇒
u = lcp({f(wΣ∗)}).

Informally, this means that the writing of output is
never delayed. For all q ∈ Q let the outputs of the
edges out of q be outputs(q) =

{
u | (∃σ ∈ Σ ∪

{o,n})(∃q′ ∈ Q)[(q, σ, u, q′) ∈ δ]
}

.

Lemma 1. If DSFST T recognizes f and is on-
ward then ∀q 6= q0 lcp(outputs(q)) = λ and
lcp(outputs(q0)) = lcp(f(Σ∗)).

Proof. By construction of a DSFST, only one
transition leaves q0: (q0,o, u, q). This implies
(q0,oλ, u, q) ∈ δ∗ and as the transducer is onward
we have lcp(outputs(q0)) = lcp(u) = u =
lcp(f(λΣ∗)) = lcp(f(Σ∗)). Now take q 6= q0
and w ∈ Σ∗ such that (q0,ow, u, q) ∈ δ∗. Suppose
lcp(outputs(q)) = v 6= λ. Then v is a prefix of
lcp({f(wσx) | σ ∈ Σ ∪ {n}, x ∈ Σ∗}) which im-
plies uv is a prefix of lcp(f(wΣ∗)). But v 6= λ,
contradicting the fact that T is onward.

Readers are referred to Oncina and Garcia (1991),
Oncina et al. (1993), and Mohri (1997) for more
on subsequential transducers, and Eisner (2003) for
generalizations regarding onwardness.

4 Output Strictly Local functions

Here we define Output Strictly Local (OSL) func-
tions, which were originally introduced by Chandlee
(2014) and Chandlee et al. (2014) along with the In-
put Strictly Local (ISL) functions. Both classes gen-
eralize SL stringsets to functions based on a defin-
ing property of SL languages, the Suffix Substitution
Closure (Rogers and Pullum, 2011).

Theorem 2 (Suffix Substitution Closure). L is
Strictly Local iff for all strings u1, v1, u2, v2, there

115

exists k ∈ N such that for any string x of length
k − 1, if u1xv1, u2xv2 ∈ L, then u1xv2 ∈ L.

An important corollary of this theorem follows.

Corollary 1 (Suffix-defined Residuals). L is Strictly
Local iff ∀w1, w2 ∈ Σ∗, there exists k ∈ N such that
if Suffk−1(w1) = Suffk−1(w2) then the residuals
(the tails) of w1, w2 with respect to L are the same;
formally, {v | w1v ∈ L} = {v | w2v ∈ L}.

Input and Output Strictly Local functions were
defined by Chandlee (2014) and Chandlee et al.
(2014) in the manner suggested by the corollary.

Definition 3 (Input Strictly Local Functions). A
function f : Σ∗ → ∆∗ is ISL if there is a k such that
for all u1, u2 ∈ Σ∗, if Suffk−1(u1) = Suffk−1(u2)
then tailsf (u1) = tailsf (u2).

Definition 4 (Output Strictly Local Functions (orig-
inal)). A function f : Σ∗ → ∆∗ is OSL if there is a k
such that for all u1, u2 ∈ Σ∗, if Suffk−1(f(u1)) =
Suffk−1(f(u2)) then tailsf (u1) = tailsf (u2).

While Definition 3 lead to an automata-theoretic
characterization and learning results for ISL (Chan-
dlee et al., 2014), such results do not appear possi-
ble with the original definition of OSL. The trouble
is with subsequential functions that are not sequen-
tial. The value returned by the function includes the
writing that occurs when the input string has been
fully read (i.e., the output of transitions going to the
final state in a corresponding DSFST). This creates
a problem because it does not allow for separation
of what happens during the computation from what
happens at its end.

Figure 1 illustrates the distinction Definition 4 is
unable to make.2 Function f is sequential, but g is
not. Otherwise, they are identical. While f(bab) =
bba, g(bab) = bbaa. With the original OSL defini-
tion, there is no way to refer to the output for input
bab before the final output string has been appended.

To deal with this problem we first define the prefix
function associated to a subsequential function.

Definition 5 (Prefix function). Let f : Σ∗ → ∆∗

be a subsequential function. We define the prefix
function fp : Σ∗ → ∆∗ associated to f such that
fp(w) = lcp({f(wΣ∗)}).

2Here and in Figure 3, state qf is not shown. Non-initial
states are labeled q : u with q being the state’s name and
(q,n, u, qf) ∈ δ.

Tf

q0

λ : λ

! : λ

a:λ

a:a

a:a

b:λ

b:b

b:bb:a

a:b

q0

Tg

λ : λ

! : λ

a:a

a:a

a:a

b:b

b:b

b:bb:a

a:b

1

Figure 1: Two DSFST recognizing functions f and g.
Except for their final transitions, Tf and Tg are identical.

Remark 2. If T is an onward DSFST for f , then
∀w ∈ Σ∗, fp(w) = u⇐⇒ ∃q, (q0,ow, u, q) ∈ δ∗.
Remark 3. If f is sequential then f = fp.

We can now revise the definition of OSL functions.

Definition 6 (Output Strictly Local Function (re-
vised)). We say that a subsequential function f is
k-OSL if for all w1, w2 in Σ∗, Suffk−1(fp(w1)) =
Suffk−1(fp(w2))⇒ tailsf (w1) = tailsf (w2).

Chandlee et al. (2014) provide several theorems
which relate ISL functions, OSL functions (defined
as in Definition 4), and SL stringsets. Here we ex-
plain why those results still hold with Definition 6.
The proofs for those results depend on the six func-
tions (fi, 1 ≤ i ≤ 6) reproduced here in Figure 2.
The transducers shown there are not DSFSTs but
traditional subsequential transducers; readers are re-
ferred to Chandlee et al. (2014) for formal defini-
tions. With the exception of f5, these functions are
clearly sequential since each state outputs λ on n
(shown as # in Figure 2). The transducer for f5 is
not onward, but an onward, sequential version of this
transducer recognizing exactly the same function is
obtained by suffixing a (which is the lcp of the out-
puts of state 1) onto the output of state 1’s incoming
transition. Thus, f5 is also sequential. By Remark 3
then, Theorems 4, 5, 6, and 7 of that paper still hold
under Definition 6.

5 Automata characterization

First we show, for any non-initial state of any canon-
ical transducer recognizing an OSL function, that if
reading a letter a implies writing λ, then this corre-
sponds to a self-loop. So writing the empty string
never causes a change of state (except from q0).

Lemma 2. For any OSL function f whose canonical
DSFST is TC , if ∃q 6= q0, a ∈ Σ, and q′ ∈ Q such

116

0 1
a

#:λ #:λ
b,c a,b:a,c

f1

a

bλ

b
aa

b

#:λ

#:λ#:λ

a:b

b

f2

1

a

bλ

a
a

b,c:b

#:λ

#:λ#:λ

a,b:a,c:a

b,c:b

f3

a

bλ

b

a:aa
a:aa

b

#:λ

#:λ
#:λ

a:aa

b

f4

1

0 1
a

#:λ #:a

a

f5

10
a

a:λ

#:λ#:λ

f6

1

Figure 2: Examples used in proofs of Theorems 4 to 7 of
Chandlee et al. (2014, see Figure 2).

that (q, a, λ, q′) ∈ δC then q′ = q.

Proof. Consider w and u such that
(q0,ow, u, q) ∈ δ∗C and suppose (q, a, λ, q′) ∈ δC .
Then fp(w) = fp(wa) which implies
Suffk−1(fp(w)) = Suffk−1(fp(wa)). As f
is k-OSL, tailsf (w) = tailsf (wa). As TC
is canonical the non-initial and non-final states
correspond to unique tail-equivalence classes, and
two distinct states correspond to two different
classes. Therefore q′ = q.

Next we define k-OSL transducers.

Definition 7 (k-OSL transducer). An onward DS-
FST T = 〈Q, q0, qf ,Σ,∆, δ〉 is k-OSL if

1. Q = S ∪ {q0, qf} with S ⊆ ∆≤k−1

2. (∀u ∈ ∆∗)
[
(q0,o, u, q′) ∈ δ =⇒ q′ =

Suffk−1(u)
]

3. (∀q ∈ Q\{q0},∀a ∈ Σ,∀u ∈ ∆∗)[
(q, a, u, q′) ∈ δ =⇒ q′ = Suffk−1(qu)

]
.

Next we show that k-OSL functions and functions
represented by k-OSL DSFSTs exactly correspond.

Lemma 3 (extended transition function). Let T =
〈Q, q0, qf ,Σ,∆, δ〉 be a k-OSL DSFST. We have

(q0,ow, u, q) ∈ δ∗ =⇒ q = Suffk−1(u)

Proof. By recursion on the size of w ∈ Σ∗. The ini-
tial case is valid for |w| = 0 since if (q0,o, u, q) ∈
δ∗ then (q0,o, u, q) ∈ δ. By Definition 7, q =
Suffk−1(u). Suppose now that the lemma holds for
inputs of size n 6= 0. Let w be of size n such that
(q0,ow, u, q) ∈ δ∗ and suppose (q, a, v, q′) ∈ δ
(i.e., (q0,owa, uv, q′) ∈ δ∗). By recursion, we
know that q = Suffk−1(u). By Definition 7,
q′ = Suffk−1(qv) = Suffk−1(Suffk−1(u)v) =
Suffk−1(uv) (by Remark 1).

Lemma 4. Any k-OSL DSFST corresponds to a k-
OSL function.

Proof. Let T = 〈Q, q0, qf ,Σ,∆, δ〉 be a k-
OSL DSFST computing f and let w1, w2 ∈ Σ∗

such that Suffk−1(fp(w1)) = Suffk−1(fp(w2)).
Since T is onward, by Remark 2 there exists
q, q′ ∈ Q such that (q0,ow1, f

p(w1), q) ∈ δ∗ and
(q0,ow2, f

p(w2), q
′) ∈ δ∗. By Lemma 3, q =

Suffk−1(fp(w1)) = Suffk−1(fp(w2)) = q′ which
implies tailsf (w1) = tailsf (w2). Therefore f is
a k-OSL function.

We now need to show that every k-OSL function
can be represented by a k-OSL DSFST. An issue
here is that one cannot work from TC since its states
are defined in terms of its tails, which themselves are
defined in terms of input strings, not output strings.
Hence, the proof below is constructive.

Theorem 3. Let f be a k-OSL function. The DSFST
T defined as followed computes f :

• Q = S ∪ {q0, qf} with S ⊆ ∆≤k−1

• (q0,o, u, Suffk−1(u)) ∈ δ ⇐⇒ u = fp(λ)

• a ∈ Σ, (q, a, u, Suffk−1(qu)) ∈ δ, ⇐⇒
(∃w)

[
Suffk−1(fp(w)) = q ∧ fp(wa) = vqu

with v = fp(w) · q−1
]
,

• (q,n, u, qf) ∈ δ ⇐⇒ u = fp(wq)
−1 · f(wq),

where wq = min�{w | ∃u, (q0,ow, u, q) ∈
δ∗}.

The diagram below helps express pictorially how
the transitions are organized per the second and third
bullets above. The input is written above the arrows,
and the output written below.

q0
ow−−−−−−→

fp(w)=vq
q

a−−→
u

q′

117

Note that T is a k-OSL SFST. To prove this result,
we first show the following lemma:

Lemma 5. Let T be the transducer defined in The-
orem 3. We have:

(q0,ow, u, q) ∈ δ∗ ⇐⇒ fp(w) = u

Proof. (⇒) By recursion on the length of w. Sup-
pose (q0,ow, u, q) ∈ δ∗ and |w| = 0. Then
(q0,o, u, q) ∈ δ; by construction, q = Suffk−1(u)
and fp(λ) = u which validates the initial case.

Suppose the result holds for w of size n and pick
such a w. Suppose then that (q0,owa, u, q) ∈ δ∗.
By definition of δ∗, there exists u1, u2, q′ such that
u = u1u2, (q0,ow, u1, q′) ∈ δ∗ and (q′, a, u2, q) ∈
δ. We have fp(w) = u1 (by recursion) and thus
q′ = Suffk−1(fp(w)) (by Lemma 3).

By construction of T , q = Suffk−1(q′u2)
and thus fp(wa) = vq′u2 with v =
fp(w) · Suffk−1(fp(w))−1. Therefore fp(wa) =
vq′u2 = fp(w) · Suffk−1(fp(w))−1q′u2 =
fp(w) · Suffk−1(fp(w))−1Suffk−1(fp(w))u2 =
fp(w)u2 = u1u2 = u.
(⇐) By recursion on the length of w. If |w| =
0, then fp(λ) = u. By construction of T ,
(q0,o, u, Suffk−1(u)) ∈ δ, which validates the
base case.

Now fix n > 0 and suppose the result holds
for all w of size n. Pick such a w and let
fp(wa) = u. As f is subsequential, there ex-
ists u1 such that fp(w) = u1. By recursion,
there exists q such that (q0,ow, u1, q) ∈ δ∗. By
Lemma 3, q = Suffk−1(u1) = Suffk−1(fp(w)).
By definition fp(wa) = u1u

−1
1 · u, which

equals u1 · Suffk−1(u1)−1Suffk−1(u1)u−11 · u.
Hence fp(wa) = vqu′, with u′ = u−11 · u
and v = u1 · Suffk−1(u1)−1, which equals
fp(w) · Suffk−1(fp(w))−1. Thus, by construction
(q, a, u′, Suffk−1(qu′)) ∈ δ. Since u1u′ = u1u

−1
1 ·

u = u, (q0,owa, u, Suffk−1(qu′)) ∈ δ∗.
We can now prove Theorem 3.

Proof. Let T be the transducer defined in Theo-
rem 3. We show that ∀w ∈ Σ∗,

(w, u) ∈ R(T)⇐⇒ f(w) = u.

By definition of R(T), we know that
(q0,own, u, qf) ∈ δ∗. By definition of δ∗,

q0

λ:λ

C:λ

Ṽ:λ

V:λ

N:λ

! : λ C:C

V:V

N:N

V:Ṽ

C:C

V:V

C:C

N:N

N:N

C:C

N:NN:N

V:Ṽ

V:V

C:C

1

Figure 3: A 2-OSL DSFST that models Johore Malay
nasal spreading. Σ={C, N, V} and ∆ = {C, N, V, Ṽ}.

there exists u1, u2 ∈ ∆∗ and q ∈ Q\{q0, qf}
such that (q0,ow, u1, q) ∈ δ∗, (q,n, u2, qf) ∈ δ,
and u = u1u2. By Lemma 5 we know that
fp(w) = u1. By construction of the DS-
FST, we have u2 = fp(wq)

−1 · f(wq) where
wq = min�{w′ | ∃u, (q0,ow′, u′, q) ∈ δ∗}.
Therefore (wq, u

′u2) ∈ R(T). Again, by Lemma 5,
fp(wq) = u′ and so u′u2 = fp(wq)u2 =
fp(wq)f

p(wq)
−1 · f(wq) = f(wq).

We have Suffk−1(u1) = Suffk−1(fp(wq)) =
Suffk−1(fp(w)). As f is k-OSL, we know
tailsf (wq) = tailsf (w), which implies that
(λ, fp(wq)

−1 · f(wq)) ∈ tailsf (w). Thus f(w) =
fp(w)fp(wq)

−1 · f(wq) = u1u2 = u.

Figure 3 presents a 2-OSL transducer that mod-
els the nasal spreading example from §2. Note C =
obstruent, V = vowels and glides, Ṽ = nasalized V,
and N = nasal consonant.

6 Learning OSL functions

6.1 Learning criterion

We adopt the identification in the limit learning
paradigm (Gold, 1967), with polynomial bounds on
time and data (de la Higuera, 1997). The underlying
idea of the paradigm is that if the data available to
the algorithm does not contain enough information
to distinguish the target from other potential targets,
then it is impossible to learn.

We first need to define the following notions. A
class T of functions is represented by a class R
of representations if every r ∈ R is of finite size

118

and there is a total and surjective naming function
L : R → T such that L(r) = t if and only if for
all w ∈ pre image(t), r(w) = t(w), where r(w)
is the output of representation r on the input w. We
observe that the class of k-OSL functions can be rep-
resented by the class of k-OSL DSFSTs.

Definition 8. Let T be a class of functions repre-
sented by some class R of representations.

1. A sample S for a function t ∈ T is a finite set of
data consistent with t, that is to say (w, v) ∈ S
iff t(w) = v. The size of a sample S is the sum
of the length of the strings it is composed of:
|S| = ∑(w,v)∈S |w|+ |v|.

2. A (T,R)-learning algorithm A is a program
that takes as input a sample for a function t ∈ T
and outputs a representation from R.

The paradigm relies on the notion of characteristic
sample, adapted here for functions:

Definition 9 (Characteristic sample). For a (T,R)-
learning algorithm A, a sample CS is a character-
istic sample of a function t ∈ T if for all samples
S for t it is the case that CS ⊆ S and A returns a
representation r such that L(r) = t.

This definition is the one used in the proof of the
OSTIA algorithm. The learning paradigm can now
be defined as follows.

Definition 10 (Identification in polynomial time
and data). A class T of functions is identifiable in
polynomial time and data if there exists a (T,R)-
learning algorithm A and two polynomials p() and
q() such that:

1. For any sample S of sizem for t ∈ T, A returns
a hypothesis r ∈ R in O(p(m)) time.

2. For each representation r ∈ R of size n, with
t = L(r), there exists a characteristic sample
of t for A of size at most O(q(n)).

6.2 Learning algorithm
We show here that Algorithm 1 learns the OSL func-
tions under the criterion introduced. We call this the
Output Strictly Local Function Inference Algorithm
(OSLFIA). We assume Σ, ∆, and k are fixed and not
part of the input to the learning problem.

Essentially, the algorithm computes a breadth-
first search through the states that are reachable

Data: Sample S ⊂ {o}Σ∗{n} ×∆∗ and
k ∈ N

Let q0, qf be states with {q0, qf} ∩∆≤k−1 = ∅
s← lcp({y | (x, y) ∈ S}); q ← Suffk−1(s);
smallest(q) = o; out(q) = s;
δ ← {(q0,o, s, q)}; R← {q}; C ← {q0, qf};
while R 6= ∅ do

q ← first(R); s← smallest(q);
for all a ∈ Σ in alphabetical order do

if ∃(w, u) ∈ S, x ∈ Σ∗ s.t. w = sax
then

v ← lcp({y | ∃x, (sax, y) ∈ S});
r ← Suffk−1(qv);
δ ← δ ∪ {(q, a, out(q)−1 · v, r)};
if r /∈ R ∪ C then

R← R ∪ {r};
smallest(r)← sa;
out(r)← v;

if ∃u, (s, u) ∈ S then
δ ← δ ∪ {(q,n, out(q)−1 · u, qf)}

R← R \ {q};
C ← C ∪ {q};

return 〈C, q0, qf ,Σ,∆, δ〉;
Algorithm 1: OSLFIA

given the learning sample: the set C contains the
states already checked while R is a queue made of
the states that are reachable but have not been treated
yet. Initially, the only transition leaving the initial
state is writing the lcp of the output strings of the
sample and reaches the state corresponding to the
k − 1 suffix of this lcp. At each step of the main
loop, OSLFIA treats the first state that is in the queue
R and computes whenever possible the transitions
that leave that state. The outputs associated with
each added transition are the longest common pre-
fixes of the outputs associated with the smallest in-
put prefix in the sample that allows the state to be
reachable. We show that provided the algorithm is
given a sufficient sample the transducer outputted by
OSLFIA is onward and in fact a k-OSL transducer.
After adding transitions with input letters from Σ to
a state, the transition to the final state is added, pro-
vided it can be calculated.

6.3 Theoretical results

Here we establish the theoretical results, which cul-
minate in the theorem that OSLFIA identifies the k-

119

OSL functions in polynomial time and data.

Lemma 6. For any input sample S, OSLFIA pro-
duces its output in time polynomial in the size of S.

Proof. The main loop is used at most |∆|k−1 which
is constant since both ∆ and k are fixed for any
learning sample. The smaller loop is executed |Σ|
times. At each execution: the first conditional can be
tested in time linear in n, where n =

∑
(w,u)∈S |w|;

the computation of the lcp can be done in nm steps
where m = max{|u| : (w, u) ∈ S} with an appro-
priate data structure (for instance a prefix tree); com-
puting the suffix requires at most m steps. The sec-
ond conditional can be tested in at most card(S) ·m
steps; the computation of the final transitions can be
done in less than m steps; all the other instructions
can be done in constant time. The overall computa-
tion time is thus O(|∆|k−1|Σ|(n+ nm+ card(S) ·
m+2m)) = O(n+m(n+card(S)) which is poly-
nomial (in fact bounded by a quadratic function) in
the size of the learning sample.

Next we show that for each k-OSL function f ,
there is a finite kernel of data consistent with f (a
‘seed’) that is a characteristic sample for OSLFIA.

Definition 11 (A OSLFIA seed). Given a k-OSL
transducer 〈Q, q0, qf ,Σ,∆, δ〉 computing a k-OSL
function f , a sample S is a OSLFIA seed for f if

• For all q ∈ Q such that ∃v ∈ ∆∗

(q,n, v, qf) ∈ δ, (owqn, f(wq)) ∈ S, where
wq = min�{w | ∃u, (q0,ow, u, q) ∈ δ∗}
• For all (q, a, u, q′) ∈ δ with q′ 6= qf and
a ∈ {o}∪Σ, for all b ∈ Σ such that there exists
(q′, b, u′, q′′) ∈ δ, there exists (own, f(w)) ∈
S and x ∈ Σ∗ such that w = wqabx and
f(w) is defined. Also, if there exists v such that
(q′,n, v, qf) ∈ δ then (owqan, f(wqa)) ∈ S.

In what follows, we set T � =
〈Q�, q0� , qf� ,Σ,∆, δ�〉 be the target k-OSL
transducer, f the function it computes, and
T = 〈Q, q0, qf ,Σ,∆, δ〉 be the transducer OSLFIA
constructs on a sample that contains a seed.

Lemma 7. If a learning sample S contains a seed
then (q0,ow, u, r) ∈ δ∗ ⇐⇒ (q0� ,ow, u, r) ∈ δ∗� .
Proof. (⇒). By induction on the length of w. If
|w| = 0 then (q0,o, u, r) ∈ δ and so u = lcp({y |

(x, y) ∈ S}) and r = Suffk−1(u) (initial steps of
the algorithm). As S is a seed there is an element
(obxn, f(bx)) ∈ S for all b ∈ Σ and (on, f(λ)) ∈
S if λ ∈ pre image(f), which implies that u =
lcp(f(λΣ∗)). As the target is onward, we have
(q0� ,o, lcp(f(λΣ∗)), r′) ∈ δ� and since it is a
k-OSL DSFST r′ = Suffk−1(lcp(f(λΣ∗))) =
Suffk−1(u) = r.

Suppose the lemma is true for strings of length
less than or equal to n. We refer to this as
the first Inductive Hypothesis (IH1). Let wa be
of size n + 1 such that (q0,owa, u, r) ∈ δ∗.
By definition of δ∗, there exist u1, u2, q such that
(q0,ow, u1, q) ∈ δ∗, (q, a, u2, r) ∈ δ, and u =
u1u2. By IH1 (q0� ,ow, u1, q) ∈ δ∗� . We want to
show (q0� ,owa, u, r) ∈ δ∗� (i.e., (q, a, u2, r) ∈ δ�).

First we show that IH1 also implies that s =
smallest(q) such that s = owq. Since the algo-
rithm searches breadth-first, s is the smallest input
that reaches q in T . If owq � s then ∃q′ 6= q such
that (q0,owq, u′, q′) ∈ δ∗ because owq is a prefix
of an input string of the sample S (since S contains
a seed). Since owq � s and |s| ≤ n, by IH1 then
(q0� ,owq, u′, q′) ∈ δ∗� which implies q = q′ which
contradicts the supposition that owq�s. If s�owq,
then again since (q0,os, u′, q) ∈ δ∗ then by IH1
(q0� ,os, u′, q) ∈ δ∗� . This contradicts the definition
of wq. Therefore s = owq.

Next we show that IH1 implies fp(wq) = out(q).
By construction of the seed, (owqn, f(wq)) ∈ S if
∃v (q,n, v, qf�) ∈ δ� and (owqaw′n, f(wqaw

′)) ∈
S for all transitions (q, a, x, q′) leaving q in T �. As
the target is onward, lcp({x | (q, σ, x, q′) ∈ δ�, σ ∈
Σ ∪ {n}} = λ (Lemma 1). This implies out(q) =
lcp({y | ∃a ∈ Σ, x ∈ Σ∗{n}, (osax, y) ∈ S}) =
lcp({y | ∃a ∈ Σ, x ∈ Σ∗{n}, (owqax, y) ∈
S}) = lcp({f(wqΣ

∗)}) = fp(wq).
Recalling that (q, a, u2, r) ∈ δ, we now char-

acterize u2 to help establish (q, a, u2, r) ∈ δ�.
By construction of a seed, there exist elements
(owqabxn, f(wqabx)) in S for all possible b ∈ Σ
and an element (owqan, f(wqa)) ∈ S if f(wqa)
is defined. By the onwardness of the target, this
implies that v = lcp({y | ∃b, x, (osabxn, y) ∈
S} ∪ {f(sa)}) = lcp(f(saΣ∗)) = fp(sa). There-
fore u2 = out(q)−1 · v = fp(s)−1 · fp(sa) =
fp(wq)

−1 · fp(wqa).
Finally we identify r to complete this part

120

of the proof. As the target is OSL, we have
(q0� ,owqa, fp(wqa), r′) ∈ δ∗� (Lemma 3). The
fact that (q0� ,owq, fp(wq), q) ∈ δ∗� by IH1 and
the fact the target is OSL implies (q, a, fp(wq)

−1 ·
fp(wqa), r′) = (q, a, out(q)−1 · s, r′) ∈ δ�. As
T � is k-OSL, r′ = Suffk−1(qout(q)−1 · s) which
is r by construction of the transition in the algo-
rithm. Therefore, as (q0� ,ow, u1, q) ∈ δ∗� by
IH1, we have (q0� ,owa, u1out(q)−1 · s, r) =
(q0� ,owa, u1u2, r) = (q0� ,owa, u, r) ∈ δ∗�

(⇐). This is also by induction on the length
of w. If |w| = 0, as T � is onward we have
lcp(outputs(q0�)) = lcp(f(Σ∗)) (Lemma 1)
and thus (q0� ,o, lcp(f(Σ∗)), r) ∈ δ� with r =
Suffk−1(lcp(f(Σ∗))) as T � is k-OSL. By con-
struction of the seed, there is at least one ele-
ment in S using each transition leaving r. As
lcp(outputs(r)) = λ (Lemma 1), this implies
lcp({y | (x, y) ∈ S}) = lcp(f(Σ∗)). Therefore
(q0,o, lcp(f(Σ∗)), r) ∈ δ.

Suppose the lemma is true for all strings up to
length n. We refer to this as the second Inductive
Hypothesis (IH2). Pick wa of length n + 1 such
that (q0� ,owa, u, r) ∈ δ∗� . By definition of δ∗,
q, u1, u2 exist such that (q0� ,ow, u1, q) ∈ δ∗� and
(q, a, u2, r) ∈ δ�, with u1u2 = u. By IH2, we
have (q0,ow, u1, q), (q0,owq, u′1, q) ∈ δ∗ (since
wq � w). We want to show (q, a, u2, r) ∈ δ.

We first show that s = smallest(q) = owq.
Suppose s � owq. By construction of the SFST s
is a prefix of an element of S which means there
exists q′ such that (q0, s, f

p(s), q′) ∈ δ∗� . But by
IH2, this implies that q′ = q and the definition of
wq contradicts s�owq. Suppose now that owq�s.
By the construction of the seed, owq is a prefix of an
element of the sample, which implies it is considered
by the algorithm. As (q0,owq, u′1, q) ∈ δ∗ by IH2,
owq is a smaller prefix than s that reaches the same
state which is impossible as s is the earliest prefix
that makes the state q reachable. Therefore owq =
s and thus the transition from state q reading a is
created when s = owq.

Next we show that fp(wq) = out(q). By
construction of the seed, there is an element
(owqaw′n, f(wqaw

′)) ∈ S for all transitions
(q, a, x, q′) ∈ δ� leaving q and (owqn, f(wq)) ∈
S if ∃v, (q,n, v, qf) ∈ δ�. As the target is
onward, lcp({x | (q, σ, x, q) ∈ δ∗, σ ∈ Σ ∪

n} = λ (Lemma 1). This implies out(q) =
lcp({y | ∃a, x, (sax, y) ∈ S}) = lcp({y |
∃a, x, (wqax, y) ∈ S}) = lcp(f(wqΣ

∗)) =
fp(wq) = fp(s).

Now let v = lcp({y | ∃b, x, (sabx, y) ∈ S}).
Since s = owq, (q0� ,owqa, v, r) ∈ δ∗� since, as be-
fore, the onwardness of the target implies the lcp of
the output written from r is λ. This is because each
possible output from r is in S (because it is in the
seed according to the second item of Definition 11).
Consequently v = fp(wqa) = fp(sa).

Together these results imply that u2 = fp(wq)
−1 ·

fp(wqa) = fp(s)−1 · fp(sa) = out(q)−1 · v.
As the target is a k-OSL transducer (and thus de-

terministic) Suffk−1(qu2) = r. Therefore the tran-
sition (q, a, out(q)−1 · v, r) that is added to δ is the
same as the transition (q, a, u2, r) in δ�. This implies
(q0,owa, u, r) ∈ δ∗ and proves the lemma.

Lemma 8. Any seed for the OSL Learner is a char-
acteristic sample for this algorithm.

Proof. A corollary of Lemma 7 is that if a
seed is contained in a learning sample we have
(q0,ow, u, q) ∈ δ∗ ⇐⇒ fp(w) = u (Lemma 3) as
the target transducer is k-OSL. For all states q where
∃v, (q,n, v, qf�) ∈ δ�, we have (owqn, f(wq))
in the seed, which implies the algorithm will add
(q,n, fp(wq)−1 · f(wq), qf) to δ which is exactly
the output function of the target. As every state
is treated only once, this holds for any learning
set containing a seed. Therefore, from any super-
set of a seed, for any w, the function computed by
the outputted transducer of Algorithm 1 is equal to
fp(w)fp(w)−1 · f(w) = f(w).

Observe that OSLFIA is designed to work with
seeds, which contains minimal strings. We believe
both the seed and algorithm can be adjusted to relax
this requirement, though this is left for future work.

Lemma 9. Given any k-OSL transducer T �, there
exists a seed for the OSL learner that is of size poly-
nomial in the size of T �.

Proof. Let T � = 〈Q�, q0� , qf�Σ,∆, δ�, 〉. There are
at most card(Q�) pairs (owqn, f(wq)) in a seed
that corresponds to the first item of Definition 11,
each of which is such that | o wq n | ≤ card(Q�)

121

and |f(wq)| ≤
∑

(q,σ,u,q′)∈δ� |u|. We denote by m�
this last quantity and note that m� = O(|T �|).

For the elements of the second item of Def-
inition 11 we restrict ourselves without loss of
generality to pairs (owqabw′n, f(wqabw

′)) where
w′ = min�{x : f(wqabx) is defined}. We
have |w′| ≤ card(Q�) and |f(wqabw

′)| is in
O(card(Q�)m�). There are at most |Σ| pairs
(owqabw′n, f(wqabw

′)) for a given transition
(q, a, u, q′) which implies that the overall bound
on the number of such pairs is in O(|Σ|card(δ)).
The overall length of the elements in the seed
that fulfill the second item of the definition is in
O(card(Q�)(card(Q�) +m� + |Σ|card(δ)m�)).

The size of the seed studied in this proof is thus in
O((m� + |Q�|)(|Q�| + |Σ|card(δ)) which is poly-
nomial (in fact quadratic) in the size of the target
transducer.

Theorem 4. OSLFIA identifies the k-OSL functions
in polynomial time and data.

Proof. Immediate from Lemmas 6, 7, 8, and 9.

We conclude this section by comparing this result
to other subsequential function-learning algorithms.

OSTIA (Oncina et al., 1993) is a state-merging
algorithm which can identify the class of total sub-
sequential functions in cubic time. (Partial subse-
quential functions cannot be learned exactly; for a
partial function, OSTIA will learn some superset of
it.) k-OSL functions include both partial and total
functions, so the classes exactly learnable by OSTIA
and OSLFIA are, strictly speaking, incomparable.

SOSFIA (Jardine et al., 2014) identifies sub-
classes of subsequential functions in linear time and
data. These subclasses are determined by fixing the
structure of a transducer in advance. For every in-
put string, SOSFIA knows exactly which state in the
transducer is reached. The sole carrier of informa-
tion regarding reached states is the input string. But
for k-OSL functions, the output strings carry the in-
formation about the states reached. As the theorems
demonstrate, the destination of a transition is only
determined by the output of the transition. Thus no
class learned by SOSFIA contains any k-OSL class.

OSTIA-D (OSTIA-R) (Oncina and Varò, 1996;
Castellanos et al., 1998) identify a class of subse-
quential functions with a given domain D (range R)

in at least cubic time because it adds steps to OSTIA
to prevent merging states that would result in a trans-
ducer whose domain (range) is not compatible with
D (R). OSTIA-D cannot represent k-OSL functions
for the same reasons SOSFIA cannot: domain in-
formation is about input strings, not output strings.
On the other hand, the range of a k-OSL function
is a k-OSL stringset which can be represented with
a single acceptor, and thus OSL functions may be
learned by OSTIA-R. However, OSLFIA is more ef-
ficient both in time and data.3

To sum up, OSLFIA is the most efficient algo-
rithm for learning k-OSL functions.

7 Phonology

The example of Johore Malay nasal spreading given
in §2 is an example of progressive spreading, since
it proceeds from a triggering segment (the nasal) to
vowels and glides that follow it. There also exist
regressive spreading processes, in which the trigger
follows the target(s). An example from the Mòbà di-
alect of Yoruba (Ajı́bóyè, 2001; Ajı́bóyè and Pulley-
blank, 2008; Walker, 2014) is shown in (2). An un-
derlying nasalized vowel spreads its nasality to pre-
ceding oral vowels and glides.

(2) /ujĩ/ 7→ [ũj̃ĩ], ‘praise(n.)’

The difference between progressive and regressive
spreading corresponds to reading the input from left-
to-right or right-to-left, respectively (Heinz and Lai,
2013). Regressive spreading cannot be modeled
with OSL in a left-to-right fashion, because the out-
put of the preceding vowels and glides depends on
the presence or absence of a following nasal that
could be an unbounded number of segments away.
By reading from right-to-left, that nasal trigger will
always be read before the target(s), making it akin to
progressive spreading. Thus there are two overlap-
ping but non-identical classes, which we call left(-
to-right) OSL and right(-to-left) OSL.

There are other types of phonological maps that
are neither ISL nor OSL. Consider the optional pro-
cess of French @-deletion shown in (3) (Dell, 1973;
Dell, 1980; Dell, 1985; Noske, 1993).

3To our knowledge no analysis of data complexity for OS-
TIA, OSTIA-D, and OSTIA-R has been completed (probably
because they predate de la Higuera (1997)). Also, an analysis
of the data complexity of OSTIA appears daunting.

122

(3) @→ ∅ / VC CV

At issue is how this rule applies. There are two
licit pronunciations of /ty d@v@nE/ ‘you became’
which are [ty dv@nE] and [ty d@vnE]. The form
*[ty dvnE] is considered ungrammatical. As Ka-
plan and Kay (1994) explain, these outputs can be
understood as the rule in (3) applying left-to-right
([ty dv@nE]), right-to-left ([ty dv@nE]) or simultane-
ously (*[ty dvnE]). What matters is whether the left
and right contexts of the rule match the input or out-
put string: if both match the input it is simultaneous
application, and if one side matches the input and
the other the output it is left-to-right or right-to-left.

ISL functions always match contexts against the
input and therefore they cannot model @-deletion. In
this respect, ISL functions model simultaneous rule
application. But there is also a problem with mod-
eling the process as OSL, which is what to output
when the @ that will be deleted is read. Consider the
input VC@CV. When the DSFST reads the @, it can-
not decide what to output, because whether or not
that @ is deleted depends on whether or not the next
two symbols in the input are CV. But since the DS-
FST is deterministic, it must make a decision at this
point. It could postpone the decision and output λ.
But that would require it to loop at the current state
(Lemma 2), which in turn means it cannot distin-
guish VC@CV from VC@@@CV, a significant problem
since only the former meets the context for deletion.

Thus the range of phonological processes that can
be modeled with OSL functions is limited to those
with one-sided contexts (e.g., either C or D, the
former being left OSL and the latter right OSL). In
such cases the entire triggering context will be read
before the potential target, so there is never a need to
delay the decision about what to output. To summa-
rize, phonological rules that apply simultaneously
are ISL, and phonological rules with one-sided con-
texts that apply left-to-right or right-to-left are OSL.

In addition to iterative rules with two-sided con-
texts, long-distance processes like vowel harmony
and consonant agreement and dissimilation are also
excluded from the current analysis. While such
process have been shown to be subsequential and
therefore subregular (see Gainor et al. (2012; Luo
(2014; Payne (2013; Heinz and Lai (2013)) they are
neither ISL nor OSL because the target and trigger-

ing context are not within a fixed window of length
k in either the input or output. An example is the
long-distance nasal assimilation process in Kikongo
(Rose and Walker, 2004), as in (4).

(4) /tu+nik+idi/ 7→ [tunikini] ‘we ground’

In Kikongo, the alveolar stop in the suffix /-idi/ sur-
faces as a nasal when joined to a stem containing a
nasal. Since stem nasals appear to occur arbitrarily
far from the suffix, there is no k such that the target
/d/ and the trigger /n/ are within a window of size k.
Thus the process is neither ISL nor OSL.

8 Future Work

Processes like French @-deletion that have two-sided
contexts, with one being on the output side, sug-
gest a class that combines the ISL and OSL prop-
erties. We are tentatively calling this class ‘Input-
Output SL’ and are currently working on its prop-
erties, FST characterization, and learning algorithm.
For long-distance processes, we expect other func-
tional subclasses will strongly characterize these.
SL stringsets are just one region of the Subregular
Hierarchy (Rogers and Pullum, 2011; Rogers et al.,
2013), so we expect functional counterparts of the
other regions can be defined. Some of these other
regions model long-distance phonotactics (Heinz,
2007; Heinz, 2010; Rogers et al., 2010), so their
functional counterparts may prove equally useful for
modeling and learning long-distance phonology.

9 Conclusion

We have defined a subregular class of func-
tions called the OSL functions and provided both
language-theoretic and automata-theoretic charac-
terizations. The structure of this class is sufficient to
allow any k-OSL function to be efficiently learned
from positive data. It was shown that the OSL
functions—unlike the ISL functions—can model lo-
cal iterative spreading processes. Future work will
aim to combine the results for both ISL and OSL to
model iterative processes with two-sided contexts.

Acknowledgments

We thank three reviewers for useful comments, es-
pecially the third, who caught a significant error in
the first version of this paper.

123

References

Oládiı́pò Ajı́bóyè and Douglas Pulleyblank. 2008. Mòbà
nasal harmony. Ms., University of Lagos and Univer-
sity of British Columbia.

Oládiı́pò Ajı́bóyè. 2001. Nasalization in Mòbà. In Suny-
oung Oh, Naomi Sawai, Kayono Shiobara, and Rachel
Wojdak, editors, Proceedings of the Northwest Lin-
guistics Conference, pages 1–18. University of British
Columbia Working Papers in Linguistics 8. Vancou-
ver: University of British Columbia, Department of
Linguistics.

William Bennett. 2013. Dissimilation, Consonant Har-
mony, and Surface Correspondence. Ph.D. thesis, Rut-
gers.

Antonio Castellanos, Enrique Vidal, Miguel A. Varó, and
José Oncina. 1998. Language understanding and sub-
sequential transducer learning. Computer Speech and
Language, 12:193–228.

Jane Chandlee and Jeffrey Heinz. 2012. Bounded copy-
ing is subsequential: Implications for metathesis and
reduplication. In Proceedings of the 12th Meeting
of the ACL Special Interest Group on Computational
Morphology and Phonology, pages 42–51, Montreal,
Canada, June. Association for Computational Linguis-
tics.

Jane Chandlee and Jeffrey Heinz. to appear. Strictly lo-
cal phonological processes. Linguistic Inquiry,. under
revision.

Jane Chandlee, Angeliki Athanasopoulou, and Jeffrey
Heinz. 2012. Evidence for classifying metathesis pat-
terns as subsequential. In The Proceedings of the 29th
West Coast Conference on Formal Linguistics, pages
303–309. Cascadilla Press.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. 2014.
Learning strictly local subsequential functions. Trans-
actions of the Association for Computational Linguis-
tics, 2:491–503, November.

Jane Chandlee. 2014. Strictly Local Phonological Pro-
cesses. Ph.D. thesis, The University of Delaware.

Noam Chomsky and Morris Halle. 1968. The Sound
Pattern of English. New York: Harper & Row.

Colin de la Higuera. 1997. Characteristic sets for
polynomial grammatical inference. Machine Learning
Journal, 27:125–138.

François Dell. 1973. Les régles et les sons. Paris: Her-
mann.

François Dell. 1980. Generative phonology and French
phonology. Cambridge: Cambridge University Press.

François Dell. 1985. Les régles et les sons. Paris: Her-
mann, 2 edition.

Jason Eisner. 2003. Simpler and more general minimiza-
tion for weighted finite-state automata. In Proceedings

of the Joint Meeting of the Human Language Technol-
ogy Conference and the North American Chapter of
the Association for Computational Linguistics (HLT-
NAACL 2003), pages 64–71.

Robert Frank and Giorgo Satta. 1998. Optimality Theory
and the generative complexity of constraint violability.
Computational Linguistics, 24(2):307–315.

Brian Gainor, Regine Lai, and Jeffrey Heinz. 2012.
Computational characterizations of vowel harmony
patterns and pathologies. In Jaehoon Choi, E. Alan
Hogue, Jeffrey Punske, Deniz Tat, Jessamyn Schertz,
and Alex Trueman, editors, WCCFL 29: Proceedings
of the 29th West Coast Conference on Formal Linguis-
tics, pages 63–71, Somerville, MA. Cascadilla.

E.Mark Gold. 1967. Language identification in the limit.
Information and Control, 10:447–474.

Thomas Graf. 2010. Logics of phonological reasoning.
Master’s thesis, University of California, Los Angeles.

Gunnar Hansson. 2010. Consonant Harmony: Long-
Distance Interaction in Phonology. Number 145 in
University of California Publications in Linguistics.
University of California Press, Berkeley, CA. Avail-
able on-line (free) at eScholarship.org.

Jeffrey Heinz and Regine Lai. 2013. Vowel harmony
and subsequentiality. In Andras Kornai and Marco
Kuhlmann, editors, Proceedings of the 13th Meeting
on the Mathematics of Language (MoL 13), pages 52–
63, Sofia, Bulgaria.

Jeffrey Heinz. 2007. The Inductive Learning of Phono-
tactic Patterns. Ph.D. thesis, University of California,
Los Angeles.

Jeffrey Heinz. 2009. On the role of locality in learning
stress patterns. Phonology, 26(2):303–351.

Jeffrey Heinz. 2010. Learning long-distance phonotac-
tics. Linguistic Inquiry, 41(4):623–661.

Adam Jardine, Jane Chandlee, Rémi Eyraud, and Jef-
frey Heinz. 2014. Very efficient learning of struc-
tured classes of subsequential functions from positive
data. In Alexander Clark, Makoto Kanazawa, and Ryo
Yoshinaka, editors, Proceedings of the Twelfth Inter-
national Conference on Grammatical Inference (ICGI
2014), volume 34, pages 94–108. JMLR: Workshop
and Conference Proceedings, September.

Adam Jardine. 2014. Computationally, tone is different.
Under review with Phonology.

C. Douglas Johnson. 1972. Formal Aspects of Phonolog-
ical Description. The Hague: Mouton.

Ronald Kaplan and Martin Kay. 1994. Regular models
of phonological rule systems. Computational Linguis-
tics, 20(3):331–378.

Michael Kenstowicz and Charles Kisseberth. 1979. Gen-
erative Phonology. Academic Press, Inc.

124

Huan Luo. 2014. Long-distance consonant harmony and
subsequantiality. Qualifying paper for the University
of Delaware’s Linguistics PhD Progam.

Robert McNaughton and Seymour Papert. 1971.
Counter-Free Automata. MIT Press.

Mehryar Mohri. 1997. Finite-state transducers in lan-
guage and speech processing. Computational Linguis-
tics, 23(2):269–311.

Andrew Nevins. 2010. Locality in Vowel Harmony. MIT
Press.

Roland Noske. 1993. A theory of syllabification and seg-
mental alternation. Niemeyer, Tübingen.

David Odden. 2014. Introducing Phonology. Cam-
bridge University Press, 2nd edition.

Jose Oncina and Pedro Garcia. 1991. Inductive learning
of subsequential functions. Technical Report DSIC II-
34, University Politécnia de Valencia.

José Oncina and Miguel A. Varò. 1996. Using do-
main information during the learning of a subsequen-
tial transducer. Lecture Notes in Artificial Intelligence,
pages 313–325.

José Oncina, Pedro Garcı́a, and Enrique Vidal. 1993.
Learning subsequential transducers for pattern recog-
nition tasks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15:448–458, May.

Farid M. Onn. 1980. Aspects of Malay Phonology and
Morphology: A Generative Approach. Kuala Lumpur:
Universiti Kebangsaan Malaysia.

Amanda Payne. 2013. Dissimilation as a subsequen-
tial process. Qualifying paper for the University of
Delaware’s Linguistics PhD Progam.

James Rogers and Geoffrey Pullum. 2011. Aural pattern
recognition experiments and the subregular hierarchy.
Journal of Logic, Language and Information, 20:329–
342.

James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlefsen,
Molly Visscher, David Wellcome, and Sean Wibel.
2010. On languages piecewise testable in the strict
sense. In Christian Ebert, Gerhard Jäger, and Jens
Michaelis, editors, The Mathematics of Language, vol-
ume 6149 of Lecture Notes in Artifical Intelligence,
pages 255–265. Springer.

James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy
Hurst, Dakotah Lambert, and Sean Wibel. 2013. Cog-
nitive and sub-regular complexity. In Glyn Morrill
and Mark-Jan Nederhof, editors, Formal Grammar,
volume 8036 of Lecture Notes in Computer Science,
pages 90–108. Springer.

Sharon Rose and Rachel Walker. 2004. A typology of
consonant agreement as correspondence. Language,
80:475–531.

Jaques Sakarovitch. 2009. Elements of Automata The-
ory. Cambridge University Press. Translated by

Reuben Thomas from the 2003 edition published by
Vuibert, Paris.

Keiichiro Suzuki. 1998. A Typological Investigation of
Dissimilation. Ph.D. thesis, University of Arizona.

Wolfgang Thomas. 1997. Languages, automata, and
logic. volume 3, chapter 7. Springer.

Rachel Walker. 2011. Vowel Patterns in Language.
Cambridge: Cambridge University Press.

Rachel Walker. 2014. Nonlocal trigger-target relations.
Linguistic Inquiry, 45(3):501–523.

125

Proceedings of the 14th Meeting on the Mathematics of Language (MoL 14), pages 126–138,
Chicago, USA, July 25–26, 2015. c©2015 Association for Computational Linguistics

How to Choose Successful Losers in Error-Driven Phonotactic Learning

Giorgio Magri
SFL UMR 7023 (CNRS and University of Paris 8)

59/61 rue Pouchet, 75017 Paris
France

magrigrg@gmail.com

René Kager
UiL-OTS (Utrecht University)

Trans 10, 3512 JK Utrecht
The Netherlands

RWJKager@uu.nl

Abstract

An error-driven phonotactic learner is trained
on a stream of licit phonological forms. Each
piece of training data counts as a winner in
terms of Optimality Theory. In order to test
its current grammar, the learner needs to com-
pare the current winner with a properly chosen
loser. This paper advocates a new subroutine
for the choice of the loser, based on the idea
of minimizing the “distance” from the given
winner.

1 Error-driven phonotactic learning and
the problem of the choice of the loser

Phonotactics is knowledge of the distinction be-
tween licit and illicit phonological forms (Chomsky
and Halle, 1965). We adopt the model of phonotac-
tics developed within Optimality Theory (Prince and
Smolensky, 2004), briefly reviewed here. A candi-
date set is a collection of pairs (x, y); the first el-
ement x is called the underlying form; the second
element y is called the candidate surface form. A
constraint assigns to each candidate pair (x, y) a
non-negative number of violations, which measures
how the mapping of the underlying form x to the
surface form y deviates from the ideal relative to
the specific perspective valued by that constraint.
Constraints come in two types. Faithfulness con-
straints punish a candidate pair (x, y) based on the
discrepancy between the underlying form x and the
surface form y. For instance, the faithfulness con-
straint IDENT[VOICE] is violated by a candidate pair
of segments differing in voicing. Markedness con-
straints punish a candidate pair (x, y) based on the

ill-formedness of the surface form y. For instance,
the markedness constraint NOVOICEOBS is violated
by a candidate pair of segments whose surface seg-
ment is a voiced obstruent.

A constraint ranking� is a linear order over the
constraint set. The grammar G� corresponding to
the ranking � takes an underlying form x and re-
turns a candidate (x, y) which �-beats any other
candidate (x, z) whose underlying form is x and
whose surface form z is different from y, in the sense
of condition (1). The candidate (x, y) is then called
the winner while (x, z) is called a loser. Losers are
stricken out as a mnemonic.

(1) There exists a constraint which is winner-
preferring (i.e., assigns less violations to the
winner candidate (x, y) than to the loser can-
didate (x, z)) which is �-ranked above every
constraint which is loser-preferring (i.e., as-
signs more violations to the winner candidate
(x, y) than to the loser candidate (x, z)).

A surface form y is phonotactically licit according to
the grammar G� provided there exists some under-
lying form x which is mapped to y by that grammar.

An error-driven phonotactic learner is trained on
a sequence of phonological forms all phonotacti-
cally licit according to a target grammar and it tries
to infer that grammar as follows. It maintains a cur-
rent hypothesis of the target grammar, which is ini-
tialized to a most restrictive grammar, namely one
which deems illicit as many forms as possible. The
current grammar is then slightly updated in the di-
rection of a looser phonotactics, whenever it incor-
rectly predicts the current piece of data to be il-

126

licit. This learning scheme is formalized in OT
as the error-driven ranking algorithm (EDRA) out-
lined in the following pseudo-code and detailed be-
low (Tesar and Smolensky, 1998; Boersma, 1998).

1: Initialize the current ranking vector θ
2: repeat
3: get a licit winner surface form y
4: choose a corresponding underlying form x
5: choose a loser form z to compare to y
6: If the winner (x, y) does not beat the loser

(x, z) according to the ranking vector θ:
7: update the current ranking vector θ
8: until no more errors are made at line 6

The EDRA knows the underlying constraint set
C1, . . . , Cn. The current constraint ranking is rep-
resented by assigning to each constraint Ck a nu-
merical ranking value θk, with the understanding
that high ranking values correspond to high ranked
constraints. The ranking values are collected into a
ranking vector θ = (θ1 . . . , θn). At line 1, the rank-
ing values of the faithfulness and the markedness
constraints are initialized to 0 and to a large posi-
tive constant θ > 0, respectively. Thus, the marked-
ness constraints start out above the faithfulness ones,
yielding a grammar which is phonotactically maxi-
mally restrictive (Smolensky, 1996).

At line 3, the EDRA is fed a piece of training data,
consisting of a surface form y licit according to the
target constraint ranking. No assumptions are made
on the sequence of training data (e.g., no assump-
tions are made on the frequency with which vari-
ous licit forms are fed to the learner). At line 4,
the EDRA needs to reconstruct an underlying form
x corresponding to the current winner surface form
y. A common choice is to set x identical to y, un-
der the assumption that the underlying OT typology
is idempotent, namely it maps every phonotactically
licit form faithfully into itself (Magri, 2015b). The
proper definition of the subroutine for the choice of
the loser form z at line 5 is the topic of this paper
and will thus be discussed in detail below.

At line 6, the EDRA checks whether the current
ranking vector θ satisfies condition (2), where W
and L are the sets of winner- and loser-preferring
constraints relative to the intended winner and loser

candidates (x, y) and (x, z).

(2) max
h∈W

θh > max
k∈L

θk

If condition (2) holds, any ranking � which re-
spects the current ranking vector θ (in the sense that
Ch � Ck whenever θh > θk) satisfies the OT
condition (1), namely succeeds at making the in-
tended winner (x, y) beat the intended loser (x, z)
(Boersma, 2009). In this case, the learner has noth-
ing to learn from the comparison between the cur-
rent winner and loser forms.

Failure of condition (2) instead suggests that
the current ranking values of the loser-preferring
(winner-preferring) constraints are too large (too
small, respectively) and thus need to be updated at
line 7. We assume the re-ranking rule (3) (Tesar and
Smolensky, 1998; Boersma, 1998; Magri, 2012).

(3) a. Increase the ranking values of the w
winner-preferring constraints by 1

w+1 ;
b. decrease the ranking values of the undom-

inated loser-preferring constraints by 1.
Each winner-preferring constraint is promoted by

1
w+1 , where w is the total number of winner-
preferring constraints. The loser-preferring con-
straints are demoted by 1. Only those loser-
preferring constraints that really need to be demoted
are indeed demoted, namely those which are not cur-
rently ranked underneath a winner-preferring con-
straint and are therefore called undominated.

The only implementation detail which has been
left open in this outline of the EDRA model is the
proper definition of subroutine for the choice of the
loser at line 5. This is the topic of this paper.

2 Two test cases to evaluate subroutines
for the choice of the current loser

The EDRA model is guaranteed to converge (under
the assumption that the target grammar is idempo-
tent): after a finite (small) number of iterations, it
is not possible to sample from the set of target licit
forms any surface form y which would force the
learner to make an update in the if-loop at lines 6-
8. Convergence holds irrespectively of the subrou-
tine for the choice of the current loser used at line 5.
Suppose now that this subroutine satisfies the basic
condition (4). This condition says that the EDRA
never wastes data (Tesar and Smolensky, 1998): if

127

there is an opportunity to learn something from the
current winner (i.e., if there exists at least a loser
which is able to trigger an update), the EDRA will
not “waste” that opportunity (i.e., the chosen loser
indeed triggers an update).

(4) The subroutine for the choice of the loser re-
turns a loser which triggers an update at line 7,
whenever such a loser exists.

This condition (4) ensures that, if a surface form y
is licit according to the target grammar the EDRA
has been trained on, then it is also licit according
to any ranking � which respects the final ranking
vector θfin entertained by the EDRA at convergence
(in the sense that Ch � Ck whenever θfin

h > θfin
k).

In other words, the EDRA succeeds at half of the
learning problem: it has learned to recognize licit
forms as such. The ranking learned by the EDRA
could nonetheless deem licit too many forms. In
other words, it could describe a phonotactics which,
although consistent with the target one, is not suf-
ficiently restrictive. Are there guarantees that the
EDRA also learns to recognize illicit forms as such?

Consider a phonotactic pattern which has the fol-
lowing property: there exists a subset of the marked-
ness constraints which punish exactly all and only
the illicit forms. This phonotactic pattern can thus
be analyzed in terms of a constraint ranking such as
(5): the designated subset of markedness constraints
hold sway at the top while the remaining marked-
ness constraints are silent at the bottom. The relative
ranking of the faithfulness constraints sandwiched
in between is irrelevant. We therefore refer to these
phonotactic patterns as F-irrelevant.

(5) a subset ofM constraints

all F constraints

the remainingM constraints

For instance, suppose that the constraint set con-
tains a markedness constraint against voiced velar
obstruents and a markedness constraint against dor-
sal fricatives. The velar inventory [g k G x], which
only admits the voiceless velar stop (illicit segments
are stricken out), follows by just letting those two
markedness constraints hold sway at the top.

The EDRA model described in section 1 has been
shown to be restrictive when the target phonotactics

is F-irrelevant (Magri, 2013a; Magri, 2014a; Ma-
gri, 2015c; Magri, 2015a). In other words, it suc-
ceeds at learning the target phonotactics. This suc-
cess holds irrespectively of the details of the phono-
logical analysis (e.g., the content of the markedness
and faithfulness constraints or any other properties
of the target ranking, besides it being F-irrelevant).
It also holds irrespectively of how the current loser
is chosen at line 5 of the pseudo-code—as long as
condition (4) is respected. In order to tackle the is-
sue of the proper definition of the subroutine for the
choice of the loser at line 5, we thus need to look
at the behavior of the EDRA model on phonotactic
patterns which are not F-irrelevant. Let’s briefly re-
call two two examples of such phonotactic patterns
which are notF-irrelevant (Magri and Kager, 2015).

Voicing is especially effortful at the velar place:
due to the small oral volume behind the velar con-
striction, the supra-glottal pressure quickly equal-
izes the sub-glottal pressure, hindering vocal cords
vibration (Ohala, 1983). Many attested velar in-
ventories comply with phonetic markedness, namely
have voiceless stops or fricatives without the voiced
ones. Yet, UPSID (Maddieson, 1984) documents
two inventories [g k G x] and [g k G x] which are pho-
netically counterintuitive, as they admit the voiced
fricative at the exclusion of the voiceless one. If
we could posit a markedness constraint which pun-
ishes [x] at the exclusion of [G], these inventories
could be generated by letting that markedness con-
straint hold sway at the top of the ranking (5). Yet,
such a markedness constraint would be incompati-
ble with the grounding hypothesis (Hayes and Ste-
riade, 2004): [x] is not any worse than [G] from
any phonetic perspective. Fortunately, the desired
inventory can be generated in compliance with the
grounding hypothesis whenever /G/ is harder to neu-
tralize than /x/, so that the former surfaces at the ex-
clusion of the latter. This neutralization pattern re-
quires some faithfulness constraints (which preserve
/G/ from neutralizing) to be ranked above some other
faithfulness constraints (those violated by the neu-
tralization of /x/). In conclusion, the grounding hy-
pothesis forces us to posit a crucial relative ranking
among the faithfulness constraints. The learnabil-
ity guarantees recalled above for F-irrelevant target
rankings (5) thus do not apply in these cases.

128

Let’s look closer at the inventory [g k G x], which
lacks the voiced stop and the voiceless fricative. We
analyze this inventory as follows: /x/ can be neutral-
ized to [k] preserving voicing, while /G/ cannot be
neutralized preserving voicing, because [g] is inde-
pendently ruled out by a dedicated constraint. This
intuition can be cashed out as follows. We assume
that only velar obstruents are candidates of the velar
obstruents, as stated in (6a). The ranking (6b) then
yields the target inventory [g k G x].

(6) a. Gen(/g k G x/) = [g k G x]
b. IDENT[VOI] NOVOISTOP

NODORFRIC

NOVOIFRIC

IDENT[CONT]

The inventory [g k G x] only lacks the voiceless
fricative and thus differs from the inventory con-
sidered above only because the voiced velar stop
[g] is now licit. We analyze this inventory as fol-
lows: /x/ can be neutralized to [h] preserving voic-
ing, while /G/ cannot be neutralized while preserving
voicing, because [H] is independently ruled out by a
dedicated constraint. This intuition can be cashed
out as follows. We assume place impermeability
apart from the velar/glottal border: only the velar
and glottal obstruents are candidates of the velar and
glottal obstruents, as stated in (7a). The ranking (7b)
then generates the target inventory [g k G x].

(7) a. Gen(/g k G x P H h/) = [g k G x P H h]
b. M = *[H]

IDENT[VOICE] IDENT[CONT]

NOVOISTOP NOVOIFRIC

NODORFRIC

IDENT[DOR] *[h]

From the perspective of the phonological analy-
sis, the assumption (6a) of velar place impermeabil-
ity and the assumption (7a) of place impermeability
apart from the velar/glottal border are not restrictive:
they can be reinterpreted as the assumption that the
faithfulness constraints for place features are high
ranked. Yet, this interpretation introduces additional
relative ranking conditions among the faithfulness
constraints which would need to be carefully con-

sidered in the learnability analyses. To start from the
simplest case, the learnability analyses developed in
the rest of the paper explicitly adopt the restrictive
assumptions (6a) and (7a) on candidacy.

The only detail in the description of the EDRA
model which has been left open in section 1 con-
cerns the proper definition of subroutine for the
choice of the loser at line 5. The rest of this paper
tackles this issue using the test cases of the two velar
inventories just discussed.

3 Motivating a new subroutine for the
choice of the current loser

Suppose that the EDRA model is trained on the ve-
lar inventory [g k G x] and thus needs to learn the
corresponding constraint ranking (6b). At line 3, the
model is effectively always fed the surface form [G],
since [G] and [k] are the only two licit forms and the
latter can be ignored, because it is unmarked rela-
tive to the constraints assumed (it violates none) and
thus never prompts an update. At line 4, the model
assumes the faithful underlying form /G/. At line 5,
the model has to choose the current loser candidate
among [g], [k], or [x]. According to the classical
subroutine for the choice of the loser, the learner
chooses as the current loser the candidate predicted
to win by the current ranking values—more pre-
cisely, by an arbitrary ranking consistent with the
current ranking values (Tesar and Smolensky, 1998;
Magri, 2013b). This classical subroutine for the
choice of the loser satisfies condition (4), namely
it never wastes data: if there exists at least a loser
which is able to trigger an update, the chosen loser
can be shown to indeed trigger an update.

Unfortunately, the classical subroutine for the
choice of the loser leads to trouble when the EDRA
model is trained on the inventory [g k G x]. Here
is why. The comparison between the winner map-
ping (/G/, [G]) and the three loser mappings (/G/, [g]),
(/G/, [k]), and (/G/, [x]) sorts the constraints into
winner-/loser-preferring as represented in (8) with
Elementary Ranking Conditions (Prince, 2002).

(8)




IDENT[VOI]

ID[CON]

NODORFRIC

NOVOISTOP

NOVOIFRI

(/G/,[G])∼(/G/,[g]) W L W L

(/G/,[G])∼(/G/,[k]) W W L L

(/G/,[G])∼(/G/,[x]) W L




129

The loser [g] will (almost) never be chosen, be-
cause the constraint NOVOICEDSTOP is winner-
preferring in the corresponding first ERC in (8),
starts ranked at the top, and is never demoted (be-
cause never loser-preferring). The choice of the
current loser thus effectively boils down to [k] and
[x]. The markedness constraints start out above the
faithfulness constraints. That ranking configuration
is preserved for a large initial portion of the run.
Throughout that portion, the choice of the current
loser is thus completely determined by the marked-
ness constraints. Since [k] is unmarked, the clas-
sical subroutine for the choice of the loser always
chooses [k]. Unfortunately, the corresponding sec-
ond ERC in (8) promotes the two faithfulness con-
straints IDENT[VOICE] and IDENT[CONT] on a par.
If the EDRA stubbornly always chooses [k] as the
current loser, it will always promote the two faithful-
ness constraints on a par until they reach the top of
the ranking, thus failing at learning the target rank-
ing (6b) which instead requires IDENT[VOICE] to
be ranked above IDENT[CONT].

We thus replace the classical subroutine with the
new subroutine described below in pseudo-code.
Here, we consider an arbitrary underlying form x
(while the EDRA model always chooses x equal
to the winner form y). For a related proposal, see
(Riggle, 2004). Three remarks are in order. First,

Require: a current winner (x, y) candidate:
1: construct the ERC matrix corresponding to the

comparisons (x, y)∼(x, z) for all possible loser
candidates z for the underlying form x

2: split any ERC with multiple L’s into multiple
ERCs with a single L;

3: determine the smallest number n̂ such that there
exists an ERC with n̂winner-preferrers which is
inconsistent with the current ranking values;

4: pick at random among the inconsistent ERCs
with n̂ winner-preferrers.

the new subroutine satisfies condition (4): if there
exists a loser which is able to prompt an update,
the new subroutine will return one such loser, as
it only searches among losers whose corresponding
ERC is inconsistent with the current ranking val-
ues. Second, the new subroutine chooses among
such losers the one(s) which minimizes the “differ-

ence” between the winner and the loser, as mea-
sured in terms of the number of winner-preferring
constraints which distinguish between them. Third,
the new subroutine is computationally less expen-
sive than the classical one, because it circumvents
the computation of the predicted optimal candidate.

When the new subroutine for the choice of
the loser is deployed on the surface form y =
[G] corresponding to the ERC block (8), it pre-
vents the EDRA from choosing the loser [g], be-
cause the corresponding first ERC is already con-
sistent with the current ranking values (through
the high ranked winner-preferring markedness con-
straint NOVOISTOP). And it also prevents it from
choosing the loser [k], because the corresponding
second ERC has “too many” W’s. The EDRA is
thus biased towards choosing the loser [x]. The
corresponding third ERC promotes IDENT[VOICE]
but not IDENT[CONT], leading to the target ranking
(6b). We thus obtain the following

Theorem 1 When trained on an arbitrary sequence
of data sampled from the velar inventory [g k G x],
the EDRA model with the new subroutine for the
choice of the loser succeeds at learning the target
ranking (6b).

4 How to analyze the new subroutine

The preceding section has motivated a new subrou-
tine for the choice of the current loser. This sec-
tion highlights some formal properties of this new
subroutine which turn out useful in the analysis of
EDRA’s restrictiveness. For concreteness, we fo-
cus on the velar inventory [g k G x], with the anal-
ysis (7) recalled in section 2. This analysis requires
the voiceless glottal fricative [h] to be licit and the
voiced glottal fricative [H] to be instead illicit. To
start from the simplest case, we minimize the num-
ber of licit forms that the model is trained on, by as-
suming that the glottal stop [P] is illicit as well (say,
because of a dedicated high ranked markedness con-
straint *[P]). Thus, suppose that the EDRA model is
trained on the velar/glottal inventory [g k G x P H h].
At line 3, the model is effectively always fed one
of the surface forms [g], [G], and [h], since the only
other licit form [k] is unmarked and can thus be ig-
nored. At line 4, the model assumes the correspond-
ing faithful underlying forms. At line 5, the model

130

chooses a current loser form. The loser candidates
[P] and [H] can be ignored, because the correspond-
ing constraints *[P] and *[H] are never violated and
thus stay ranked at the top—just like NOVOISTOP

in (8) above. The ERCs corresponding to the other
losers are listed in (9).

(9)



ID[DOR]

IDENT[VOI]

ID[CON]

NODORFRIC

NOVOISTOP

NOVOIFRI

*[h]

(/g/,[g])∼(/g/,[k]) W L

(/g/,[g])∼(/g/,[G]) W W L W

(/g/,[g])∼(/g/,[x]) W W W L

(/g/,[g])∼(/g/,[h]) W W W L W

(/G/,[G])∼(/G/,[g]) W L W L

(/G/,[G])∼(/G/,[k]) W W L L

(/G/,[G])∼(/G/,[x]) W L

(/G/,[G])∼(/G/,[h]) W W L L W

(/h/,[h])∼(/h/,[g]) W W W W L

(/h/,[h])∼(/h/,[k]) W W L

(/h/,[h])∼(/h/,[G]) W W W W L

(/h/,[h])∼/h/,[x]) W W L




Because of the new subroutine for the choice of
the loser, the original ERC matrix (9) can effec-
tively be simplified block-by-block as in (10). To
illustrate, consider for instance the top block, corre-
sponding to the surface form [g]. The bottom two
ERCs of the block corresponding to the losers [x]
and [h] can be ignored: since these losers are too
different from the intended winner [g], their corre-
sponding ERCs are entailed by the other ERCs in
the block and will therefore never be selected by the
new subroutine for the choice of the current loser.

(10)




ID[DOR]

IDENT[VOI]

ID[CON]

NODORFRIC

NOVOISTP

NOVOIFRI

*[h]

ERC 1 W L

ERC 2 W W L W

ERC 3 W L W

ERC 4 W W L

ERC 5 W W L

ERC 6 W L

ERC 7 W W L W

ERC 8 W W L

ERC 9 W W L




This illustrates an important formal property of the
new subroutine: ERCs entailed by other ERCs in the
same block (namely ERCs which correspond to too
dissimilar losers) can be ignored. That’s instead not

always the case with the classical subroutine for the
choice of the loser, as shown above with the choice
of the loser [k] in the case of the ERC matrix (8).

Let S be the first time when the current ranking
vector entertained by the EDRA becomes consistent
with either ERC 1 or ERC 6 in (10)—convergence
ensures that such a time S exists. Because of the
new subroutine for the choice of the current loser,
ERC 2 cannot trigger any update before time S, be-
cause ERC 2 belongs to the same block as ERC 1,
because ERC 2 has more W’s than ERC 1, and be-
cause the current ranking vector is never consistent
with ERC 1 before time S. Analogously, ERCs 3,
4, 5, and 7 cannot trigger any update before time S.
In other words, the run up to time S is determined
by ERCs 1, 6, 8 and 9 alone. Consider next ERC
7. Since it has more W’s than the other ERCs 3-6
in the same block, it cannot trigger any update until
the current ranking values have become consistent
with the other ERCs 3-6. In other words, if ERC 7
triggers updates at all in the run considered, it will
start triggering updates only late into the run. Thus,
let the time T be defined as follows. If ERC 7 trig-
gers at least an update in the run considered, T is
the smallest time such that ERC 7 triggers an update
between times T and T + 1; if ERC 7 triggers no
updates in the run considered, T is the final time of
the run. Of course, S ≤ T (before time S, the cur-
rent ranking values are still inconsistent with ERC 6
and the EDRA is thus forbidden to consider ERC7,
which has more W’s). In conclusion, a generic run
of the EDRA model on the current test case can be
split into three stages, as in (11).

(11) start S T end

only ERCs
1, 6, 8, 9

all ERCs
but 7

all ERCs

This reasoning illustrates another formal property of
the new subroutine for the choice of the loser: that
it makes the various ERCs enter the scene in stages,
ordered by their complexity, namely by the number
of winner-preferring constraints they re-rank. This
means in turn that the analysis of a generic run
can be split into different stages, with an increasing
number of ERCs active at each stage.

This turns out to be very useful for the analysis of
EDRA’s restrictiveness. In fact, establishing restric-
tiveness requires a characterization of the final rank-

131

ing vector entertained by the EDRA at convergence.
To obtain that characterization, we start from the ini-
tial stage and work towards the end. For each stage,
we characterize the ranking vectors the learner can
end up with at the end of that stage. Obviously, we
have to do that for each ranking vector the learner
could end up with at the end of the preceding stage.
This logics is illustrated in (12). Suppose that the
analysis of the first stage (in between the beginning
of the run and time S) concludes that the EDRA can
end up with one of two ranking vectors θS

1 and θS
2

at the time S when that stage ends. The analysis at
the second stage (in between times S and T) will
then have to be repeated twice, for each of the two
ranking vectors viable at time S. And so on.

(12) θfin
1,1.1

θT
1,1

θfin
1,1,2

θS
1 θfin

1,2,1
θT

1,2
θfin

1,2,2

θinit θfin
2,1,1

θT
2,1

θfin
2,1,2

θS
2 θfin

2,2,1
θT

2,2
θfin

2,2,2

These considerations suggest that we aim for par-
ticularly tight analyses of the ranking vectors en-
tertained at the end of the initial stages, in order
to avoid a combinatorial explosion of the analyses
required at later stages. Of course, tight analyses
are readily possible when only a few training ERCs
can trigger updates and thus mold the current rank-
ing vector. As we increase the number of training
ERCs which trigger updates, the analysis becomes
more involved, and the characterization of the stage-
final ranking vectors becomes looser. As illustrated
in (11), the new subroutine for the choice of the loser
thus comes very handy for the analysis of restrictive-
ness, as it ensures that the EDRA is trained on few
ERCs at the beginning of the run, with additional
ERCs entering the scene only at later stages.

The final appendix makes these considerations
concrete through a detailed analysis of the behavior
of the EDRA model with the new subroutine for the
choice of the loser trained on the ERC matrix (10)
corresponding to the inventory [g k G x P H h]. The

resulting analysis establishes the following result.

Theorem 2 When trained on an arbitrary sequence
of data sampled from the glottal/velar inventory [g k
G x P H h], the EDRA model with the new subroutine
for the choice of the loser succeeds at learning the
ranking (7b).

5 Conclusion

This paper has motivated a new subroutine for the
choice of the current loser in phonotactic error-
driven learning. Informally, the new subroutine
chooses a loser which is as similar as possible to the
intended winner, while being able to trigger an up-
date. Similarity in measured in terms of the number
of winner-preferring constraints in the correspond-
ing ERC. Crucially, this new subroutine allows the
various training ERCs to become active in stages,
ordered by their complexity, measured in terms of
the number of winner-preferring constraints. This
allows for careful restrictiveness guarantees, such as
the one provided by theorem 2. The proof of the
theorem illustrates a number of techniques for the
restrictiveness analysis of the EDRA model with the
new subroutine for the choice of the loser.

A Proof of theorem 2

A.1 Analysis at an arbitrary time in the run
The markedness constraint *[h] starts high and
the faithfulness constraint IDENT[DOR] starts low.
Lemma 1 says that *[h] can never drop by more than
5/4 underneath IDENT[DOR]. This follows from the
fact that only ERCs 7, 8, and 9 in (10) re-rank these
two constraints. And that ERC 7 promotes them in
tandem, and thus does not contribute to their separa-
tion. While ERCs 8 and 9 cannot demote *[h] a long
way underneath IDENT[DOR], as IDENT[DOR] is
winner-preferring in both ERCs 8 and 9.

Lemma 1 The ranking values of the markedness
constraint *[h] and the faithfulness constraint
IDENT[DOR] satisfy the following inequality:

(13) θt*[h] ≥ θtID[DOR] −
5

4
at any time t in any run.

Proof. The proof is by induction on time t. The
inequality (13) trivially holds at the initial time t =
0, because of the choice of the initial ranking values

132

θt=0
*[h] = θ > 0 and θt=0

ID[DOR] = 0. Assume that the
inequality holds at time t and let me show that it then
holds at time t + 1 as well. If the update between
times t and t + 1 has been triggered by the ERCs
1 through 6, then the inequality holds at time t + 1
because it held at time t and the two constraints *[h]
and IDENT[DOR] have not been re-ranked between
times t and t + 1. If the update between times t
and t + 1 has been triggered by the ERC 7, then
the inequality holds at time t + 1 because it held at
time t and both constraints *[h] and IDENT[DOR]
have been promoted by the same amount in between
times t and t + 1. Finally, if the update between
times t and t + 1 has been triggered by the ERCs 8
or 9, then the inequality holds at time t+ 1 because
of the following chain of inequalities.

(14) θt+1
*[h]

(a)
= θt*[h] − 1

(b)

≥ θtID[DOR] − 1

(c)
= θt+1

ID[DOR] −
1

4
− 1

At step (14a), I have used the fact that the update by
ERCs 8 or 9 in between times t and t+1 has demoted
the constraint *[h] by 1, according to the re-ranking
rule (3b). At step (14b), I have used the fact that,
in order for ERCs 8 or 9 to have been able to trig-
ger an update in between times t and t + 1, the cur-
rent ranking value θt*[h] of the loser-preferring con-
straint *[h] must have been larger than or equal to the
ranking value θtID[DOR] of the winner-preferring con-
straint IDENT[DOR]. Finally at step (14c), I have
used the fact that the update by ERCs 8 or 9 in
between times t and t + 1 has promoted the con-
straint IDENT[DOR] by 1/4, as that ERC has w = 3
winner-preferring constraints and the re-ranking rule
(3a) set the promotion amount equal to 1

w+1 . �

If ERCs 8 and 9 were to trigger lots of updates,
IDENT[DOR] would be promoted a lot and *[h]
would be demoted a lot. In the end, *[h] would thus
find itself underneath IDENT[DOR] separated by a
large distance. But lemma 1 says that is impossible.
Hence, ERCs 8 and 9 can never trigger too many
updates, as stated by lemma 2.

Lemma 2 The numbers αt
8 and αt

9 of updates trig-
gered by ERCs 8 and 9 up to an arbitrary time t in
an arbitrary run can be bound as follows:

(15) αt
8 + αt

9 ≤
4

5
θ + 1

where θ is the initial ranking value of the marked-
ness constraints.

Proof. The ranking values θt*[h] and θtID[DOR] of
the constraints *[h] and IDENT[DOR] at an arbi-
trary time t can be expressed as follows in terms of
the numbers of updates αt

7, α
t
8, α

t
9 triggered by the

ERCs 7, 8, and 9 up to time t.

(16) a. θt*[h] = θ +
1

5
αt

7 − αt
8 − αt

9

b. θtID[DOR] =
1

5
αt

7 +
1

4
αt

8 +
1

4
αt

9

The inequality (15) follows by plugging the expres-
sions (16a) and (16b) into (13). �

A.2 Analysis up to time T

Recall from subsection 4 that time T is the small-
est time such that ERC 7 triggers an update be-
tween times T and T + 1 (or the time when the run
ends, in case ERC 7 triggers no updates). Constraint
IDENT[DOR] is only promoted by ERCs 8 and 9 up
to time T (ERC 7 triggers no updates before time
T). Since these two ERCs cannot trigger too many
updates by lemma 2, IDENT[DOR] cannot raise too
high up to time T , as stated by the following lemma.

Lemma 3 The ranking value of the faithfulness con-
straint IDENT[DOR] satisfies

(17) θtID[DOR] ≤
1

5
θ +

1

4

at an arbitrary time t ≤ T .

Proof. The faithfulness constraint IDENT[DOR] is
only promoted by ERCs 8 and 9 up to time T (ERC
7 triggers no updates before time T). The ranking
value of IDENT[DOR] at an arbitrary time t ≤ T can
then be expressed as follows in terms of the numbers
αt

8, α
t
9 of updates triggered by ERCs 8 and 9 up to

time t.

(18) θtID[DOR] =
1

4
(αt

8 + αt
9)

Plugging (15) into (18) yields (17). �
The following lemma says that the markedness

constraint NODORFRIC cannot have dropped too
much before time T . This follows from the fact that
only ERCs 2 and 5 demote NODORFRIC up to time
T (ERC 7 has not triggered any update yet). In or-
der for NODORFRIC to have been demoted a long

133

way, these two ERCs must have triggered many up-
dates. Yet, the faithfulness constraint IDENT[CON]
is winner-preferring in both ERCs and is thus pro-
moted by each update they trigger. These ERCs
thus cannot trigger too many updates, because they
cannot demote NODORFRIC a long way underneath
IDENT[CON].

Lemma 4 The ranking value of the markedness
constraint NODORFRIC satisfies

(19) θtNODORFRIC >
1

5
θ +

1

4

at an arbitrary time t ≤ T .

Proof. Suppose by contradiction that the claim is
false. This means that there exists some time t < T
such that the markedness constraint NODORFRIC is
demoted in between times t − 1 and t and its rank-
ing value at time t is smaller than or equal to the
forbidden threshold θ/5 + 1/4. Since constraints
are demoted by 1, its ranking value at the time t− 1
preceding the update must have been already smaller
than or equal to θ/5 + 1/4 + 1, as stated in (20a).
Only ERCs 3 and 5 can have triggered this demo-
tion (ERC 7 triggers no updates before time T).
Crucially, the constraint IDENT[CONT] is winner-
preferring relative to both ERCs 3 and 5. In or-
der for either ERC 3 or 5 to have been able to
demote NODORFRIC in between times t − 1 and
t, the ranking value of the winner-preferring con-
straint IDENT[CONT] at time t − 1 must thus have
been smaller than or equal to the ranking value of
the loser-preferring constraint NODORFRIC at time
t−1, as stated in (20b). The rest of the proof derives
a contradiction from these two inequalities (20).

(20) a. θt−1
NODORFRIC ≤

1

5
θ +

1

4
+ 1

b. θt−1
NODORFRIC ≥ θt−1

ID[CON]

The ranking value of the markedness constraint
NODORFRIC at time t− 1 can be lower bounded as
θt−1

NODORFRIC ≥ θ−αt−1
3 −αt−1

5 , by only considering
the contribution of the ERCs 3 and 5 which demote
it, while ignoring the contribution of the ERCs 2 and
9 which promote it. Plugging this bound into (20a)
yields the following bound on the number of updates
triggered by ERCs 3 and 5 up to time t− 1.

(21) αt−1
3 + αt−1

5 ≥ 4

5
θ − 5

4

The ranking value of the faithfulness constraint
IDENT[CON] at time t − 1 can be lower bounded
as θt−1

ID[CON] ≥ 1
3α

t−1
3 + 1

3α
t−1
5 , by only considering

the contribution of ERCs 3 and 5. Using the bound
(21) on the number of updates triggered by ERCs 3
an 5, we obtain the following lower bound on the
ranking value of IDENT[CON].

(22) θt−1
ID[CON] ≥

4

15
θ − 5

12

The inequalities (20a), (20b), and (22) are contra-
dictory (provided θ is large), because they require
the ranking value θt−1

NODORFRIC to be smaller than
1
5θ +

5
4' 3

15θ but larger than 4
15θ − 5

12' 4
15θ. �

A.3 Analysis at time S
Recall that time S is the first time when the cur-
rent ranking vector becomes consistent with either
ERC 1 or ERC 6. Because of the new subroutine
for the choice of the loser, the run up to time S is
determined by ERCs 1, 6, 8, and 9, as noted above.
Since the faithfulness constraint IDENT[VOICE] is
the only winner-preferring constraint in both ERCs
1 and 6, it must raise a long way in order for the cur-
rent ranking vector to become consistent with either
ERC 1 or ERC 6 at time S, as stated by lemma 5.

Lemma 5 The ranking value of the faithfulness con-
straint IDENT[VOICE] satisfies the following in-
equality at time S:

(23) θSID[VOI] ≥
1

3
θ

Proof. For concreteness, suppose it is ERC 1 which
becomes consistent with the current ranking vector
at time S (the reasoning is identical if it is ERC
6 instead). This means that the ranking value of
the winner-preferring constraint IDENT[VOICE] is
larger than the ranking value of the loser-preferring
constraint NOVOICEDSTOP at time S, as stated by
the following inequality.

(24) θSID[VOI] ≥ θSNOVOISTOP

By definition of time S, only ERCs 1 and 6 have pro-
moted IDENT[VOICE] up to time S and only ERC 1
has demoted NOVOISTOP. Their ranking values can
thus be expressed as follows.

(25) a. θSID[VOI] =
1

2
αS

1 +
1

2
αS

6

b. θSNOVOISTOP = θ − αS
1

134

Plugging (25a) and (25b) into (24) yields the fol-
lowing bound on the number of updates triggered by
ERC 1 up to time S.

(26) αS
1 ≥

2

3
θ − 1

3
αS

6 .

The following chain of inequalities then yields
the desired bound on the ranking value of
IDENT[VOICE] at time S.

(27) θSId[voi]

(a)
=

1

2
αS

1 +
1

2
αS

6

(b)

≥ 1

3
θ − 1

6
αS

6 +
1

2
αS

6

(c)

≥ 1

3
θ

At step (27a), I have used the expression (25a) of
the ranking value of IDENT[VOICE]. At step 27b),
I have used the bound (26) on αS

1 . At step (27c), I
have lower bounded by getting rid of the contribu-
tion of αS

6 , which is crucially multiplied by a posi-
tive coefficient. �

A.4 Analysis after time S

The faithfulness constraint IDENT[DOR] is only
promoted by ERCs 7, 8, and 9. The latter two
ERCs 8 and 9 promote IDENT[DOR] and not
IDENT[VOICE]. Yet, they can only trigger few up-
dates by lemma 2, and thus cannot give a substantial
advantage to the former constraint over the latter.
Furthermore, ERC 7 promotes both IDENT[DOR]
and IDENT[VOI], and thus does not give the former
any advantage over the latter. The following lemma
thus concludes that IDENT[DOR] will never be able
to surpass IDENT[VOICE], which already sits high
at time S by lemma 5.

Lemma 6 The ranking values of the faithfulness
constraints IDENT[VOICE] and IDENT[DOR] sat-
isfy the following inequality at any time time t ≥ S:

(28) θtID[VOI] ≥ θtID[DOR] + 2

Proof. Suppose by contradiction that (28) fails at
some time t ≥ S, as stated in (29).

(29) θtID[DOR] > θtID[VOI] − 2

From now on, let αS,t
i denote the number of updates

triggered by the ith ERC in between times S and
t. Thus, αt

i = αS
i + αS,t

i . The ranking value of the
faithfulness constraint IDENT[DOR] at time t can be
expressed as in (30). At step (30a), I have used the
fact that this constraint is promoted only by ERCs

7, 8, and 9. At step (30b), I have used the fact that
ERC 7 triggers no updates before time T and thus
also no updates before time S (because S ≤ T), so
that αS

7 = 0 and thus αt
7 = αS,t

7 .

(30) θtID[DOR]
(a)
=

1

4
αt

8 +
1

4
αt

9 +
1

5
αt

7

(b)
=

1

4
αt

8 +
1

4
αt

9 +
1

5
αS,t

7

The ranking of the faithfulness constraint
IDENT[VOICE] at time t can be expressed as
in (31). At step (31a), I have expressed the ranking
value at time t ≥ S as the ranking value at time
S plus the increment in the ranking value due to
the promotions between times S and t. At step
(31b), I have lowered bounded the ranking value of
IDENT[VOICE] at time S using (23).

(31) θtID[VOI] =

(a)
= θSID[VOI] +

1

2
αS,t

1 +
1

3
αS,t

5 +
1

2
αS,t

6 +
1

5
αS,t

7

≥ θSID[VOI] +
1

5
αS,t

7

(b)

≥ 1

3
θ +

1

5
αS,t

7

Plugging (30) and (31) into (29) yields αt
8 + αt

9 >
4
3θ − 2, which contradicts (15). �

A.5 An auxiliary result

The next step in the analysis (namely, the proof of
lemma 7 below) rests on theorem 3 (Magri, 2014b).

Theorem 3 Consider an arbitrary run of the EDRA
with the re-ranking rule (3). Assume that each train-
ing ERC has a unique L. Focus on a specific training
ERC, say the ıth one. Let C` be its unique loser-
preferring constraint and let Ch be one of its (possi-
bly many) winner-preferring constraints, as in (32).

(32) ıth ERC =
[... Ch ... C` ...

. . . W . . . L . . .
]

Define the coefficient δi as follows:

(33)

δi =





1
wi+1 if

[... Ch ... C` ...

ith ERC = . . . e/W/L. . . W . . .
]

wi+2
wi+1 if

[
ith ERC = . . . L . . . W . . .

]

1 if
[

ith ERC = . . . L . . . L/e/W. . .
]

0 otherwise

135

The number of updates αı triggered by the ıth input
ERC is either null or else bounded as follows

(34) αı ≤
wı + 1

wı + 2

(
θinit
` − θinit

h︸ ︷︷ ︸
(a)

+ 1︸︷︷︸
(b)

+
∑

i

δi · αi

︸ ︷︷ ︸
(c)

)

where θinit
` and θinit

h are the initial raking values of
the two constraints C` and Ch; αi is the number of
updates triggered by the ith training ERC; wi is the
number of its winner-preferring constraints; the sum
in (34c) runs over all training ERCs.

Here is the intuitive idea. Suppose that the initial
ranking value θinit

` of the loser-preferrer C` is larger
than the initial ranking value θinit

h of the winner-
preferrer Ch. A certain number of updates by the ıth
ERC are thus justified just in order to compensate
for this bad choice of the initial ranking values, as
quantified by the term (34a). At that point, the two
constraints could in principle have exactly the same
ranking values. An additional update is thus justified
in order to bring the winner-preferring constraint Ch

above the loser-preferrerC`, yielding the term (34b).
Further updates by this ıth ERC are only justified if
this ranking configuration Ch � C` is disrupted by
updates triggered by some other training ERCs, as
quantified by the term (34c). This term sums the
number of updates αi triggered by the generic ith
training ERC multiplied by the “amount of disrup-
tion” δi caused by that ERC to the ranking configu-
ration Ch � C`. For instance, suppose that the ith
training ERC looks like the top ERC listed in (33).
The amount δi of disruption caused by that ERC is
δi = 1

wi+1 , because that ERC disrupts the ranking
configuration Ch � C` by promoting C` by 1

wi+1 .

A.6 Analysis after time T

Lemma 7 says that IDENT[CONT] is always ranked
above IDENT[DOR] after time T , with a sufficient
distance in between the two faithfulness constraints
(at least 2). The proof of this lemma is more in-
volved than the proof of the preceding lemmas. The
difficulty is due to the fact that ERC 2 promotes
IDENT[CONT] at the exclusion of IDENT[DOR]
while ERC 7 promotes IDENT[DOR] at the exclu-
sion of IDENT[CONT]. In order to compare the
ranking values of these two faithfulness constraints,
we thus need some connection between the numbers

of updates αt
2 and αt

7 triggered by the two ERCs 2
and 7. What allows this connection to be established
is the fact that the constraint NODORFRIC is winner-
preferring in ERC 2 but loser-preferring in ERC 7.
Since ERC 2 thus promotes the constraint NODOR-
FRIC which ERC 7 tries to demote, updates by ERC
2 “buy” extra updates by ERC 7. If ERC 2 happens
to trigger few updates (and thus to contribute little to
the height of IDENT[CONT]), then it will buy only
few updates by ERC 7 (which will therefore con-
tribute little to the height of IDENT[DOR]). Theo-
rem 3 is used to formalize this intuition, yielding the
link between αt

2 and αt
7 in (38).

Lemma 7 Suppose that in the run considered, ERC
7 does trigger at least an update. The ranking val-
ues of the faithfulness constraints IDENT[CON] and
IDENT[DOR] satisfy the following inequality:

(35) θtID[CON] ≥ θtID[DOR] + 2

at any time time t ≥ T .

Proof. Since ERC 7 triggers an update between
times T and T + 1, the loser-preferring constraint
NODORFRIC cannot be underneath the winner-
preferring constraint IDENT[VOICE] at time T , as
stated in (36a). Furthermore, the current ranking
vector at time T must be consistent with ERC 5 (oth-
erwise, the algorithm would have chosen ERC 5 in-
stead of ERC 7, as the former has less W’s). This
means that the loser-preferring constraint NODOR-
FRIC is already underneath IDENT[CON] at time T ,
as stated in (36b).

(36) a. θTNODORFRIC ≥ θTID[VOI]

b. θTID[CON] > θTNODORFRIC

The chain of inequalities in (37) thus holds. In step
(37a), I have used (36). In step (37b), I have used
the fact that T ≥ S and that the ranking values of
the faithfulness constraints can only grow with time
(because they are never demoted). In step (37c), I
have used the inequality (23).

(37) θTID[CON]
(a)
> θTID[VOI]

(b)

≥ θSID[VOI]

(c)

≥ 1

3
θ

Since ERC 7 triggers no updates before time T , the
number αt

7 of updates it has triggered up to time t
is equal to the number αT,t

7 of updates it has trig-
gered between times T and t, as stated in (38a). Ap-

136

plying theorem 3 to ERC 7 pivoting on its winner-
preferring constraint IDENT[DOR] and considering
time T as the initial time yields the inequality (38b).
In step (38c), I have used (36b) together with the fact
that θTID[DOR] ≥ 0.

(38) αt
7

(a)
= αT,t

7 ≤
(b)

≤ 5

6

(
θTNODORFRIC − θTID[DOR]

)
+ 1 +

5

24

(
αT,t

2 + αT,t
9

)

(c)

≤ 5

6
θTID[CON] + 1 +

5

24

(
αT,t

2 + αT,t
9

)

The inequality (39) completes the proof.

(39) θtID[DOR] =

(a)
=

1

4
(αt

8 + αt
9) +

1

5
αt

7

(b)

≤ 1

4
(αt

8 + αt
9)

:::::::::

+
1

6
θTID[CON] +

1

5
+

1

24
αT,t

2 +
1

24
αT,t

9
::::::

(c)

≤
(
1

4
+

1

24

)
(αt

8 + αt
9) +

1

6
θTID[CON] +

1

5
+

1

24
αT,t

2

(d)

≤ 7

24

(
4

5
θ + 1

)
+

1

6
θTID[CON] +

1

5
+

1

24
αT,t

2

(e)

≤ 7

24

(
4

5
3θTID[CON] + 1

)
+

1

6
θTID[CON] +

1

5
+

1

24
αT,t

2

=
7

10
θTID[CON] +

1

6
θTID[CON] +

(
1

5
+

7

24

)
+

1

24
αT,t

2

= θTID[CON] −
8

60
θTID[CON] +

(
1

5
+

7

24

)
+

1

24
αT,t

2

(f)

≤ θTID[CON]−
8

60
3θ +

(
1

5
+

7

24

)

:::::::::::::::::

+
1

24
αT,t

2

(g)

≤ θTID[CON] − 2 +
1

24
αT,t

2

(h)

≤ θtID[CON] − 2

The ranking value of the faithfulness constraint
IDENT[DOR] can be expressed as in (39a) in terms
of the contribution of the three ERCs 7, 8, and
9 which promote it. At step (39b), I have upper
bounded the number αt

7 of updates triggered by ERC
7 through (38). At step (c), I have upper bounded
the sum of the two terms marked with a wiggly line
with

(
1
4 + 1

24

)
(αt

8 + αt
9). At step (39d), I have up-

per bounded αt
8 + αt

9 using (15). At steps (39e) and
(39f), I have used the inequality θ < 3θTID[COR] ob-
tained in (37). At step (39g), I have used the fact that
the quantity marked by the wiggly line is smaller
than−2, provided the initial ranking value θ is large
enough. Finally at step (39h), I have used the fact
that θtID[CON] ≥ θTID[CON] +

1
4α

T,t
2 , because ERC 2

promotes IDENT[CONT] by 1/4. �

A.7 Putting the pieces together
It is easy to see that, if some rankings values are con-
sistent with the ERC matrix (9b) and furthermore the
ranking values of the two constraints sc NoDorFric
and IDENT[DOR] satisfy the strict inequality (40),
then each of the rankings consistent with those rank-
ing values neutralizes [x] and thus generate the tar-
get inventory [g k G x].

(40) θNODORFRIC > θID[DOR]

In order to guarantee that the EDRA model suc-
ceeds at learning this inventory and thus complete
the proof of the theorem, it thus suffices to prove that
its final ranking values satisfy this inequality (40),
as convergence ensures consistency with the train-
ing ERC matrix (9b). To this end, we repeat below
some of the inequalities which have been obtained
with the preceding lemmas.

(17) θtID[DOR] ≤
1

5
θ +

1

4
for any t ≤ T

(lemma 3)

(19) θtNODORFRIC >
1

5
θ +

1

4
for any t ≤ T

(lemma 4)

(28) θtID[VOI] ≥ θtID[DOR] + 2 for any t ≥ S
(lemma 6)

(35) θtID[CON] ≥ θtID[DOR] + 2 for any t ≥ T
(lemma 7)

The two inequalities (17) and (19) guarantee that
the markedness constraint NODORFRIC is indeed
ranked above IDENT[DOR] up to time T . In other
words, that the inequality (40) holds up to time
T . If ERC 7 never triggers any update in the
run considered, time T is the final time of the
run, and the proof is completed. Thus, suppose
that T is not the end of the run. The inequali-
ties (28) and (35) ensure that the two faithfulness
constraints IDENT[VOICE] and IDENT[CONT] are
always above IDENT[DOR] from time T on, with
enough space in between (namely at least 2). Since
NODORFRIC is ranked above IDENT[DOR] at time
T , it can never demoted below it, because any ERC
where it is loser-preferring counts at least one of the
two constraints IDENT[VOICE] or IDENT[CONT] as
winner-preferring.

137

References
Paul Boersma. 1998. Functional Phonology. Ph.D. the-

sis, University of Amsterdam, The Netherlands. The
Hague: Holland Academic Graphics.

Paul Boersma. 2009. Some correct error-driven versions
of the constraint demotion algorithm. Linguistic In-
quiry, 40:667–686.

Noam Chomsky and Morris Halle. 1965. Some contro-
versial questions in phonological theory. Journal of
Linguistics, 1:97–138.

Bruce Hayes and Donca Steriade. 2004. Introduction:
the phonetic bases of phonological markedness. In
Bruce Hayes, Robert Kirchner, and Donca Steriade,
editors, Phonetically based phonology, pages 1–33.
Cambridge University Press.

Ian Maddieson. 1984. Patterns of Sounds. Cambridge
University Press.

Giorgio Magri and René Kager. 2015. How to ac-
count for phonetically counterintuitive segment inven-
tories using only phonetically grounded markedness
constraints. In Thuy Bui and Deniz Ozyildiz, editors,
Proceedings of NELS 45, Amherst, MA. GLSA Publi-
cations.

Giorgio Magri. 2012. Convergence of error-driven rank-
ing algorithms. Phonology, 29(2):213–269.

Giorgio Magri. 2013a. The error-driven ranking model
of the early stage of the acquisition of phonotactics: an
initial result on restrictiveness. In Hsin-Lun Huang,
Ethan Poole, and Amanda Rysling, editors, Proceed-
ings of NELS 43: the 43rd annual meeting of the North
East Linguistic Society, pages 277–290.

Giorgio Magri. 2013b. A note on the GLA’s choice of
the current loser from the perspective of factorizability.
Journal of Logic, Language, and Information, 22:231–
247.

Giorgio Magri. 2014a. The EDRA model of the acquisi-
tion of phonotactics: the problem of F-controlling. In
Özlem Çetinoglu, Jeffrey Heinz, Andreas Maletti, and
Jason Riggle, editors, Proceedings of MORPHFSM
2014. Association for Computational Linguistics.

Giorgio Magri. 2014b. Tools for the robust analysis of
error-driven ranking algorithms and their implications
for modeling the child’s acquisition of phonotactics.
Journal of Logic and Computation, 24.1:135–186.

Giorgio Magri. 2015a. How to control the height of the
faithfulness constraints. Ms.

Giorgio Magri. 2015b. Idempotency in constraint-based
phonology and the formal underpinning of correspon-
dence theory. Submitted manuscript.

Giorgio Magri. 2015c. Restrictiveness and the relative
ranking of the markedness constraints. Ms.

John J. Ohala. 1983. The origin of sound patterns in
vocal tract constraints. In P. F. MacNeilage, editor, The

production of speech, pages 189–216. Springer Verlag,
New York.

Alan Prince and Paul Smolensky. 2004. Optimality The-
ory: Constraint Interaction in generative grammar.
Blackwell, Oxford. As Technical Report CU-CS-696-
93, Department of Computer Science, University of
Colorado at Boulder, and Technical Report TR-2, Rut-
gers Center for Cognitive Science, Rutgers Univer-
sity, New Brunswick, NJ, April 1993. Also available
as ROA 537 version.

Alan Prince. 2002. Entailed ranking arguments.
Ms., Rutgers University, New Brunswick, NJ. Rut-
gers Optimality Archive, ROA 500. Available at
http://www.roa.rutgers.edu.

Jason Riggle. 2004. Contenders and learning. In Pro-
ceedings of the 23rd annual meeting of the West Coast
Conference on Formal Linguistics, pages 101–114.

Paul Smolensky. 1996. The initial state and Richness of
the Base in Optimality Theory. John Hopkins Techni-
cal Report.

Bruce Tesar and Paul Smolensky. 1998. Learnability in
Optimality Theory. Linguistic Inquiry, 29:229–268.

138

Proceedings of the 14th Meeting on the Mathematics of Language (MoL 14), pages 139–151,
Chicago, USA, July 25–26, 2015. c©2015 Association for Computational Linguistics

A Concatenation Operation to Derive Autosegmental Graphs

Adam Jardine and Jeffrey Heinz

University of Delaware

{ajardine,heinz}@udel.edu

Abstract

Autosegmental phonology represents words

with graph structures. This paper introduces a

way of reasoning about autosegmental graphs

as strings of concatenated graph primitives.

The main result shows that the sets of au-

tosegmental graphs so generated obey two

important, putatively universal, constraints in

phonological theory provided that the graph

primitives also obey these constraints. These

constraints are the Obligatory Contour Prin-

ciple and the No Crossing Constraint. Thus,

these constraints can be understood as being

derived from a finite basis under concatena-

tion. This contrasts with (and complements)

earlier analyses of autosegmental representa-

tions, where these constraints were presented

as axioms of the grammatical system. Empir-

ically motivated examples are provided.

1 Introduction

Autosegmental phonology represents words with

graph structures. This paper provides a new way

of defining the set of valid autosegmental represen-

tations through concatenating a finite set of graph

primitives with particular properties. This ‘bottom-

up’ approach to formalizing autosegmental repre-

sentations (henceforth APRs) contrasts with the

‘top-down’, axiomatic approach of previous formal-

izations of APRs (Goldsmith, 1976; Bird and Klein,

1990; Coleman and Local, 1991; Kornai, 1995).

However, we show that APR graphs constructed in

the way we define hold to these axioms. One advan-

tage to this perspective is that it brings out the string-

like quality of APRs, in that they can be generated by

the concatenation of a finite set of primitives. Fur-

thermore, it shows that two putatively universal con-

straints, the Obligatory Contour Principle and the

No Crossing Constraint (see below), are guaranteed

to hold of autosegmental representations provided

the graph primitives also obey these constraints. In

other words, concatenation preserves these proper-

ties. Finally, the empirical generalization that lan-

guages may exhibit unbounded spreading but not

unbounded contours is naturally expressed by this

finite set of primitives, as spreading is derivable

through concatenation but the only available con-

tours are those found in the set of graph primitives.

In short, important properties of autosegmental rep-

resentations of words can be understood as being de-

rived from a finite basis under concatenation.

Goldsmith (1976) originally defined APRs as

graphs. Likewise, this paper models APRs us-

ing graphs representing both the associations and

precedence relations of APRs. We apply estab-

lished graph-theoretic methods to APRs, in par-

ticular graph concatenation, as defined by Engel-

friet and Vereijken (1997). Engelfriet and Vereijken

(1997) generate all graphs from concatenation and

sum operations and a finite set of primitives. What is

proposed here is a much weaker version of this idea,

using concatenation only to build a specific class of

graphs from a set of primitives. In doing so, it is

shown how the properties of structures in the gener-

ated class derive from the operation and the primi-

tives.

As detailed in the next section, there are several

properties that most researchers agree are essential

to APRs. One is that their composite autosegments

139

are divided up into disjoint strings called tiers, with

associations linking autosegments on different tiers.

Second, the No-Crossing Constraint (NCC) (Gold-

smith, 1976; Hammond, 1988; Coleman and Local,

1991) states that these associations cannot ‘cross’;

i.e., they must respect the precedence relations on

each tier. Finally, the Obligatory Contour Prinicple

(OCP) (Leben, 1973) states that on the melody tier

adjacent autosegments cannot be identical.

Formal treatments of these properties, starting

with Goldsmith (1976), state these properties as ax-

ioms. For example, Bird and Klein (1990) pro-

vide a model-theoretic definition of APRs given a

particular interpretation of association as overlap,

and state axioms restricting the overlap relation.

More recently, Jardine (2014) axiomatizes the NCC

and one-to-one association in monadic-second order

logic. Kornai (1995)’s treatment defines concatena-

tion operations similar to the one given here, but his

definition of APRs as bistrings does not derive from

these operations. As a result, key properties like the

NCC must be specified as axioms.

Instead, the current paper shows that the NCC

and OCP can be derived by a concatenation oper-

ation alone, given a well-defined set of primitives.

This paper is structured as follows. §2 details the

set of properties phonologists deem important for

APRs. §3 gives the relevant mathematical prelimi-

naries, and §4 defines APRs as graphs and how the

properties in §2 can be formalized as axioms. §5
defines a concatenation operation over graphs, and

§6 proves how APR graphs derived using this con-

catenation operation obey the relevant axioms from

§4. §7 then shows how to describe some common

natural language phenomena using concatenation, as

well as some phenomena that raise issues for con-

catenation. §8 reviews the advantages of viewing

APRs through concatenation and discusses future

work, and §9 concludes.

2 Basics of Autosegmental Phonology

Autosegmental phonology (AP) (Goldsmith, 1976;

Goldsmith, 1979; Clements, 1976; McCarthy, 1979;

McCarthy, 1985) has been a widely adopted theory

of phonological representations in which phonolog-

ical units, called autosegments, appear on one of

some finite set of strings, or tiers, and related to au-

tosegments on other tiers by association. Such au-

tosegmental representations (APRs) are usually de-

picted with the tiers as vertically separated strings of

symbols and the association relation shown as lines

drawn between autosegments, as in (1) below.

a. a b b. a c. H L

�� ❅❅ ◗◗
c c d µ µ

(1)

The core insight APRs express is that a single au-

tosegment on one tier may be associated to multi-

ple autosegments on another tier, as in (1). For pur-

poses of exposition, this paper focuses on two-tiered

APRs: a melody tier, which carries featural infor-

mation, and a timing tier, which represents how fea-

tures on the melody tier are pronounced in the lin-

ear speech stream. For example, in tonal phonology,

APRs often comprise a melody tier over the symbols

{H,L} for high and low tones and a timing tier over

{µ} for morae (the timing unit most commonly as-

sociated with tone). The APR in (1c) thus represents

a high-toned mora followed by a falling tone mora.

Thus, the insights of autosegmental phonology

can be studied minimally with two-tier APRs, and

so this paper focuses on two-tier APRs. However,

in practice, APRs often use more than two tiers. As

we explain at the appropriate points throughout the

paper, the concepts discussed here can be straight-

forwardly applied to AP graphs with multiple tiers.

Two principles have been seen as crucial to con-

straining the theory of APRs. One is the No Cross-

ing Constraint (NCC) (Goldsmith, 1976; Hammond,

1988; Coleman and Local, 1991), which states that

if autosegment a is associated to autosegment y, no
autosegment b which follows a on its tier may be as-

sociated to an autosegment x which precedes y. An
example APR violating the NCC is given in (2a).

The other principle is the Obligatory Contour Prin-

ciple (OCP), which states that on each tier, adjacent

autosegments must be different (Leben, 1973; Mc-

Carthy, 1986). The APR in (2b) violates the OCP.

a. H L

◗◗✑✑
µ µ

b. H H

µ µ

(2)

Formal definitions of the NCC and OCP will be

given in the following section, after we have defined

140

APRs explicitly in terms of graphs. The NCC is usu-

ally considered to be inviolable, where the OCP is

considered violable by some authors (Odden, 1986).

This paper treats the OCP as an inviolable principle,

although this point is returned to in §8.
It is often, but not always, assumed that the sets of

autosegments which are allowed to appear on each

tier are disjoint. This assumption is usually adhered

to in tonal and featural APRs, but not always in mor-

phological APRs in which separate tiers represent

separate morphemes (a la McCarthy (1979)). Here,

we assume that the sets of elements allowed to ap-

pear on each tier are disjoint, and leave theories of

APRs which allow a particular autosegment to ap-

pear on multiple tiers for future work.

3 Preliminaries

Let N represent the natural numbers. Given a set X
of elements, a partition P is a set {X0,X1, ...Xn}
of nonempty subsets or blocks of X such that X is

the union of these blocks and for each Xi,Xj ∈ P ,

Xi ∩Xj = ∅. P induces an equivalence relation ∼P

over X such that for all x, y ∈ X, x ∼P y iff for

some Xi ∈ P , x ∈ Xi and y ∈ Xi. We also say ∼P

partitions X into P . A partition P is said to refine

another partition P ′ iff every block of P ′ is a union
of blocks of P . We also say ∼P is then finer than

∼P ′ . If R is a relation on X then let ∼R denote the

finest equivalence relation on X containing R.

If Σ is a finite alphabet of symbols, then Σ∗ de-

notes the set of all strings over that alphabet, in-

cluding the empty string λ. We consider here alpha-

bets structured by partitions. We refer to a partition

T = {T0, T1, ..., Tn} of Σ as a tier partition over Σ,

and refer to some block Ti in T as a tier alphabet.

A labeled mixed graph is a tuple 〈V,E,A, ℓ〉
where V is a set of nodes, E is the set of undirected

edges, A is the set of directed edges (or arcs), and

ℓ : V → Σ is a total labeling function assigning each

node in V a label in an alphabet Σ. For elements of

the set V we will use early elements in N. An undi-

rected edge is a set {x, y} of cardinality 2 of nodes

x, y ∈ V , and a directed edge is a 2-tuple (x, y) of
nodes in V . When not obvious from context, the el-

ements of a graph G will be marked with subscripts;

e.g., VG. Let Gλ, the empty graph, refer to the graph

〈∅, ∅, ∅, ∅〉.

Unless otherwise noted, all graphs in this pa-

per are labeled mixed graphs, and thus will simply

be referred to as graphs. All graphs are also as-

sumed to be simple graphs without multiple edges;

{x, y} ∈ E implies (x, y) 6∈ A, and (x, y) ∈ A im-

plies {x, y} 6∈ E. Let GR(Σ) denote the union of

{Gλ} with all graphs whose labels are in Σ.

A graph H is a subgraph of a graph G if VH ⊆
VG, EH ⊆ EG, AH ⊆ AG, and ℓH ⊆ ℓG. A sub-

graph H of G is an induced subgraph if for some

subset X of VG, VH = X and for all x, y ∈ X,

{x, y} ∈ EG iff {x, y} ∈ EH and (x, y) ∈ AG

iff (x, y) ∈ AH . In other words, H has exactly

the edges in G that appear between the nodes in

X. We say X induces H and also write G[X]
for H . By a partition of G we refer to some set

{G[V0], G[V1], ..., G[Vn]} where {V0, V1, ..., Vn} is

a partition of V .

4 APRs as graphs

Here we define autosegmental graphs (APGs), or

explicit graph representations of APRs. In this sec-

tion, the set of valid APGs is defined axiomatically

based on the phonological principles discussed in

§2. In §6.2 we show that these principles can all be

derived from graph concatenation. For an APGG, A
represents the ordering relation on each tier, and E
represents the association relations between them.1

We first define the tiers as subgraphs of G that are

string graphs for which A represents the successor

relation (Engelfriet and Hoogeboom, 2001).

a b a b

Figure 1: A string graph

Let 4 be the reflexive, transitive closure of A.

That is, for any x, y ∈ V , if x 4 y then either x = y
or there is a directed path from x to y.

Definition 1 A graph is a string graph if E = ∅ and

its relation 4 is a total order on V .

1It should be noted that linguists often leave the precedence

relation on each tier as implicit or otherwise distinct from the

model of associations (see Coleman and Local (1991) for an

overview). However, with precedence directly in the graph, an

APG represents all of the information in an APR, and thus this

information can be studied by established graph-theoretic tech-

niques, such as the graph concatenation considered here.

141

Let ∼A be the smallest equivalence relation that

results from the symmetric closure of 4. The first

axiom says ∼A partitions V into two tiers.

Axiom 1 V is partitioned by ∼A into at most two

sets V0, V1 such that G[V0] and G[V1] are string

graphs. V0 and V1 are the tiers of G.

The second axiom, related to Axiom 1, is that the

partition of G into tiers respects some partition of Σ.

Axiom 2 There is some tier partition T = {T0, T1}
over Σ such that ℓ forms a morphism from ∼T to ∼A

such that ℓ(x) ∼T ℓ(y) iff x ∼A y.

Axiom 2 corresponds to the principle discussed

in §2 that each kind of autosegment may only ap-

pear on a particular tier. Note that a tier in G thus

corresponds to a tier alphabet in T . For notational

brevity, we mark this with matching subscripts; e.g.,

V0 is the subset of V s.t. for all v ∈ V0, ℓ(v) ∈ T0.

Axiom 3 governs the general form of associations.

Axiom 3 For all {x, y} ∈ E, x 6∼A y.

This simply states that the undirected edges,

which again represent associations, must have one

end in each tier. Thus, as noted by Coleman and

Local (1991), the set of associations between two

tiers in an APG forms a bipartite undirected graph

〈V,E, ℓ〉 where the two parts are the tiers V0 and V1.

Having defined the structure of APGs in Axioms

1 through 3, we now define the NCC and OCP.

Axiom 4 (NCC) For all u, v, x, y ∈ V , if

{u, x}, {v, y} ∈ E and u 4 v, then x 4 y.

Similar axioms have also been defined by Bird and

Klein (1990), Kornai (1995), and Jardine (2014).

Finally, Axiom 5 defines the OCP. Recall that the

OCP only holds at the melodic level, so we choose

only one of the tiers Vm for the OCP to hold.

Axiom 5 (OCP) For one tier Vm, for all x, y ∈ Vm,

(x, y) ∈ A implies ℓ(x) 6= ℓ(y).

This concludes the axioms for APGs. For an

alphabet Σ and tier partition T = {Tm, Tt} over

Σ, let APG(Σ, T) denote the class of APGs obey-

ing the tier partition T of Σ, where for each G ∈
APG(Σ, T), ℓ maps elements in the tier Vm adher-

ing to Axiom 5 to Tm.2 §6 shows how to derive

2Note that E is not required to be nonempty; that is, APGs

with no association lines are allowed. This can model, for ex-

ample, underlying APRs with unassociated melodies.

these axioms from the concatenation, as defined in

the following section, of an alphabet of graph prim-

itives with certain properties.

These axioms can be extended to graphs with

more than two tiers. Instead of binary partitions,

Σ and V could be partitioned into {T0, T1, ..., Tn}
and {V0, V1, ..., Vn}, respectively. In this case, Ax-

iom 3 would specify a single tier in which all undi-

rected edges must have one end. Axiom 5 would

then hold for all tiers besides this tier. This re-

sults in ‘paddle-wheel’ APRs, like those defined by

Pulleyblank (1986). Theories of feature geometry

(Archangeli and Pulleyblank, 1994; Clements and

Hume, 1995; Sagey, 1986) could also be accommo-

dated for by positing additional structure on T . This,

however, shall be left for future work.

5 Concatenation

This section defines a concatenation operation (◦)
based on that of Engelfriet and Vereijken (1997).

Engelfriet and Vereijken (1997)’s operation merges

nodes of graphs with specified beginning and end

points; here, we use the tier structure to determine

how the graphs are concatenated. We thus define

G1 ◦ G2 for two graphs G1, G2 in GR(Σ) given

a tier partition T = {Tm, Tt} over Σ. The basic

idea is to connect, if they exist, the last node of the

first graph and the first node of the second graph for

each tier. Such ‘end nodes’ with identical labels in

the Tm tier alphabet are merged, whereas end nodes

with labels in the timing tier alphabet and nodes with

nonidentical labels in the melody tier alphabet are

connected via a directed edge. As shown in §6.2 and
§7, it is this ‘merging’ that derives both the OCP and

spreading for APGs constructed this way.

As the concatenation operation is defined over

graphs in GR(Σ), it is at first very general and not

of any phonological interest. However, we show in

§6 that concatenation can be used to define a set of

APGs that follow the axioms in §4, as shown in §6.2.

5.1 Definition

We assume that G1 and G2 are disjoint (i.e., that V1

and V2 are disjoint sets)—if G2 is not disjoint with

G1, then we replace it with a graph isomorphic to

G2 that is disjoint with G1.

We use two partial functions first : GR(Σ) ×

142

G1 = a0 b1

c2

G2 = b3

c4

Figure 2: Two graphs in GR(Σ)

T → N and last : GR(Σ) × T → N which pick

out the first and last nodes on a particular tier in a

graph.3 Recall that Vi is the subset of V s.t. for all

v ∈ Vi, ℓ(v) ∈ Ti. Formally, first(G,Ti)
def
= v ∈

Vi s.t. ∀v′ ∈ Vi, v 4 v′ if such a v exists; otherwise

it is undefined. Similarly, last(G,Ti)
def
= v ∈ Vi

s.t. ∀v′ ∈ Vi, v′ 4 v if such a v exists; other-

wise it is undefined. We shall sometimes refer to

first(G,Ti) (resp. last(G,Ti)) as the first (last)
node of G for tier alphabet Ti.

Example 1 Consider the alphabet Σ = {a, b, c}
and the tier partition T = {Tm = {a, b}, Tt =
{c}}. Take graphs G1 and G2 where V1 =
{0, 1, 2} and V2 = {3, 4} with edges and label-

ing as in Figure 2 Node indices are given as sub-

scripts on the node labels. last(G1, Tm) = 1, and
first(G2, Tt) = last(G2, Tt) = 4.

The concatenation operation combines the

graphs, either merging or drawing arcs between

the first and last nodes on each tier, depending on

their labels. The operation can be broken down into

multiple steps as follows. First, we define the graph

G1,2 as the pairwise union of G1 and G2. We denote

V1 ∪ V2 with V1,2 and so on.

G1,2 = 〈V1 ∪ V2︸ ︷︷ ︸
V1,2

, E1 ∪ E2︸ ︷︷ ︸
E1,2

, A1 ∪ A2︸ ︷︷ ︸
A1,2

, ℓ1 ∪ ℓ2︸ ︷︷ ︸
ℓ1,2

〉 (3)

Next, two binary relations over the nodes of G1,2

are defined. R pairs the last element in G1 and the

first element in G2 of each tier. RID is a restriction

on R to pairs who share identical labels, excluding

nodes whose labels are in Tt.

R
def
= { (v, v′) ∈ V1,2 × V1,2 |

v = last(G1, Ti),
v′ = first(G2, Ti),
for some Ti ∈ T }

(4)

3That these are partial functions will be most useful for deal-

ing with graphs with no nodes on a particular tier; for example

the empty graph, which is discussed below.

RID
def
= { (v, v′) ∈ R |

ℓ(v) = ℓ(v′), ℓ(v) 6∈ Tt }
(5)

We also often refer to the complement of RID with

respect to R; RID
def
= R − RID.

We can then use Engelfriet and Vereijken (1997)’s

merging operation which reduces a graph G with

any relation R ⊆ V × V over its nodes. Informally,

nodes which stand in the relation are merged; ev-

erything else stays the same. Given any such re-

lation R, we consider ∼R, the finest equivalence

relation on V containing R. In the usual way, let

[v]∼R
= {v′|v ∼R v′}. Here, we use ∼RID

, which

assigns each node its own equivalence class, except

for pairs (v, v′) ∈ RID of last and first nodes with

identical labels, which are lumped together.

Example 2 Continuing with G1 and G2 from Ex-

ample 1, G1,2 is given in Figure 3a. For G1,2,

R = {(1, 3), (2, 4)}, RID = {(1, 3)}, and so

RID = {(2, 4)}. The equivalence classes for ∼RID
,

{{0}, {1, 3}, {2}, {4}}, are shown in Figure 3b.

a. a0 b1

c2

b3

c4

b. a0 b1

c2

b3

c4

Figure 3: (a) G1,2 and (b) ∼RID in G1,2

Given a graph G and a relation R ⊆ V × V ,

Engelfriet and Vereijken (1997) define V/R =
{[v]R|v ∈ V }. This simply ‘merges’ the nodes of

V based on the equivalence relation ∼R. G/R can

then be defined as the graph reduced by this merged

set of nodes; 〈V/R,E,A, ℓ〉.
The final step is to add precedence arcs to connect

RID, the unmerged last and first nodes inG1,2/RID.

Again, RID is the pairs of last/first nodes on the

melody tier that are not identical and the last/first

pair on the timing tier, which are never merged.

Definition 2 (Concatenation of APGs). The con-

catenation G1 ◦ G2 of graphs G1 and G2 in

GR(Σ) is:

G1 ◦ G2 = 〈V1,2/RID, E1,2, A1,2 ∪ RID, ℓ1,2〉

Example 3 The concatenation of G1 and G2 is

given in Figure 4. The node numbered 1, 3 rep-

resents the nodes from Fig. 3 which have been

143

merged. Node also the added directed edge (2, 4)
from RID in Example 2.

a0 b1,3

c2 c4

Figure 4: G1 ◦ G2

Technically, the resulting set V1,2/RID is a set of

sets of nodes representing the equivalence classes

of ∼RID
; for example, V1,2/RID in Example 3 is

{{0}, {1, 3}, {2}, {4}}. Represented strictly in this

way, successive concatenations will yield sets of sets

of sets of nodes, ad infinitum. For example, concate-

nating a third graph, such as G3 in Figure 5 below,

to G1 ◦ G2 would further merge node {1, 3} with

node 5 in G3. Strictly speaking, the resulting node

is {{1, 3}, {5}}. For clarity, we instead represent

each node in this case as the union of the elements of

each member of its equivalence class, e.g. {1, 3, 5}
for the concatenation (G1 ◦ G2) ◦ G3 in Figure 5.

This convenient renaming ‘flattens out’ the nested

sets. It does not result in any loss of generality be-

cause union is associative. Also, it will be useful

later when showing concatenation is associative for

the particular class of graphs described in §6.

G3 = b5

c6

(G1 ◦ G2) ◦ G3 = a0 b

c2 c4 c6

{1, 3, 5}

Figure 5: Concatenating a third graph G3

Importantly, the relations R and RID do not de-

pend on a binary partition over Σ; they only require

that one partition Tt for the timing tier be specified.

Thus, while the examples given here focus on two

tiers, this operation is defined for graphs represent-

ing APRs with multiple melody tiers.

5.2 Properties

This section proves two important properties of con-

catentation, that Gλ is the identity for ◦, and that for
any tier in both G1 and G2, G1◦G2 contains a string

graph corresponding to those tiers.

Theorem 1 Gλ is the identity element for the ◦ op-

eration. That is, for any G ∈ GR(Σ), G ◦ Gλ =
Gλ ◦ G = G.

Proof: Let G = 〈V,E,A, ℓ〉. We first consider

Gλ ◦ G. Recall that the concatenation of two graphs

is a modification of their disjoint union. From the

properties of the union operation, we know that

the disjoint union of Gλ and G is G. Note that

first(Gλ, Ti) and last(Gλ, Ti) are undefined for

all Ti ∈ T , because the set of nodes is empty in Gλ.

Thus, R = ∅, and so RID = RID = ∅. Because

RID = ∅, V/R = V , because the smallest equiva-

lence relation containing ∅ is =. Thus,

Gλ ◦ G = 〈 (V/R) = V, (E ∪ ∅) = E,
(A ∪ ∅) = A, (ℓ ∪ ∅) = ℓ 〉 = G

G ◦ Gλ = G is similarly derived. �

The next lemma shows that concatenation pre-

serves the string graph properties of any tiers in G1

and G2. This is important for showing the associa-

tivity of concatenation under certain graph classes,

as will be discussed in §6.
Lemma 1 Let Ui and Vi denote the set of all nodes

in G1 and G2, respectively, with labels in some

member Ti of T . If G1[Ui] and G2[Vi] are string

graphs, or if Ui is empty and G2[Vi] is a string

graph, or if G1[Ui] is a string graph and Vi is empty,

then (G1 ◦ G2)[Wi] is a string graph, where Wi is

the set of all nodes inG1◦G2 whose labels are in Ti.

Furthermore, for any Ti, if v = first(G1, Ti), then
first(G1 ◦ G2, Ti) is the unique node in G1 ◦ G2

which contains v, and likewise for last(G2, Ti).

Proof: This follows immediately from the defini-

tion of concatenation if G1[Ui] is a string graph

and Vi is empty, because then first(G2, Ti) will

be undefined and no member of Ui will appear in

R, and thus all will appear in G1 ◦ G2 unmodified

and with no new arcs associated with them. Thus,

G1[Ui] = (G1 ◦ G2)[Wi] and so both are string

graphs. The proof for the case in which Ui is empty

and G2[Vi] is a string graph is very similar.

For the final case, recall that a graph G is a

string graph iff its set of arcs A forms a total or-

der � on its nodes V . For the case G1[Ui] and

G2[Vi] are string graphs and v1 = last(G1, Ti) and

144

v2 = first(G2, Ti), then (v1, v2) appears in either

RID or RID. If the pair is in RID , v1 and v2 are

merged into a node v1,2 and no new arcs will be in-

troduced to the set Ai of the arcs in (G1 ◦ G2)[Wi].
So for the arc (v′

1, v1) from G1[Ui] and (v2, v
′
2) from

G2[Vi], the corresponding arcs in Ai are (v′
1, v1,2)

and (v1,2, v
′
2), respectively, which maintains the to-

tal orders of both Ui and Vi. If (v1, v2) ∈ RID, then

(v′
1, v1), (v1, v2), and (v2, v

′
2) are all in Ai, which

also mantains the total order.

That for v = first(G1, Ti), first(G1 ◦ G2, Ti)
is the unique node which contains v follows directly

from the fact that the total order on Ui is maintained.

Likewise for v = last(G2, Ti) and Vi. �

These properties allow us to treat sets of graphs

parallel to sets of strings, as the next section shows.

6 APGs derived from concatenation

6.1 Alphabets of graph primitives

As Engelfriet and Vereijken (1997) observe, given

a concatenation operation a class of graphs can be

seen as an interpretation of a set of strings, where

each symbol in the string corresponds to a graph

primitive. We now define an APG graph primitive.

Definition 3 Over an alphabet Σ and tier partition

T = {Tt, Tm}, an APG graph primitive is a graph

G ∈ GR(Σ) which has the following properties:

a. Vt is a singleton set {vt}
b. G[Vm] is a string graph or is empty

c. All e ∈ E are of the form {vm, vt}, vm ∈ Vm

We can then treat a finite set of primitives like an

alphabet of symbols:

Definition 4 An alphabet of graph primitives over

GR(Σ) is a finite set Γ of symbols and a naming

function g : Γ → GR(Σ).

An alphabet of APG graph primitives is thus Γ for

which for all γ ∈ Γ, g(γ) satisfies Definition 3.

Example 4 As in the previous examples, consider

the alphabet Σ = {a, b, c} and the tier partition T =
{Tm = {a, b}, Tt = {c}}. The alphabet of graph

primitives Γ = {a, b, d}, where its naming function

g is defined as in Figure 6, is an alphabet of APG

graph primitives.

g(a) = a

c

g(b) = b

c

g(d) = a b

c

Figure 6: An example Γ and g

The strings in Γ∗ thus represent a class of graphs,
which we will call APG(Γ). We define APG(Γ)by
extending g to strings in Γ∗.

Definition 5 For an alphabet of graph primitives Γ
with naming function g, extend g to strings in Γ∗ as

follows. For w ∈ Γ∗, g(w)
def
=

• Gλ if w = λ

• g(u) ◦ g(γ) if w = uγ, u ∈ Γ∗, γ ∈ Γ

APG(Γ) is thus {g(w)|w ∈ Γ∗}.

6.2 Derived properties

We now show that if Γ is an alphabet of APG graph

primitives, then APG(Γ) has a number of desirable

properties. The following assumes Γ is an alphabet

of APG graph primitives. First, we prove the follow-

ing theorem stating that all graphs in APG(Γ) fol-

low Axioms 1 through 3 from §4 regarding the gen-

eral structure of APGs.

Theorem 2 For any G ∈ APG(Γ), G satisfies Ax-

iom 1 (that ∼A partitions V into at most two sets

V0 and V1 such that G[V0] and G[V1] are string

graphs), Axiom 2 (that the tiers of G correspond to

the partition T), and Axiom 3 (that the ends of all

undirected edges are between different tiers).

Proof: That G satisfies Axioms 1 and 2 follows di-

rectly from parts (a) and (b) of Definition 3 and the

fact that concatenation only adds arcs between nodes

whose labels are in the same Ti ∈ T . That G[V0]
and G[V1] are string graphs follows from parts (a)

and (b) of Definition 3 and Lemma 1.

That G follows Axiom 3 follows directly from

Part (c) of Definition 3 and the fact that concatena-

tion adds no new undirected edges to E. �

Next, concatenation is associative over APG(Γ) .
The following lemma allows one to prove Theo-

rem 3 (associativity) below.

145

Lemma 2 For any u, v ∈ Γ∗ denote g(u), g(v) ∈
APG(Γ) with Gu and Gv respectively. Then for any

γ ∈ Γ, Gu ◦ (Gv ◦ Gγ) = (Gu ◦ Gv) ◦ Gγ .

Proof: Let G = 〈V,E,A, ℓ〉 denote (Gu ◦Gv)◦Gγ

and G′ = 〈V ′, E′, A′, ℓ′〉 denote Gu ◦ (Gv ◦ Gγ).
That E = E′ and ℓ = ℓ′ follow from Definition 2 of

concatenation and associativity of union.

To show V = V ′, there are seven relevent cases to
consider. Let Vu, Vv, and Vγ denote the sets of nodes

for Gu, Gv, and Gγ , respectively, and let vu de-

note a node in Vu, etc. As merging is accomplished

through grouping nodes into equivalence classes,all

nodes in V or V ′ thus correspond to either Cases 1–

3 {vu}, {vv}, {vγ}, Cases 4–6 {vu, vv}, {vv, vγ},
{vu, vγ}, or Case 7 {vu, vv , vγ} (recall from §5 we

do not distinguish between nodes representing sets

and nodes representing sets of sets).

As per the definition of concatenation, V =
((Vu∪Vv)/RID-u,v∪Vγ)/RID , whereRID-u,v is de-

fined over Vu ∪Vv and RID over (Vu ∪Vv)/RID-u,v.

Likewise, V ′ = (Vu ∪ (Vv ∪ Vγ)/RID-v,γ)/R′
ID.

Cases 1–3. We first establish that when v ∈ V
corresponds to a singleton set that v ∈ V ′. Con-

sider the case when v ∈ V corresponds to {vv},
when vv has not been merged. For V , this is exactly

the case in which there is no (vu, vv) ∈ RID-u,v

nor a ({vv}, vγ) ∈ RID. We show that this en-

tails that there is neither a (vu, {vv}) ∈ R′
ID nor

a (vv, vγ) ∈ RID-v,γ , and so {vv} ∈ V ′. There is

no ({vv}, vγ) ∈ RID either when {vv} is not the

last node in Gu ◦ Gv for any Ti or there is no vγ

with which it can merge. If {vv} is not the last node

in Gu ◦ Gv for any Ti, then vv is not the last node

in Gv for any Ti, as by Theorem 2 and Lemma 1

the last node for Ti in Gu ◦ Gv must be the unique

set which includes the last node for Ti in Gv . If

there is no vγ to merge with {vv}, then there is no

vγ to merge with vv either. Thus, there cannot be a

(vv, vγ) ∈ RID-v,γ . Similarly, it follows that there

is no (vu, {vv}) ∈ R′
ID. If there is no (vu, vv) ∈

RID-u,v, then either vv is not the first node in Gv or

there is no vu with which it can merge. Thus, ei-

ther {vv} is not the first node in Gv ◦ Gγ (again by

Lemma 1) or there is no node vu to merge with {vv},
and so there is no (vu, {vv}) ∈ R′

ID. As there is nei-

ther a (vu, {vv}) ∈ R′
ID nor a (vv, vγ) ∈ RID-v,γ ,

then {vv} ∈ V ′. The proofs that v ∈ V implies

v ∈ V ′ when v corresponds to {vu} and {vγ} are

very similar. The proofs that v′ ∈ V ′ implies v′ ∈ V
for all three cases are identical.

The remaining cases deal with merged nodes.

Cases 4–6. Consider the case in which v ∈ V is

{vu, vv} corresponding to merged nodes from Vu

and Vv. This is the case in which (vu, vv) ∈ RID-u,v

but there is no ({vu, vv}, vγ) ∈ RID for any vγ .

As before, if {vu, vv} cannot be merged with some

vγ , then there is no vγ to merge with vv. Further-

more, if (vu, vv) ∈ RID-u,v, then vu is the last

node in Gu and vv is the first node in Gv for some

Ti. By Lemma 1, then {vv} is the first node in

Gv ◦ Gγ for Ti, and so (vu, {vv}) ∈ R′
ID. Thus,

{vu, vv} ∈ V ′. The proof that v ∈ V implies

v ∈ V ′ when v = {vv , vγ} is very similar, as it is for

v = {vu, vγ}. The latter is a special case in which

Vv has no nodes for some Ti, but vu and vγ are com-

patible to merge. Case 7. For v = {vu, vv, vγ},
both (vu, vv) ∈ RID-u,v and ({vu, vv}, vγ) ∈ RID.

If ({vu, vv}, vγ) ∈ RID, then through Lemma 1

(vv, vγ) ∈ RID-v,γ and then (vu, {vv , vγ}) ∈ R′
ID,

so {vu, vv, vγ} ∈ V ′. The proofs that v′ ∈ V ′ im-

plies v′ ∈ V for these cases are identical.

That A = A′ is very similar to the proof for

V = V ′. Let Ai denotes the set of arcs in g(γi).
Then A = (Au ∪Av ∪RID−u,v)∪Aγ ∪RID, where

RID−u,v is defined over (Vu∪Vv)/RID-u,v and RID

is defined over ((Vu ∪ Vv)/RID-u,v ∪ Vγ)/RID, and

Vu ∪ Vv A′ = (Au ∪ (Av ∪ Aγ ∪ RID−v,γ) ∪ R′
ID

),
where RID−v,γ and R′

ID
are defined parallel to

RID−u,v and RID. As union is associative, it is suf-

ficient to show that every pair (vu, vv) ∈ RID−u,v

has a corresponding pair (vu, {vv}) or (vu, {vv , vγ})
in R′

ID
and vice versa, and that every pair ({vv}, vγ)

or ({vu, vv}, vγ) in RID has a corresponding pair

(vv, vγ) ∈ RID−v,γ , and vice versa. Both of these

follow from the fact that V = V ′ and Lemma 1 in

the same way as merging nodes above. �

Next it is shown that graph concatenation is as-

sociative over arbitrary graphs in APG(Γ) with the

same kind of inductive argument which establishes

concatenation is associative over strings.

Theorem 3 The ◦ operation is associative over

graphs in APG(Γ). For any u, v, w ∈ Γ∗ denote

g(u), g(v), g(w) ∈ APG(Γ) with Gu, Gv , Gw re-

146

spectively. Then Gu ◦ (Gv ◦Gw) = (Gu ◦Gv)◦Gw.

Proof: The proof is by induction on the size of w.

For the base case, when w = λ, Gw = Gλ. Then

Gu◦(Gv◦Gw) = Gu◦(Gv ◦Gλ), which equals Gu◦
Gv by Theorem 1. It follows, again by Theorem 1,

that (Gu ◦ Gv) ◦ Gλ. Hence the base case is proved.

Next we assume the inductive hypothesis that

associativity holds for strings of length n and we

consider any w ∈ Γ∗ of length n + 1. Clearly there

exists x ∈ Γ∗ of length n and γ ∈ Γ so that w = xγ.
Then Gu ◦ (Gv ◦Gw) = Gu ◦ (Gv ◦ (Gx ◦Gγ)). By
Lemma 2, this equals Gu ◦ ((Gv ◦Gx) ◦Gγ), which
again by Lemma 2, equals Gu ◦ (Gv ◦ Gx)) ◦ Gγ .

Then, by the induction hypothesis, we have

((Gu ◦Gv)◦Gx)◦Gγ , which again by the induction

hypothesis, yields (Gu ◦ Gv) ◦ (Gx ◦ Gγ). This is
of course is (Gu ◦ Gv) ◦ Gw. �

The next theorem states that any G ∈ APG(Γ)
follows the NCC.

Theorem 4 For any G ∈ APG(Γ), G satisfies the

NCC (Axiom 4).

Proof: The proof is by recursion on the length of

w ∈ Γ∗. Gλ trivially satisfies the NCC because it

has no nodes. For g(γ) for any γ ∈ Γ, Definition
4 states that there is only one node vt in Vt and this

node must be one of the endpoints for each edge in

E. Thus for any two edges {x, y} and {x′, y′} in

g(γ) where x 4 x′, it must be the case that y =
y′ = vt, because directed edges only occur between

nodes in tier Vm. Thus, any g(γ) satisfies the NCC.
Next we assume it holds for w ∈ Γ∗ of length

n and consider any w ∈ Γ∗, γ ∈ Γ. Then g(wγ)
satisfies the NCC because the graph concatenation

operation does not add any undirected edges and

because, by Lemma 1 concatenation preserves the

order of each tier in g(w) and g(γ). �

The final theorem states that any G ∈ APG(Γ)
follows the OCP if the graph primitives do.

Theorem 5 If g(γ) for all γ ∈ Γ satisfy the OCP

(Axiom 5), then for any G ∈ APG(Γ), G satisfies

Axiom 5.

Proof: The proof is again by recursion on the length

of w ∈ Γ∗. The OCP is trivially satisfied for Gλ

since it contains no nodes or arcs. The case when

|w| = 1 is given as the condition of the theorem.

Assume that every w ∈ Γ∗ of length n satisfies

the OCP. Now consider G = g(wγ) withw of length

n and γ ∈ Γ. To see that Gu ◦ Gγ satisfies the OCP,

recall from Definition 2 of graph concatenation that

the set of arcs forG1◦G2 is equal toA1,2∪RID; i.e.,

the union of A1 and A2 and RID. By definition RID

only includes pairs of nodes (x, y) s.t. ℓ(x) 6= ℓ(y),
so if G1 satisfies the OCP and G2 satisfies the

OCP RID will not add any arcs on Vm which

violate the OCP (recall that the OCP only holds for

tier Vm), and so G1 ◦G2 will also satisfy the OCP.�

Thus, the merging part of the concatenation pre-

serves the OCP. One may wonder why the OCP is

built in to the concatenation operation this way, in-

stead of using string-like concatenation and then in-

voking a constraint that merges adjacent, like nodes

in the resulting graph. Such a method, though, can-

not capture violations of the OCP—all would be

merged. The next section shows that the concate-

nation operation defined here can capture violations

by concatenating OCP-violating graph primitives.

This section has thus proved the important prop-

erties of APG(Γ). We now show how such an

APG(Γ) can be used to model autosegmental phe-

nomena in natural language phonology.

7 Analysis of natural language phenomena

In this section we examine the extent to which the

analysis presented here accounts for common and

uncommon phenomena in phonological theory. The

first two subsections examine spreading and con-

tour tones, respectively, and demonstrate how both

phenomena can be effectively represented with a

APG(Γ) for some Γ. It is also shown that the

empirical generalization that there are only finitely

many contour tones present in any given language

is an automatic consequence of the finite alphabet Γ
and the concatenation operation.

The third subsection addresses the few cases

where OCP violations may be necessary to prop-

erly describe the language. It is sketched out how

these cases could be accounted for by using spe-

cial graph primitives or a second concatenation op-

eration. Similarly, the fourth subsection addresses

147

underpecification and floating tones. We conclude

that these concepts can be represented in this ap-

proach. The caveat is that it is also observed as a

consequence that gapped structures are also permit-

ted. Again, we note that such gapped structures are

also permitted with axioms given in §4 approaches

above, and we discuss how a different concatenation

operation may address this.

7.1 Spreading

The ‘merging’ of nodes on the melody tier models

autosegmental spreading, in which one melody unit

is associated to more than one timing tier unit. A

classic example is Mende (Leben, 1973). Mende

nouns separate into tone categories, three of which

are shown in Table 1. The first rows show words

whose syllables are all high-toned, the second rows

show words whose syllables are all low-toned, and

the third rows show words whose syllables start high

and end low. In the following [á] transcribes a high

tone, [à] a low tone, [â] a falling tone.

Monosyllables Disyllables

kÓ ‘war’ pÉlÉ ‘house’

kpà ‘debt’ bÈlÈ ‘pants’

mbû ‘owl’ ngı́là ‘dog’

Trisyllables

háwámá ‘waist’

kpàkàlı̀ ‘three-legged chair’

félàmà ‘junction’

Table 1: Mende word tone

An autosegmental analysis for this pattern is that

a set number of melodies spread left-to-right over

the tone-bearing units (TBUs; we assume that for

Mende the TBU is the syllable, σ) of a word, as in
Table 2. For example, the falling tone words [mbû]

‘owl’ and [félàmà] ‘junction’ have an HLmelody. In

this case, the H associates to the first syllable of the

word, and the L associates to all remaining syllables.

H

kÓ‘war’

H
◗◗❳❳❳

háwámá ‘waist’

HL

mbû ‘owl’

HL
◗◗

félàmà ‘junction’

Table 2: APRs for four Mende words

The APRs in Table 2 can be generated with the al-

phabet of APG graph primitives Γ given in Figure 7.

The alphabet is Σ = {H,L, σ} and the tier partition

T = {Tt, Tm} where Tt = {σ} and Tm = {H,L}.
Note that for these APGs, we abstract away from

consonants and vowels and focus on the TBU, σ.

g(σ́) = H

σ

g(σ̀) = L

σ

g(σ̂) = H L

σ

Figure 7: Γ and g for Mende

The APGs corresponding to the trisyllabic forms

are thus g(σ́σ́σ́) and g(σ́σ̀σ̀), as in Figure 8.

H

σ σ σ

H L

σ σ σ

g(σ́σ́σ́) g(σ́σ̀σ̀)

Figure 8: APGs for Mende APRs in Table 2

These spreading effects are achieved by, for ex-

ample in g(σ́σ́σ́), the like H nodes from each g(σ́)
merging during concatenation, resulting in a single

H associated to multiple σ nodes (which are not

merged, because σ ∈ Tt). Note that given Σ, T ,

Γ and g, we are able to generate APGs directly from

the linear string of toned syllables.

7.2 Contours

Concatenation allows for unbounded spreading, as

a single node on the melody tier may ‘merge’ any

number of times. In contrast, concatenation does not

allow for unbounded contours, as timing tier nodes

do not merge. Figure 9 shows how concatenation

obtains APGs corresponding to the APRs for the

Mende words [mbû] ‘owl’ and [nyàhâ] ‘woman’.

H L

σ

L H L

σ σ

g(σ̂) g(σ̀σ̂)

Figure 9: APGs for Mende contours

148

Importantly, any set of graphs is going to have a

bound on the number of melody units a contour can

have, which follows directly from the fact that Γ is

finite, that each element of Γ has exactly one node

on Vt, and so concatenation never creates new con-

tours. Thus, for the example Γ we have been using

for Mende, the graph in Figure 10 is not inAPG(Γ).

H L H L

σ

Figure 10: A graph not in APG(Γ)

While this is a natural property of graphs in

APG(Γ), the axiomatic approach to defining APRs

requires a further axiom stating that for any lan-

guage, the number of contours must be bound by

some n. To our knowledge, the only explicit formal-

izations of such a constraint are by Jardine (2014)

and Yli-Jyrä (2013) (the latter requiring that n = 2).

7.3 Violations of the OCP

As discussed in Odden (1986) and Meyers (1997),

the OCP may not be an absolute universal. For ex-

ample, Odden lists the contrasting APRs in Figure

11 for two nouns in Kishambaa (Odden, 1986, Fig.

13):

a. H

✡✡
nyoka ‘snake’

b. HH

ngoto ‘sheep’

Figure 11: OCP violating forms in Kishambaa

This is partially motivated by the different surface

pronunciation of the two forms: the first, Figure 11

(a) ‘snake’ is pronounced with two level H tones,

nyóká, and 11 (b) ‘sheep’ is pronounced with a H

followed by a downstepped H; ngó!tó.

The corresponding graphs for these APRs, assum-

ing the mora as the TBU, are given in Figure 12. Fig-

ure 12 (a) corresponds to Figure 11 (a), and Figure

12 (b) to Figure 11 (b).

Given an alphabet of graph primitives obeying the

OCP, as the Γ for Mende in Figure 7, Figure 12 (a)

is in APG(Γ), but Figure 12 (b) is not, because it

does not obey the OCP. Thus, Kishambaa is not de-

scribable with such a graph set APG(Γ).

a. H

µ µ

b. H H

µ µ

Figure 12: APGs for Kishambaa forms

There are at least two solutions to admitting

graphs like in Kishambaa. One is to introduce OCP-

violating graph primitives, as in Figure 13.

g(γ1) = H

µ

g(γ2) = H H

µ

Figure 13: A Γ for Kishambaa

Given this alphabet of graph primitives, the

spreading Kishambaa graph in Figure 12 (a) is

g(γ1γ1), and the OCP-violating (b) is g(γ1γ2). The
graph primitives follow the linear pronunciation of

the morae; g(γ1γ1) represents a sequence HH of two

high-toned morae, and g(γ1γ2) a sequence H
!H of a

high followed by a downstepped high.

Another option is to define a second concatena-

tion operation, in which there is no merging and di-

rected edges are drawn between all last/first pairs.

Spreading Kishambaa graph in Figure 12 (a) would

be concatenated by the operation defined in this

paper, and the OCP-violating Figure 12 (b) would

be concatenated by this second no-merging opera-

tion. We shall leave it up to future work to com-

pare the theoretical and empirical benefits of these

approaches to OCP violations.

7.4 Underspecification and floating tones

Some graph primitives in Γ may not have any nodes

in Vm; these represent underspecified timing units.

H

µ µ

H

µ µ µ

g(γ1) g(γ2) g(γ1γ2γ1)

Figure 14: APGs with underspecification

However, such underspecified graph primitives

149

can give rise to ‘gapped structures’ via concatena-

tion, as in g(γ1γ2γ1) in Figure 14. This can be seen

as an unwelcome consequence as some researchers

have argued against gapped structures (Archangeli

and Pulleyblank, 1994). One solution could be to

use a second concatenation operation which does not

merge nodes, instead only drawing directed edges

between the end nodes on each tier. This appears

identical to the operation proposed in §7.3 for deal-

ing with OCP violations. Again, studying additional

concatenation operations will be left for future work.

Finally, graph primitives with more melody tier

nodes than timing tier nodes can be used to generate

floating tones, as in Figure 15.

H

µ

H L

µ

H L H

µ µ

g(γ1) g(γ2) g(γ2γ1)

Figure 15: Generating APGs with floating tones

8 Dicussion

The examples in the previous section show several

advantages to considering APRs through concatena-

tion. One, as seen in Mende, simple cases allow di-

rect translation of strings into APRs. Second, con-

catenation allows for unbounded spreading, as a sin-

gle node on the melody tier may ‘merge’ any num-

ber of times. However, concatenation does not allow

for unbounded contours, as timing tier nodes do not

merge in this way. Thus, the number of contours is

bounded by the number of graph primitives. This

reflects the fact that languages exhibit unbounded

spreading, but no language (to our knowledge) has

an unbounded number of contour segments.

There are several avenues for future work. It was

already mentioned that the set of valid autosegmen-

tal representations may be expanded by allowing

a second concatenation operation. Also, while we

have shown that every element of APG(Γ) obeys

the axioms in §4, it remains to be shown that for ev-

ery graph which obeys those axioms, there is a finite

alphabet which generates it.

Future work can also study the nature of transfor-

mations from underlying APGs with one alphabet to

surface APGs with another (for instance it is known

surface APGs can admit more contours than under-

lying APGs through association rules).

Another line of development concerns extend-

ing the analysis to feature geometry (Clements and

Hume, 1995; Sagey, 1986), in which association

lines also link featural autosegments and ‘organiza-

tional’ nodes, such as PLACE. Deriving a set of such

operations would require more complex primitives

and additional marking on the tier partition T , to

denote timing tier nodes, organizational nodes, and

melody nodes. The concatenation operation would

then need to be revised to be sensitive to this mark-

ing. A more serious challenge would be adopting

a concatenation-based framework for autosegmen-

tal morphology, which as mentioned in §2, disposes
of the requirement that autosegments of a particular

type must appear on a particular tier.

9 Conclusion

In this paper we addressed the question of what is the

set of valid autosegmental representations looks like.

In contrast to previous research, which explored this

question axiomatically, we showed that the autoseg-

mental representations can be generated recursively

and constructively from a finite set of graph primi-

tives, a concatenation operation, and an identity ele-

ment for concatenation, much in the same way that

strings can be so generated. Hence, the theory of

free monoids may be fruitfully applied to APRs.

The advantages we wish to highlight are as fol-

lows. First, we proved that provided the finite set

of primitives obey the NCC and the OCP, the au-

tosegmental representations will as well. Second,

we showed it also follows naturally from the nature

of the alphabet and concatenation that new contour

tones cannot be generated ad infinitum. Finally, this

method makes clear the stringlike nature of autoseg-

mental representations, and that their properties can

be viewed as a consequence of this nature.

Acknowledgments

The authors would like to thank three reviewers for

their insightful comments and suggestions. The first

author acknowledges support from a University of

Delaware Graduate Research Fellowship.

150

References

Diana Archangeli and Douglas Pulleyblank. 1994.

Grounded Phonology. Cambridge: MIT Press.

Steven Bird and E. Klein. 1990. Phonological events.

Journal of Linguistics, 26:33–56.

G. N. Clements and Elizabeth V. Hume. 1995. The in-

ternal organization of speech sounds. In John Gold-

smith, editor, The handbook of phonological theory,

pages 245–306. Oxford: Blackwell.

G. N. Clements. 1976. Vowel Harmony in Nonlin-

ear Generative Phonology: An Autosegmental Model.

Bloomington: Indiana University Linguistics Club

Publications.

John Coleman and John Local. 1991. The “No Crossing

Constraint” in autosegmental phonology. Linguistics

and Philosophy, 14:295–338.

Joost Engelfriet and Hendrik Jan Hoogeboom. 2001.

MSO definable string transductions and two-way

finite-state transducers. ACM Transations on Compu-

tational Logic, 2:216–254, April.

Joost Engelfriet and Jan Joris Vereijken. 1997. Context-

free graph grammars and concatenation of graphs.

Acta Informatica, 34:773–803.

John Goldsmith. 1976. Autosegmental Phonology.

Ph.D. thesis, Massachussets Institute of Technology.

John Goldsmith. 1979. Autosegmental Phonology.

Gardland Press.

Michael Hammond. 1988. On deriving the

Well-Formedness Condition. Linguistic Inquiry,

19(2):319–325.

Adam Jardine. 2014. Logic and the generative power of

Autosegmental Phonology. In John Kingston, Claire

Moore-Cantwell, Joe Pater, and Robert Staubs, edi-

tors, Supplemental proceedings of the 2013 Meeting

on Phonology (UMass Amherst), Proceedings of the

Annual Meetings on Phonology. LSA.

András Kornai. 1995. Formal Phonology. Garland Pub-

lication.

W. R. Leben. 1973. Suprasegmental phonology. Ph.D.

thesis, Massachussets Institute of Technology.

John J. McCarthy. 1979. Formal Problems in Semitic

Phonology and Morphology. Ph.D. thesis, Mas-

sachusetts Institute of Technology.

John J. McCarthy. 1985. Formal Problems in Semitic

Phonology and Morphology. New York: Garland.

John J. McCarthy. 1986. OCP effects: gemination and

antigemination. Linguistic Inquiry, 17:207–263.

Scott Meyers. 1997. OCP effects in Optimality Theory.

Natural Language & Linguistic Theory, 15(4):847–

892.

David Odden. 1986. On the role of the Obligatory

Contour Principle in phonological theory. Language,

62(2):353–383.

Douglas Pulleyblank. 1986. Tone in Lexical Phonology.

Dordrecht: D. Reidel.

Elizabeth Sagey. 1986. The Representation of Features

and Relations in Non-Linear Phonology. Ph.D. thesis,

Massachusetts Institute of Technology.

Moira Yip. 2002. Tone. Cambridge University Press.

Anssi Yli-Jyrä. 2013. On finite-state tonology with au-

tosegmental representations. In Proceedings of the

11th International Conference on Finite State Meth-

ods and Natural Language Processing, pages 90–98.

Association for Computational Linguistics.

151

Proceedings of the 14th Meeting on the Mathematics of Language (MoL 14), pages 152–164,
Chicago, USA, July 25–26, 2015. c©2015 Association for Computational Linguistics

Syntactic Polygraphs
A Formalism Extending Both Constituency and Dependency

Sylvain Kahane
Université de Paris Ouest

Laboratoire Modyco (CNRS UMR 7114)
sylvain@kahane.fr

Nicolas Mazziotta
Universität Stuttgart

Institut für Linguistik/Romanistik
nicolas.mazziotta@ulg.ac.be

Abstract

Syntactic analyses describe grouping opera-
tions that explain how words are combined
to form utterances. The nature of these
operations depends on the approach. In a
constituency-based approach, grouping oper-
ations are ordered, or stratified, part-whole
relations. In a dependency-based approach,
grouping operations identify a governor (or
head), i.e. they are directed hierarchical rela-
tions between words. It is possible to convert
a constituency tree into a dependency tree by
dereifying the nodes, by identifying the gov-
ernor and by removing the stratification of the
part-whole relations. Polygraphs combine the
two types of information into a single structure
and are therefore a more powerful formalism.
By relaxing constraints, polygraphs also allow
to underspecify both kinds of information.

Keywords: syntactic structure, immediate con-
stituents analysis, dependency tree, headedness,
phrase structure tree, polygraph, reification, strati-
fication, underspecification.

1 Introduction

Despite their differences, syntacticians agree on the
fact that they study the way words combine to form
utterances, either from a hierarchical point of view
(abstract model) or focussing on word order.1 Word
order and distributional properties are beyond the
scope of this study. The focus is on the means of

1In this paper, words are considered to be minimal linguis-
tic units. However, the argument is easily extendable to mor-
phemes as in X-bar syntax since the introduction of IP instead
of S; see also Groß (2011) a.o. for a syntactic analysis of mor-
phemic combinations in dependency.

modelling the hierarchy of words. Moreover, the
aim of this paper is to explore the formal aspect of
syntactic description rather than to propose gram-
matical rules or make predictions: the examples in
this paper do not necessarily reflect the point of view
of the authors as linguists, but are provided to illus-
trate that various formal points of view on syntac-
tic combination can be encoded by the mathematical
structures proposed here.

Dependency and constituency are often seen as
alternative frameworks that describe how words
combine to form utterances. For many linguists,
choosing between these two alternatives is an im-
portant point that needs to be resolved early on2,
since dependency-based descriptions cannot be to-
tally translated into a constituency-based counter-
part and vice versa. By investigating the operations
that allow this kind of conversion, an understand-
ing of the differences between them as well as their
similarities is promoted. The exploration of depen-
dency and constituency provided here defines a new
kind of linguistic structure: the syntactic polygraph.
These structures encompass the expressive power of
the other two formalisms.

In short, the aim of this paper is to compare imme-
diate constituent analysis with dependency analysis
and to provide a joint formalism that takes advan-
tage of both approaches, making it possible to ex-
press more than either of the two formalisms would

2However, phrase structure grammars have been the dom-
inant paradigm in syntax since (Chomsky, 1957) and people
working in PSGs generally do not discuss whether dependency
could be an option. Most of the discussions on that subject have
been conducted by syntacticians working in dependency syntax
(Hudson, 1980; Mel’čuk, 1988; Osborne et al., 2011; Kahane,
2012).

152

allow. While a large part of the paper is devoted
to presenting a new process of conversion between
constituency and dependency, the conversion itself
is not the main point. An extensive literature al-
ready exists on the conversion of syntactic treebanks
from constituency-based formats to dependency-
based formats and vice versa. The question in such
studies is to see how to add missing information (for
instance headedness) during conversion. Our con-
cern here is to see how to encode information when
you have it, how to make it explicit, structurally visi-
ble, and also how to avoid adding irrelevant informa-
tion with formalisms that force you to express things
you do not want to express.

Sec. 2 introduces the specific grouping opera-
tions of constituency and dependency from a lin-
guistic perspective, with respect to the way they ac-
knowledge combinations of words and gives a for-
mal definition of syntactic trees. Sec. 3 evaluates
the transformations that models undergo when con-
verted from constituency to dependency and high-
lights the better expressiveness of polygraphs. Sec. 4
shows how to extend both formalisms, taking de-
pendency trees as the starting point. The conclusion
summarizes what is achieved in this paper (sec. 5).

2 How to group words: constituency and
dependency

The minimal consensus between syntacticians is that
words combine to form sets of words that follow
some organizational rules allowing them to func-
tion together. Operations that describe these associa-
tions can be called grouping operations, for the sake
of neutrality. Unlike words, which are observable
units (see note 1), the groups that result from group-
ing operations are constructs that can also combine
with other words or groups to build a hierarchy.
Both constituency and dependency models acknowl-
edge this, but the nature of the grouping operation,
i.e. the constructed relation uniting the grouped el-
ements, is somewhat different. This section gives a
general linguistic definition of grouping operations
in a constituency-based approach as well as in a
dependency-based approach (sec. 2.1) and a general
formal definition of the tree-like objects they use to
represent groups (sec. 2.2).

2.1 Syntactic tree archetypes: linguistic
definitions

This section describes how grouping operations
differ in a constituency-based approach and in a
dependency-based approach. To do this, it focuses
on strict constituency and strict dependency, al-
though many linguists actually blend these two ways
of describing grouping operations.

Strict constituency: stratification of part-whole
relations. This approach is grounded in Bloom-
field’s description of groups (Bloomfield uses the
term constructions) in terms of part-whole relations
(Bloomfield, 1933, § 10.2). Grouping operations re-
sult in complex units that contain lesser units called
immediate constituents. The analysis thus consists
of strata of constructions, each stratum being recur-
sively divisible into smaller constructions until the
lowest stratum is reached. This stratification3 can be
represented in various ways: bracketing, embedded
boxes or trees. The latter representation (henceforth
constituency tree) has become the most popular.4

(1) Mary loves red cars

The constituency tree of (1) appears as fig. 1(a):
internal nodes represent various groups that can be
labelled and terminal nodes represent words (POS
are marked as superscripts to words and will not be
discussed here), but edges express only one kind of
link between linguistic elements: the part-whole re-
lation. This approach generates nodes in the tree,
each of them corresponding to a stratum.

Strict dependency: directed relations between
words. In a dependency-based approach, group-
ing operations are essentially directed connections
between words (Tesnière, 1959; Tesnière, 2015,
ch. 1). Such an approach implies that some words
are more important than others with respect to their

3The term stratification has the same meaning as in our pre-
vious work (Kahane, 1997), where stratification is applied in a
dependency-based representation.

4There were no tree in Bloomfield (1933), nor in the fa-
mous paper by Wells (1947). According to Coseriu (1980, 48),
the first tree-like representation of constituency appears in Nida
(1949, 87) (the “tree” may rather be a polygraph, cf. sec. 3.1)
and current trees with labels on nodes became popular after
Gleason (1955) and Chomsky (1957); embedded boxes are used
in Hockett (1958).

153

MaryN

lovesV

redAdj carsN

S

VP

NP

(a) Constituency tree

MaryN

lovesV

redAdj

carsN

subject object

modifier

(b) Dependency tree

Figure 1: Constituency and dependency trees

syntactic position. Therefore, the proposed hierar-
chy is not based on constructed part-whole relations,
but on constructed dependency relations that asso-
ciates pairs of governor and dependent words – see
Mel’čuk (1988) for this terminology. Unlike part-
whole relations, dependencies are associated with
specific labels indicating the kind of grouping op-
eration. The most common way to represent a set of
dependencies is a tree-like structure (henceforth de-
pendency tree).5 The dependency tree of (1) appears
as fig. 1(b), with traditional labels on top-down lines
between governors (top) and dependents (bottom).

Hybrid models. Linguists often combine part-
whole relations and governor-dependent dependen-
cies. An extended review of all hybrid models is not
needed: one example will suffice. X-bar trees anal-
yse all phrases as a combination of a governor X
(the head) and two dependents that aggregate with
the head at their distinct strata (the complement at
the X̄ level and the specifier at the SX level). Al-
though many scholars refer to this kind of mod-
elling by using the word constituency, it should be
clear that does not consist of strict constituency: it
combines the two kinds of grouping operations that
have just been introduced. This hybrid approach
is based on Bloomfield’s description of endocentric
constructions (Bloomfield, 1933, § 12.10). The hy-
brid model introduced in this paper is compared with
such headed constituency trees in sec. 3.2. Note
that even if the headedness can be added in a con-
stituency tree, it can only be introduced in the la-
belling and it will not be part of the topology of the
structure as it would be in a classical dependency

5Our dependency tree corresponds to the so-called surface-
syntax structure in the Meaning-Text Theory (Mel’čuk, 1988).
Other levels of representation in the same theory and other the-
ories – e.g.: Word Grammar (Hudson, 2010) – may use graphs
where a node can have several governors.

tree.

2.2 Syntactic trees as graphs: formal
definitions

Intuitively it is obvious that dependency and con-
stituency trees can be described as tree objects,
i.e. constrained forms of graphs. The following anal-
ysis is grounded on the basic hypergraph structure
(Bergé, 1973). A hypergraph on a set X is a set E
of subparts of X . The elements of X are called the
nodes and the elements of E are the edges of the
hypergraph. An edge e is a subset of X whose ele-
ments are called its vertices (e.g. e = {x,y,z}, where
x,y,z∈X). A graph is a hypergraph whose edges are
pairs, i.e. edges have two vertices (e.g. e = {x,y}).

Since the distinction becomes important further
on, it should be noted that nodes and vertices are
different concepts, the latter being slots that the for-
mer occupy. In other words, a node can be the ver-
tex of several edges. Vertices of a hypergraph can
also be assigned a type that is bound to their asso-
ciation with an edge. An edge of a typed hyper-
graph is a subset of X × T , where T is the set of
types. A directed graph is a particular case of typed
graph where each vertex is associated to a type car-
rying appropriate semantics: T = {source, target};
e.g. e = {(x,source),(y, target)} with x and y in X ,
usually abbreviated in (x,y) and represented by an
arrow from x to y (x→ y) or, as in a tree, by a verti-
cal line with the source on top.

A tree is a connected directed graph such that ev-
ery node but one, called the root, is the target of one
and only one edge. In the graphical representation of
such trees, the directions of the edges are expressed
by a convention: the source is higher on the figure
than its targets. Moreover, constituency and depen-
dency trees are labelled trees, i.e. nodes and edges
can be labelled.

154

3 Constituency and dependency dialectics

This section describes what formal operations must
be applied to strict constituency trees (fig. 1(a)) in
order to obtain a strict dependency tree (fig. 1(b))
and vice versa. Although it is possible to apply these
operations to any strict constituency tree, the focus
is on binary-branching trees and abstracts away from
other constituency structures.6 It is possible to con-
vert a binary-branching strict constituency tree into
a strict dependency tree in five steps:7 converting
the branching nodes into edges (sec. 3.1), specifying
the direction of the edges (sec. 3.2), delinearizing
the graph (sec. 3.3), selecting more specific vertices
(sec. 3.4) and relabelling the edges (sec. 3.5). Some
of these formal transformations alter the amount of
information, either by addition or by substraction.
Additionally, the graphical means used to express
the syntactic structure achieves a variable level of
semiotic coherence and readability.

There exists another way to convert a constituency
tree into a dependency tree presented by Lecerf
(1961), consisting of collapsing all the constituents
with their lexical head, i.e. , in an X-bar approach,
turning any specifier, complement or adjunct into
a dependent of this head. This classical conver-
sion gives the same result as the one presented here
for headed binary-branching constituents, but it can
only be applied to headed constituency trees. The
conversion presented here can be applied to headed
constituents as well as non-headed ones, preserv-
ing the non-headedness (sec. 4.2). Additionally, it
shows that constituents and dependencies encode the
same groups of words and that the dependency itself
can be viewed as a grouping operation. The two con-
version processes also differ for non-binary branch-
ing trees, giving interesting insight into the different
uses of ternary branchings in constituency trees (sec.
4.3).

3.1 Node/edge conversions

From a purely formal point of view, graphs can un-
dergo transformations that convert edges into nodes
or nodes into edges, namely reification and dereifi-

6A tree is binary-branching if each node is the source of 0
or 2 edges.

7Provided that dereification is the first step, the conversion
can perform the other steps in any order.

cation. As pointed out in sec. 2.1, constituency trees
contain nodes that result from the description pro-
cess. These nodes can be translated into edges by
dereification without changing the structure of the
analysis. To understand dereification, one has to be
familiar with reification.

Reification. For the sake of clarity, reification will
be illustrated by conversions on the semantic repre-
sentation of (2). The focus will come back to syn-
tactic trees when dereification is applied to them.

(2) Mary loves Peter

Modelling verbs as predicates is very common.
In the semantic structure of (2), ‘love’ (the mean-
ing of the lexeme LOVE) is a binary predicate tak-
ing ‘Mary’ and ‘Peter’ as arguments: ‘love’(‘Mary’,
‘Peter’). The first argument, ‘Mary’, can be called
the agent, and the second argument, ‘Peter’, the
patient. This semantic representation can be en-
coded by different graphs according to different con-
ventions that are provided here for illustration only
(fig. 2): in (a), ‘loves’ is associated to an edge di-
rected from the agent to the patient (represented as
nodes); in (b), the meaning ‘love’ is a node, bound to
two other nodes by edges that make semantic roles
explicit through their label (agent and patient); in
(c), agent and patient are represented as nodes and
their relations to their sources and targets have been
made explicit.8

The reification of an edge e is the conversion e
into a node and creating a directed edge (e,x) for
each vertex x of e. If the graph is typed, the edge
representing a vertex relation typed a will be labeled
by a. For instance the reification of a directed edge
e gives a node e and a source and a target edge. The
edge of graph (a) is reified in graph (b). The edges of
graph (b) are reified in graph (c), where the numbers
are simple indices that distinguish the relations.

Dereification. Dereification is the reverse opera-
tion. It can be applied to any oriented graph. For-
mally, a node n0 that is the source of two edges

8Representations like (b) are structurally similar to the se-
mantic graphs of Meaning-Text Theory – however, Mel’čuk
(1988) merely numbers the edges; representation (c) is sim-
ilar to Sowa’s conceptual graphs (Sowa, 2000) – the labels
with numbers conventionally identify arguments of the predi-
cate structure.

155

‘Mary’ ‘Peter’
‘love’

(a) ‘love’ labels an edge

‘Mary’

‘love’

‘Peter’

agent patient

(b) ‘love’ labels a node

‘Mary’

‘love’

‘Peter’

agent patient
1 1

2 2

(c) agent and patient label nodes

Figure 2: Various structures corresponding to ‘love’(‘Mary’, ‘Peter’)

e1 = (n0,n1) and e2 = (n0,n2) will become an edge
e0 = {n1,n2}. If e1 and e2 have the labels a and b,
e0 becomes a typed edge {(n1,a),(n2,b)}.

One can dereify all non-terminal nodes of the
constituency tree. The terminal nodes (express-
ing words) remain nodes, whereas the nodes corre-
sponding to groups become edges. The constituency
tree in fig. 1(a) can be dereified since a tree is a
directed graph (see fig. 3(a), where the orientation
of the part-whole relation is explicit). By dereify-
ing the NP representation (red cars), the NP node
and the two part-whole edges of which it is the
source become a single edge (fig. 3(b)) that represent
the grouping operation rather than its result. This
NP edge remains undirected because the immediate
constituents have the same hierarchical status in a
strict constituency approach (both are the target of
part-whole directed edges sharing the same source).
Applying dereification to all nodes expressing con-
structions results in the structure in fig. 3(c). The
starting constituency tree is binary-branching, hence
the edges obtained are binary. However, the result
is not exactly a tree: vertices can be edges as well
as nodes. Henceforth, this type of structure will be
called a polygraph.9 In a polygraph, an edge e1 can
have another edge e2 as vertex. In other words, if a
polygraph has a set X of nodes and a set E of edges,
each edge e in E is associated with a set of vertices
in X ∪E; e.g.: e1 = {x,e2}, where e2 = {y,z} with
x,y,z ∈ X .

From a formal point of view, the resulting poly-
graph expresses exactly the same stratification as the
constituency tree, and will be called a constituency
polygraph. However, it achieves two straightfor-
ward semiotic correspondences:

9The term polygraph is used in category theory for a fam-
ily of objects that are a particular case of the structures called
polygraphs here (Burroni, 1993; Bonfante and Guiraud, 2008).

• Nodes always correspond to words (i.e. “ob-
servable” units, see note 1).

• Edges always correspond to grouping opera-
tions/constructions (i.e. linguistic analysis).

Since it shares these characteristics with dependency
trees, the constituency polygraph can be considered
as a better starting point for the conversion that will
be performed.

3.2 Specification of the governors: directing
the edges

The constituency polygraph does not represent the
governor-dependent relations of the dependency ap-
proach. To be able to do so, the polygraph must
be directed, by typing the vertices of each edge
with either the type source or the type target (see
sec. 2.2).10 Graphically, lines are turned into arrows
to express the direction of the edges according to the
target dependency tree (fig. 1(a)). This operation re-
sults in fig. 4(a) – which will be compared to fig. 4(b)
below. In fig. 4(a), the nodes of the polygraph are
also linearly ordered.

Contrary to the dereification process, direction
specification actually adds information to the struc-
ture:

• Edges still express grouping operations and the
stratification of the constituency tree.

• In addition, edges now express governor-
dependent relations.

The directed polygraph expresses the same contents
as a headed constituency tree (sec. 2.1). Such a tree

10Or governor/dependent, head/non-head, H/NH, etc. The
types need to be interpreted to express the direction of the edges.
It should be noted that even in a directed graph defined only by
tuples (and not unordered sets), associating the direction of the
edges with linguistic dependency is also a reading convention.

156

MaryN

lovesV

redAdj carsN

S

VP

NP

part part

part part

part part

(a) Direction in the constituency tree
redAdj carsNNP

(b) Dereified NP

MaryN lovesV redAdj carsN

S

VP

NP

(c) Constituency polygraph

Figure 3: Dereification of constituency trees

MaryN lovesV redAdj carsN

S

VP

NP

(a) Ordered directed polygraph

MaryN

lovesV

redAdj carsN

S

VP

NP

H

H

H

(b) Headed constituency tree

Figure 4: Directed polygraph and headed constituency tree

combines constituency with dependency by specify-
ing the governor (or head) at each level of aggre-
gation. In fig. 4(b), each governor is identified by
the label H on the part-whole relation linking it to
the source construction.11 When the dereification
is applied to a constituent C with two immediate
constituents A and B, A being the head, C becomes
the edge {(A,H),(B,NH)}. If H and NH are in-
terpreted as, namely, source and target typing, the
structure becomes a directed polygraph (fig. 4(a)).

Again, the comparison of the two structures with
respect to the information they carry must be supple-
mented with the evaluation of their relative semiotic
efficiency. The directed polygraph is more coher-
ent (because of the aforementioned correspondences
nodes/observed units and edges/constructed analy-
ses). It is also more readable:

• All directed edges have exactly the same inter-
pretation (direction and label).

• All directed edges express relations of the same
kind, whereas the edges in the headed con-
stituent tree express both part-whole relations

11The conceptual means to define the governor and its graph-
ical expression may vary, e.g., X̄ and X labels in phrase structure
trees (Jackendoff, 1977) or labelled edges such as H and NH in
HPSG (Pollard and Sag, 1994).

and headedness.

3.3 Graphical delinearization

The structures in fig. 4(a) actually combine two
structures: the proper polygraph, which expresses
the hierarchical order – i.e. the structural order of
Tesnière (1959) – and the linear order, which is rep-
resented by the position of the nodes on the same
horizontal line. Since the focus is on the compari-
son between strict constituency and dependency, the
disposition of the nodes is not relevant: changing
it will not modify the hierarchical structure. The di-
rected polygraph in fig. 4 can be drawn as in fig. 5(a)
by abstracting away from word order and placing the
source of directed edge above the target.12

3.4 Underspecification of the grouping orders:
node selection

The vertices of an edge of a polygraph can be nodes
or edges. To convert this structure into a tree that
has the same shape as the target dependency tree in
fig. 1(b), one simply has to select nodes as vertices
for each edge. Nodes will be selected using the di-
rection. A node, called the top node, is associated

12Such representations were first proposed by Tesnière
(1959, ch. 65 and ch. 108) for encoding scope relations in its
dependency-based representation.

157

MaryN

lovesV

redAdj

carsN

S

VP

NP

(a) Directed constituency polygraph

MaryN

lovesV

redAdj

carsN

S VP

NP

(b) Destratified constituency polygraph

MaryN

lovesV

redAdj

carsN

subject object

modifier

(c) Dependency tree

Figure 5: From directed polygraph to dependency tree

to each edge recursively: if e = (v1,v2), top(e) =
top(e1) and if n is a node, top(n) = n.13 To each di-
rected polygraph, a graph is associated by replacing
any edge (v1,v2) by the edge (top(v1), top(v2)).

For instance, in the polygraph in fig. 5(a),
top(S) = top(V P) = loves and top(NP) = cars. The
corresponding graph after selection is then the tree
in fig. 5(b). From the geometrical point of view, the
selection can be viewed as a down-shifting of edges
along other edges.

Selection corresponds to deleting the order of
grouping operations in the constituency tree. The
operation substracts information from the original
constituency tree: namely, its stratification. The
polygraph expresses the stratification of groups and
each instance of selection underspecifies this order
for a couple of grouping operations.

Geometrically, the edge VP can be slid along the
edge S (and loves becomes the source of S) and the
edge NP can be slid along VP (and cars becomes the
target of VP), as seen in the tree in fig. 5(b).

3.5 Relabelling

By relabelling the edges of the polygraph obtained
after selection with names of grammatical functions,
one generates fig. 5(c), which is the dependency tree
of fig. 1(b) plus arrows that express the directions of
the governor/dependent relations. We can see that
the grouping operation named S in phrase structure
grammar (Chomsky, 1957) is the grouping operation
that dependency grammar names the subject rela-
tion (Mel’čuk, 1988). In works preceding Chom-
sky’s formalization (Chomsky, 1957), groupings are
more clearly interpreted as constructions. Bloom-

13The top node of an edge is nothing else than the lexical head
of the corresponding constituent. This step, the replacement
of a constituent by its lexical head, is equivalent to the step in
Lecerf’s procedure collapsing all the nodes with their common
lexical head.

field (1933, §12, 2) calls this grouping actor-action
construction – Bloomfield’s action does not corre-
spond exactly to a VP constituent, since the direct
object relation (like watch me) is called the action-
goal construction in §12.8. Even Chomsky (1957,
ch. 4) introduces the constituency tree as a deriva-
tion tree. Following Vijay-Shanker (1992), one can
extend the notion of derivation tree to TAG, where
each node must be interpreted as a rule. In other
words, the S node of the derivation tree can be in-
terpreted as αS = [S→ NP+V P] and the relation
between S and V P as the substitution of a rule αV P

into a rule αS.
Constituency and dependency are two ways to en-

code grouping operations on the same words. Con-
stituency focuses on the stratification, that is the re-
spective order of the grouping operations (a verb
groups with its object before grouping with its sub-
ject), while dependency focuses on headedness, that
is the governor-dependent relation inside each group
(a verb governs its subject and its object). Conse-
quently, when a word is defined as a governor in the
latter approach, it is aggregated with each of its de-
pendents in several groups at the same level. Con-
stituency generally acknowledges the same associa-
tions, but it has the means to stratify it through the
definition of smaller nested groups.

The conversion is complete and reverting the pro-
cess would allow one to go from the dependency tree
to the constituency tree.

3.6 Intermediate conclusion

The five steps can be summarized with respect to
the information carried by each strict formalism (the
most important steps14 appear in fig. 6). Polygraphs,
which have been used as a temporary step in the pro-
cess can be regarded as an independent modelling

14Delinearization and relabelling are not represented.

158

A B

YP

XP

C

(a) Constituency tree
Reification

Dereification

A B

YP

XP

C

(b) Undirected polygraph
Direction removal

Direction addition A

B

C

YP

XP

(c) Directed polygraph
Stratification

Destratification

A

B

C

YP XP

(d) Dependency tree

Figure 6: Synthesis of constituency tree/dependency tree conversion steps

tool that achieves better expressiveness.

Descriptive powers compared Governor specifi-
cation adds dependency information (sec. 3.2), that
is headedness, to the polygraph and selection deletes
the order of grouping operations (sec. 3.4), that is
stratification, from the polygraph. What this means
is that neither strict constituency trees nor strict de-
pendency trees can really be considered to be a more
powerful formalism, because neither of them can ex-
press everything that can be expressed by the other.
A formalism A is more powerful than B if there ex-
ists a one-to-one map from A to B preserving the
topology of the structures in A. In other words, ev-
ery structure a written with the formalism A can be
converted into a structure b written in the formalism
B without losing any information, that is, a can be
recovered from b.

Constituency is able to acknowledge stratifica-
tion; e.g.: in fig. 1(a), red cars aggregates with loves
before Mary aggregates with the rest of the sen-
tence. Choosing between one order or the other is
an important methodological issue that should not
be overlooked (Gleason, 1955; Wells, 1947). The
drawback of constituency is that part-whole rela-
tions do not express any hierarchy between immedi-
ate constituents of a single construction (Mary and
loves red cars share the same level). On the other
hand, dependency provides an explicit way to de-
scribe the relative importance of individual words in
comparison with the other words that surround them.
Therefore, identifying the head of a group is a major
concern (Mel’čuk, 2009, 27-34) and is even compul-
sory in a strict dependency approach.

Polygraph as a synthesis Polygraphs can be con-
sidered a gateway for the conversion of one type of
structure into the other. They can contain both the
stratificational information of constituency trees and
the dependency structure. They can potentially ex-
press everything that both strict approaches can. Di-

rected polygraphs can be drawn as in fig. 5(a), a rep-
resentation close to a dependency tree, in order to as-
sert the hierarchical order. But an ordered polygraph
can also be represented with the nodes linearly or-
dered (fig. 4(a)) and looks more like a constituency
tree.

Seen as an intermediate stage in a conversion pro-
cess, polygraphs offer no free option: from strict
constituency to strict dependency, the direction of
all edges must be specified and information about
the order of grouping operations is necessarily lost.
Nevertheless, polygraphs can be considered as an in-
dependent modelling tool that allows one to choose
whether or not specific governors and the order of
grouping operations must be specified. They there-
fore allow underspecification in addition to combin-
ing the descriptive power of concurrent formalisms.

• A dependency tree is a directed polygraph that
is completely destratified.

• A constituency tree is a stratified polygraph that
specifies no governor.

As an independent modelling tool, polygraphs
achieve better expressiveness than strict con-
stituency and strict dependency alone, for they sat-
isfy the following requirements:

Descriptive power Polygraphs can structurally ex-
press everything that constituency and depen-
dency can express (grouping, headedness, strat-
ification).

Underspecification Polygraphs can underspecify
what is considered as non necessary (headed-
ness, stratification)

The latter property is as important as the former: a
formalism that forces one to specify irrelevant in-
formation can be as problematic as a formalism that
does not allow one to specify relevant information.15

15Derivation trees provide an example of underspecification

159

that you saw yesterday

cars

red

A
B

(a) Original polygraph
red cars

that you. . .

A

B

(b) Reified version

Figure 7: Stratification of dependency trees

4 Extending dependency trees

As demonstrated in sec. 3, it is possible with poly-
graphs to encode both dependency and constituency,
i.e. grouping, headedness and stratification. The
aim of this section is to show what can be achieved
by using polygraphs as an independent formalism
rather than as a gateway for converting constituency
trees into dependency trees. In a dependency-
oriented perspective, it shows in which ways and for
what purpose polygraphs can extend the formalism
of dependency trees.

4.1 Stratification of dependency trees

Stratification can be acknowledged by polygraphs.
It is not clear what advantage can be obtained by
systematically forcing the verb to combine with its
subject after its object as is done in PSGs.16 DGs
are attached to the verb centrality, defended at least
since Tesnière (1959, ch. 49), who fought strongly
against the bi-partition of the sentence into subject
and predicate, i.e. NP and VP. Tesnière’s point of
view could be reformulated by saying that strati-
fication of the verbal subcategorization in current
constituency-based approaches is an artefact of the
encoding of the syntactic structure by a binary-
branching constituency tree (Kahane and Osborne,
2015, xxxix-xlii).

In other words, the fact that dependency trees

that every formal linguist knows about. Context-free gram-
mars were defined by Chomsky (1957) as rewriting systems. A
derivation in a CFG is a string of rewriting steps. The derivation
tree is a better formalism of representation of the derivation pro-
cess, because it masks the order in which irrelevant steps occur
in a derivation and “keeps only what is essential to understand
the phrase structure” (ibid.: ch. 4). That is why the deriva-
tion tree is much more adequate than the proper derivation for a
syntactic representation of the structure of a sentence.

16As far as incremental parsing is concerned, which is cogni-
tively very motivated, it seems clear that the verb will combine
with its subject before its object in SVO languages.

make it possible to formalize binary groupings with-
out needing stratification is viewed as a strong ad-
vantage by DGs.

This preliminary remark does not mean that strat-
ification cannot be useful sometimes. Consider the
following example:

(3) red cars that you saw yesterday

As already noticed by Coseriu (1980, 55), Tes-
nière (1959, ch. 65) proposed to represent the syn-
tactic structure of (3) with a polygraph-like stemma
(redrawn here in fig. 7(a)) (Tesnière, 1959, stemma
149) and provided the following justification: “By
this process, the phrase red cars that you saw yes-
terday can be analyzed structurally in such a way
that the connecting line extending upward from the
subordinate clause reaches the connection line con-
necting red to cars. This means that that you saw
yesterday is connected not to cars but to red cars,
since what you saw yesterday was not cars, but red
cars.” Indeed, this representation says that cars com-
bines first with red and after with the relative clause,
as shown also by the constituency tree in fig. 7(b)
which is obtained by reification of the relations in
polygraph in fig. 7(a).

4.2 Headless grouping
The lively debate about the DP vs. NP analysis of the
determiner-noun construction – the still open dis-
cussion started 30 years ago (Hudson, 1984; Abney,
1987) – could be resolved by admitting that both the
determiner and the noun have head features. Neither
of them should be favored. This leads to propose a
syntactic structure such as fig. 8(d) for sentence (4):

(4) Mary drives a red car.

This polygraph can be obtained starting from the
constituency tree in fig. 8(a). Dereification out-
puts the ordered polygraph of fig. 8(b) where only a

160

Mary

drives

a

red car

H

H

H

(a) Headed constituency tree

Mary drives a red car

(b) Directed polygraph

Mary

drives

a

car

red

(c) Delinearized polygraph

Mary

drives

a
car

red

(d) Partially destratified polygraph

Figure 8: Underspecified determiner-noun headedness

headed grouping outputs a directed dependency. De-
linearization outputs the representation of fig. 8(c),
where directed edges are represented by vertical
lines with the head on top, while the non-directed
edges are represented by horizontal lines. Selection
results in the structure depicted in fig. 8(d). Non-
directed edges cannot undergo selection and remain
governed as a whole.

From the geometrical point of view, it means that
non-directed edges cannot undergo any selection,
which justifies representing them horizontally. Reed
and Kellogg (1877) already use horizontal conven-
tion in their famous diagram, where the subject-verb
and the object-verb combinations are non hierarchi-
cally organized. A linguist wishing to express a
“headless” (or exocentric) structure, such as the for-
mer Chomskyan scheme S→ NP + VP, simply can-
not do so with a dependency tree. The transforma-
tion exposed in sec. 3 applied to such a constituency
tree (fig. 9(a)) produces a polygraph very similar to
the Reed-Kellogg diagram (fig. 9(b)).17

(5) I think Mary loves cars.

The horizontal convention was also used by Tes-
nière (1959, part II) for coordination (see sec. 4.3).

4.3 Ternary grouping

In a dependency tree, every grouping is a binary
grouping between a head word and a non-head word,

17Note that Nida (1966, 17-47) consists of dozens of similar
diagrams, that contrast a.o. endocentric structures and exocen-
tric ones.

encoded by a dependency. Some linguists consider
that function words are just markers of construc-
tions. For instance, to in (6) could be analyzed not as
the head of a PP but rather as the marker of the com-
bination between talked and its indirect object.18

(6) Mary talked to Peter.

This results in the constituency tree in fig. 10(a),
with a ternary branching where talked is the head
(H), to the marker (M), and Peter a non-head word.
Dereification and selection result in the structure in
fig. 10(b), i.e. a hyperpolygraph. A hyperpolygraph
is to a polygraph what a hypergraph is to a graph. In
this case, hyperpolygraph contains a ternary “depen-
dency” with three vertices: a governor, a dependent,
and a third vertex put on the edge, occupied by the
marker to, which must not be interpreted as a label.
Such a convention already appears in dependency-
based representations, even in some very early at-
tempts (Kern, 1883, 17) – see also Débili (1982)
for a more recent example. The representation in
fig. 10(c) is also valid: the marker to depends on the
relation it marks (Kahane and Mazziotta, submitted
Depling 2015), indicating that the marker cannot oc-
cur without the relation. Such a polygraph cannot be
reified into a (constituency) tree.

Another example combines ternary grouping with
non-directed grouping. In symmetrical analyses of

18A ternary grouping can be justified because the three ele-
ments can be grouped pairwise following different criteria: the
verb and the object are linked by a semantic relation, the marker
can be associated with the verb (the guy Mary talked to) as well
as the object (To Peter, Mary should not talk).

161

I

think

Mary

loves cars

S

VP

S

VP

H

H

(a) Partially headed constituency tree

I think

Mary loves

cars

VP

S

S
VP

(b) Partially directed polygraph

Figure 9: Underspecified subject-verb headedness

Mary

talked to Peter

H

M
H

(a) Constituency tree

Mary

talked

Peter

to

(b) Hyperpolygraph with marker node

Mary

talked

Peterto

(c) Polygraph with marking relation

Figure 10: Ternary grouping

coordination, conjuncts are considered as co-heads,
while the coordinating conjunction is a marker, as
proposed by Jackendoff (1977).

(7) Mary and Peter got married.

Fig. 11 shows a constituency tree for (7) and the
corresponding polygraph after dereification and slid-
ing. A horizontal line is again used to encode a
grouping between two co-heads. The resulting rep-
resentation is similar to what Tesnière proposes from
his early works (Tesnière, 1934) to his main book
(Tesnière, 1959, ch. 38).

5 Conclusion

The goal of this paper was to present a new for-
malism that subsumes both constituency and depen-
dency, and which can be then used to extend these
two formalisms in order to encode syntactic analy-
ses.

Two goals have been achieved. First, a new
way to associate a dependency tree to a headed
binary-branching constituency tree has been pro-
posed. Contrary to the previous one from Lecerf
(1961), this one proves that every dependency cor-
responds to a grouping.

Second, the formalism of polygraphs extends both
formalisms, constituency trees as well as depen-
dency trees, making stratification as well as headed-
ness explicit. Interestingly these structures are simi-
lar to representations that have been previously pro-

posed by other linguists (Reed and Kellogg, 1877;
Kern, 1883; Nida, 1949; Nida, 1966; Tesnière, 1959;
Débili, 1982) and polygraphs give them a math-
ematical foundation – see Mazziotta (2014) for a
more comprehensive application of polygraphs to
Tesnière’s model. Beyond that, the formalism of
polygraphs can be the basis for the development
of new formal grammars, especially lexicalized for-
mal grammars such as TAG, that derive the structure
of a sentence by combination of elementary struc-
tures. In particular, it seems more accurate for some
problematic constructions (such as unbounded de-
pendencies or complex determiners) to be formal-
ized with a derivation structure which is a polygraph
rather than a tree or even a graph.19

Acknowledgement

The authors would like to thank the following people
for their suggestions and corrections (in no particu-
lar order): Kim Gerdes, François Lareau, Timothy
Osborne and Pierre Swiggers.

19As stated earlier (sec. 3.5), CFG derivations have been
extended to TAGs (Vijay-Shanker, 1992). However, even for
TAGS, it appears that derivations are too complex to be fully
formalized by a tree; e.g. predicative adjunction demonstrates
the limits of the tree structure in this context (Schabes and
Shieber, 1994). This question cannot be developed here; Ka-
hane (2013) suggests polygraphic derivation structures in a
dependency-based formalism.

162

Mary and Peter got married

H

H H
M

H

(a) Headed constituency tree

Mary Peter

got

marriedand

(b) Polygraph with marker node

Figure 11: Ternary grouping with co-heads

References

Steven P. Abney. 1987. The English Noun Phrase in its
Sentential Aspect. Ph.D. thesis, Massachusetts Insti-
tute of Technology.

Claude Bergé. 1973. Graphs and hypergraphs. North-
Holland, Amsterdam.

Leonard Bloomfield. 1933. Language. The University
of Chicago Press.

Guillaume Bonfante and Yves Guiraud. 2008. Inten-
sional properties of polygraphs. Electronic Notes in
Theoretical Computer Science, 203(1):65–77.

Albert Burroni. 1993. Higher-dimensional word prob-
lems with applications to equational logic. Theoretical
computer science, 115(1):43–62.

Noam Chomsky. 1957. Syntactic structures. Mouton,
The Hague.

Eugenio Coseriu. 1980. Un précurseur méconnu de la
syntaxe structurale: H. Tiktin. In Recherches de lin-
guistique: hommage à Maurice Leroy, pages 48–62.
Éditions de l’Université de Bruxelles, Bruxelles.

Fathi Débili. 1982. Analyse syntaxico-sémantique
fondée sur une acquisition automatique de relations
lexicales-sémantiques. Ph.D. thesis, Université Paris
Sud.

Henry A. Gleason. 1955. An Introduction to Descriptive
linguistics. Holt, Rinehart and Winston.

Thomas Groß. 2011. Catenae in morphology. In Kim
Gerdes, Elena Hajičová, and Leo Wanner, editors, Pro-
ceedings of Depling 2011, International Conference
on Dependency Linguistics, Barcelona, pages 47–57.
Barcelona.

Charles F. Hockett. 1958. A course in modern linguis-
tics. The MacMillan Company.

Richard A. Hudson. 1980. Constituency and depen-
dency. Linguistics, 18(3-4):179–198.

Richard Hudson. 1984. Word Grammar. Blackwell, Ox-
ford.

Richard Hudson. 2010. An introduction to word gram-
mar. Cambridge Textbooks in Linguistics. Cambridge
University Press, Cambridge.

Ray Jackendoff. 1977. X-bar syntax: A study of phrase
structure. MIT Press, Cambridge, MA.

Sylvain Kahane and Nicolas Mazziotta. submitted
(Depling 2015). Dependency-based analyses for func-
tion words - introducing the polygraphic approach.

Sylvain Kahane and Timothy Osborne. 2015. Transla-
tors’ introduction. In Elements of structural syntax
(Tesnière, 2015), pages xxix–lxxiv.

Sylvain Kahane. 1997. Bubble trees and syntactic rep-
resentations. In Proceedings of Mathematics of Lan-
guage (MOL5) Meeting, pages 70–76. Citeseer.

Sylvain Kahane. 2012. Why to choose dependency
rather than constituency for syntax: a formal point
of view. In J. Apresjan, M.-C. L’Homme, M.-C.
Iomdin, J. Milićević, A. Polguère, and L. Wanner, ed-
itors, Meanings, Texts, and other exciting things: A
Festschrift to Commemorate the 80th Anniversary of
Professor Igor A. Mel’čuk, pages 257–272. Languages
of Slavic Culture, Moscow.

Sylvain Kahane. 2013. Predicative adjunction in a mod-
ular dependency grammar. In 2nd international con-
ference on Dependency Linguistics (DepLing), pages
137–146.

Franz Kern. 1883. Zur Methodik des deutschen Unter-
richts. Nicolai, Berlin.

Yves Lecerf. 1961. Une représentation algébrique
de la structure des phrases dans diverses langues na-
turelles. Comptes rendus de l’Académie des Sciences,
252(2):232–235.

Nicolas Mazziotta. 2014. Nature et structure des rela-
tions syntaxiques dans le modèle de Lucien Tesnière.
Modèles linguistiques, 69:123–152.

Igor Mel’čuk. 1988. Dependency syntax: theory and
practice. State University of New York, Albany.

Igor Mel’čuk. 2009. Dependency in natural language.
In Alain Polguère and Igor Mel’čuk, editors, Depen-
dency in linguistic description, pages 1–110. John
Benjamins, Amsterdam and Philadelphia.

Eugene Nida. 1949. Morphology: the descriptive analy-
sis of words. University of Michigan press, Ann Arbor,
2 edition.

Eugene Nida. 1966. A synopsys of English Syntax. Mou-
ton and Co., London, The Hague, Paris, 2 edition.

Timothy Osborne, Michael Putnam, and Thomas M.
Gross. 2011. Bare phrase structure, label-less trees,
and specifier-less syntax. is minimalism becoming

163

a dependency grammar? The Linguistic Review,
28(3):315–364.

Carl Pollard and Ivan A. Sag. 1994. Head-driven phrase
structure grammar. University of Chicago Press.

Alonso Reed and Brainerd Kellogg. 1877. Higher
Lessons in English: A Work on English Grammar and
Composition. Clark and Maynard, New-York.

Yves Schabes and Stuart M. Shieber. 1994. An alterna-
tive conception of tree-adjoining derivation. Compu-
tational Linguistics, 20(1):91–124.

John F. Sowa. 2000. Knowledge Representation: Log-
ical, Philosophical, and Computational Foundations.
Brooks Cole Publishing Co., Pacific Grove, CA.

Lucien Tesnière. 1934. Comment construire une syn-
taxe. Bulletin de la Faculté des Lettres de Strasbourg,
7:219–229.

Lucien Tesnière. 1959. Éléments de syntaxe structurale.
Klincksieck, Paris.

Lucien Tesnière. 2015. Elements of structural syntax,
translated by Timothy Osborne and Sylvain Kahane.
Benjamins, Amsterdam/Philadelphia.

K. Vijay-Shanker. 1992. Using descriptions of trees in
a tree adjoining grammar. Computational Linguistics,
18(4):481–517.

Rulon S. Wells. 1947. Immediate constituents. Lan-
guage, 23(2):81–117.

164

Author Index

Chandlee, Jane, 112
Chatzikyriakidis, Stergios, 39
Clark, Alexander, 99

de Groote, Philippe, 15

Eyraud, Rémi, 112

Fodor, Brigitta, 1
Fulop, Sean A., 26

Graf, Thomas, 1

Heinz, Jeffrey, 112, 139

Jardine, Adam, 139

Kager, René, 126
Kahane, Sylvain, 152
Kartsaklis, Dimitri, 62
Kephart, David, 26
Kornai, András, 51
Kracht, Marcus, 51

Luo, Zhaohui, 39

Magri, Giorgio, 126
Mazziotta, Nicolas, 152
McAllester, David, 75
Monette, James, 1

Rachiele, Gianpaul, 1

Sadrzadeh, Mehrnoosh, 62

Warren, Aunika, 1

Yoshinaka, Ryo, 87

Zhang, Chong, 1

165

	Program
	A Refined Notion of Memory Usage for Minimalist Parsing
	Abstract Categorial Parsing as Linear Logic Programming
	Topology of Language Classes
	Individuation Criteria, Dot-types and Copredication: A View from Modern Type Theories
	Lexical Semantics and Model Theory: Together at Last?
	A Frobenius Model of Information Structure in Categorical Compositional Distributional Semantics
	A Synopsis of Morphoid Type Theory
	General Perspective on Distributionally Learnable Classes
	Canonical Context-Free Grammars and Strong Learning: Two Approaches
	Output Strictly Local Functions
	How to Choose Successful Losers in Error-Driven Phonotactic Learning
	A Concatenation Operation to Derive Autosegmental Graphs
	Syntactic Polygraphs. A Formalism Extending Both Constituency and Dependency

