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Abstract

Supertagging was recently proposed to
provide syntactic features for statistical
dependency parsing, contrary to its tradi-
tional use as a disambiguation step. We
conduct a broad range of controlled ex-
periments to compare this specific applica-
tion of supertagging with another method
for providing syntactic features, namely
stacking. We find that in this context su-
pertagging is a form of stacking. We fur-
thermore show that (i) a fast parser and
a sequence labeler are equally beneficial
in supertagging, (ii) supertagging/stacking
improve parsing also in a cross-domain
setting, and (iii) there are small gains when
combining supertagging and stacking, but
only if both methods use different tools.
The important consideration is therefore
not the method but rather the diversity of
the tools involved.

1 Introduction

We present a systematic comparison of two meth-
ods that have been proposed to improve statistical
dependency parsers: supertagging and stacking.
Supertags are labels for tokens much like POS
tags but they also encode syntactic information,
e.g. the head direction or the subcategorization
frame. Supertagging was developed for deep
grammar formalisms as the disambiguation of su-
pertag assignment prior to parsing (Bangalore and
Joshi, 1999; Clark and Curran, 2004; Ninomiya
et al., 2006). Recently, it was presented as a
method to provide syntactic information to the fea-
ture model of a statistical dependency parser. Am-
bati et al. (2013; 2014) provide CCG supertags to
a dependency parser, whereas Ouchi et al. (2014)
extract their supertag tag set from a dependency
treebank (see Figure 1). In this paper, we adopt
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Figure 1: Supertags that are derived from depen-
dency trees for each token. They encode the la-
bel, the head direction, and the presence of left and
right dependents.

this particular definition and take supertagging as
a way of incorporating syntactic features instead
of the traditional use for disambiguation.

Parser stacking was introduced by Nivre and
McDonald (2008) and Martins et al. (2008). In
stacking, two parsers are run in sequence so that
the second parser can use the output of the first
parser as features, for example, whether a particu-
lar arc was already predicted by the first parser.

When supertags were first proposed by Joshi
and Bangalore (1994), they called supertagging al-
most parsing, because supertags anticipate a lot
of syntactic disambiguation. In stacking, the first
step is running a parser, or in other words: real
parsing. In this paper, we investigate the differ-
ence between almost and real parsing for improv-
ing a statistical dependency parser.

We conduct an extensive number of compara-
tive experiments with two state-of-the-art depen-
dency parsers and a state-of-the-art sequence la-
beler on 10 different data sets. In the first set of
experiments, we use only the two parsers and com-
pare both methods in artificial and realistic set-
tings. In the second set of experiments, we con-
trol for the methods and compare different ways
of realizing them. In the last set, we evaluate the
benefit of combining both methods.

Intuitively, stacking should give higher im-
provements than the version of supertagging de-
fined by Ouchi et al. (2014), since trees in stack-
ing are more informative than supertag sequences
in supertagging. However, our experiments show
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that both methods perform on par. Based on an
in-depth analysis of these findings, we argue that
supertagging is a form of stacking.

One apparent advantage of supertagging is the
fact that one can predict supertags without a
parser and thus possibly faster. However, greedy
transition-based parsers are extremely fast as well.
We show that the output of a CRF sequence labeler
and a greedy transition-based parser are of equal
usefulness when used in supertagging. This setup
suggests application to large-scale (e.g. web) data.
We test both methods on the English Web Tree-
bank (Bies et al., 2012) and show that they also
improve parsing in a cross-domain setting.

Our experiments on combining supertagging
and stacking show small gains only when su-
pertags and trees are predicted by different tools.
Surdeanu and Manning (2010) demonstrate that
diversity of algorithms is important when stacking
parsers. Since supertagging is a form of stacking,
this also holds for supertagging, and we argue that
this is a more important factor than the choice be-
tween the two methods.

We give background on supertagging and stack-
ing in Section 2 and describe our experimental
setup in Section 3. We present our experiments
in Sections 4 to 6 and conclude with Section 7.

2 Background

The term supertag originated in Joshi and Banga-
lore (1994) as an elementary structure associated
with a lexical item. These elementary structures
carry more information than POS tags, hence the
name super POS tags or supertags. Within Lex-
icalized Tree Adjoining Grammar (LTAG) (Sch-
abes et al., 1988) supertags correspond to trees that
localize dependencies. A supertagger assigns su-
pertags to each word of a sentence. A parser then
combines these structures into a full parse (Ban-
galore and Joshi, 1999) that leads to simplified
and faster parsing. The same approach applied to
Combinatory Categorial Grammar (CCG) (Clark
and Curran, 2004) and Head-Driven Phrase Struc-
ture Grammar (HPSG) (Ninomiya et al., 2006)
speeds up the parser dramatically.

Foth et al. (2006) were the first to utilize su-
pertags in a dependency parsing context by incor-
porating them as soft constraints into their rule-
based parser (Foth et al., 2004). In LTAG, CCG, or
HPSG supertags are the elementary components
of the framework in question. In Foth et al. (2006),
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supertags are specifically designed to capture syn-
tactic properties.

Ouchi et al. (2014) use supertags as features in a
statistical dependency parser for English. Ambati
et al. (2014) instead utilize CCG categories for En-
glish and Hindi. Both demonstrate significant im-
provements. Bjorkelund et al. (2014) extend the
positive results to nine other languages.

Another way of exploiting one parser’s output
as features in another parser is stacking. Nivre
and McDonald (2008) define a simple set of lo-
cal features that mark whether an arc is present
in the input tree. They demonstrate that stack-
ing parsers leads to higher parsing accuracy than a
non-stacked baseline. Martins et al. (2008) extend
this feature set to include non-local information,
e.g. information about siblings and grandparents
of dependents. However, the additional non-local
features provide only minor further gains over the
local ones if the parser itself already uses non-
local features.

Surdeanu and Manning (2010) present a study
on parser stacking for English. They find that one
important factor is the diversity of the parsing al-
gorithms involved. Specifically, stacking a parser
on itself does not lead to gains. This effect was
also observed by Martins et al. (2008).

3 Experimental Setup

3.1 Data Sets and Preprocessing

We perform experiments on the data from the
SPMRL 2014 Shared Task (Seddah et al., 2014),
which consists of data sets for 9 languages (see Ta-
ble 1). To these 9, we add the English Penn Tree-
bank converted to Stanford Dependencies.! We
use sections 2-21 for training, 24 as development
set and 23 as test set.

Contrary to most previous work, we use auto-
matically predicted preprocessing in all the pars-
ing experiments. POS tags and morphological fea-
tures are jointly assigned using MarMoT? (Miiller
etal., 2013), a state-of-the-art morphological CRF
tagger. To improve tagging accuracy we integrate
the analyses of language-specific morphological
analyzers as additional features into MarMoT (see
Table 1). We use the mate-tools® for lemmatiza-

'We use version 3.4.1 of the Stanford Parser from
http://nlp.stanford.edu/software/lex-parser.
shtml

2https://code.google.com/p/cistern/

3https://code.qooqle.com/p/mateftools/



tion. We annotate the training sets via 5-fold jack-
knifing.

ISO  Language Morphological Analyzer

ar Arabic AraMorph, a re-impl. of Buckwalter (2002)
eu Basque Apertium (Forcada et al., 2011)

fr French An extension of Zhou (2007)

he Hebrew Analyzer from Goldberg and Elhadad (2013)
de German SMOR (Schmid et al., 2004)

hu Hungarian ~ Magyarlanc (Zsibrita et al., 2013)

ko Korean HanNanum (Park et al., 2010)

p! Polish Morfeusz (Woliniski, 2006)

3% Swedish Granska (Domeij et al., 2000)

Table 1: Analyzers used in the tagger.

3.2 Supertag Design

Foth et al. (2006) experiment with different tag
set designs and show that richer supertags improve
their parser’s accuracy more. However, richer tags
increase the tag set size considerably and make it
more difficult to predict them automatically.

Ouchi et al. (2014) test two models for English.
Model 1 includes the relative head position of a
word (hdir), its dependency relation (label), and
information about dependents to the left or right
(hasLdep, hasRdep). The tag set is derived from
the treebank, an example is shown in Figure 1.
Model 2 additionally uses dependency relations of
obligatory dependents of verbs. The difference be-
tween the two models has no impact on the per-
formance of a parser, however. Bjorkelund et al.
(2014) find the same effect for the same models
on nine other languages.

ar eu fr de he hu ko sV en

pl
113 253 222

42 179 128 239 196 280 74

Table 2: Tag set sizes for training sets.

Based on these results we decided to use

Model 1 in all of the experiments. The su-
pertags are extracted from the respective
training sets and follow the template la-

bel/hdir+hasLdep_hasRdep. Table 2 gives the
tag set sizes for each data set.

3.3 Notation

We denote stacking and supertagging by STACK
and STAG, respectively. When a tool y uses the
output of another tool x, we mark this by super-
script and subscript. For example, STACKY means
that tool y uses the output of tool x in stacking.
Similarly, STAG] means that tool y uses the su-
pertags predicted by tool x. We follow Martins et
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al. (2008)’s terminology and call x the Level O tool
and y the Level 1 tool.

3.4 Parsers and Feature Models

In the experiments, Level 1 tools will always be
dependency parsers since we are interested in the
effect of supertagging and stacking on parsing per-
formance. We experiment with one graph-based
and one transition-based parser to cover the two
major paradigms in dependency parsing.

We extend the parsers’ baseline feature sets in
two directions: (1) to extract features for stack-
ing, i.e., to extract features from a provided de-
pendency tree, and (2) to extract features from
a sequence of supertags. For stacking, features
are taken from Nivre and McDonald (2008) and
slightly adapted to our setting. For supertagging,
we mirror the features from stacking to the best
extent possible given the more limited information
that is contained in the supertags to begin with.

We note that feature engineering can be done
more elaborately both for stacking (Martins et al.,
2008) and supertagging (Ouchi et al., 2014). How-
ever, since not all types of features that can be
extracted necessarily carry over from one method
to the other, a simpler feature set is more useful
for a comparison. Moreover, both of the afore-
mentioned papers only demonstrate minor perfor-
mance gains with more elaborate features.

Transition-based Parser. We use the parser by
Bjorkelund and Nivre (2015) as our transition-
based parser. It uses the arc-standard decod-
ing algorithm extended with a SWAP transition
(Nivre, 2009) to handle non-projective structures.*
The system applies arc transitions between the
two topmost items of the stack (denoted sg and
s1). The lazy SWAP oracle by Nivre et al. (2009)
is used during training. The parser is glob-
ally trained using beam-search and early update
(Zhang and Clark, 2008). The implementation
uses the passive-aggressive perceptron (Crammer
et al., 2006) and a hash kernel for feature mapping
following Bohnet (2010). The parser is trained
for 25 iterations using a beam size of 20. We
omit the definition of the baseline feature set of
the transition-based parser, however it is primar-
ily based on that of Zhang and Nivre (2011) with
adaptations to the arc-standard setting.

Table 3 outlines the feature templates used
for stacking and supertagging. The predicates

“This parser is available on the second author’s website.



Stacking features

headg (s1) = so
hdire (s1)
label (s1)

headg (so) = s1
hdirc (so)
label (s0)
hasLc; (s0) & pos(ldep(so))  hasRe (so) @ pos(rdep(sn))
hasL; (s1) & pos(ldep(s1))  hasRc:(s1) @ pos(rdep(s1))

Supertag features

stagg (so0) stagg (s1)
label s (s0) labels (s1)
hdirs (so) hdirs (s1)
hasLs (so) hasRs (s1)

stag (s0) ® pos(rdep(so))
stag (s1) @ pos(rdep(s1))
hasRg(s1) @ hdirs(so)

hasRg (s1) @ pos(rdep(s1)
hasLg (s1) @ pos(ldep(s1)

stags (s0) ® pos(ldep(so))
stag (s1) ® pos(1dep(s1 ))
hasLs (sg) @ hdirs(s1)

hasLs (so) @ pos(ldep(so))

)
hasRs (s0) @ pos(rdep(so)) )

1
1

Table 3: Feature templates used for stacking and
supertagging in the transition-based parser. & de-
notes conjunctions of basic templates. All tem-
plates are conjoined with the POS tag of the top-
most stack items sg and s;.

headx (d), hdirx (d), label x (d), hasL/Rx (d), and
stag v (d) extract the head of d, the direction of d’s
head, the arc label of d, whether d has left/right
dependents, and the supertag according to the
Level O prediction X. X is either a dependency
graph (in stacking) or a supertag assignment (in
supertagging), denoted G and S in Table 3, respec-
tively. The predicates 1/rdep(d) extract the left-
most/rightmost dependent of d given the current
parser state. pos(d) extracts the POS tag of d, with
a special placeholder if d is undefined.

The stacking features are mostly taken from
Nivre and McDonald (2008) with the exception of
the last two rows. These features encode whether
d should have left/right dependents according to
G conjoined with whether d has left/right depen-
dents in the current configuration. We added these
features because existence of left/right dependents
is also encoded in the supertags. Conjoining the
existence of left/right dependents according to the
Level 0 predictions with the POS tag of left/right
dependents in the current parser state thus encodes
whether dependents were attached or not. Since
the arc-standard algorithm works bottom-up, ev-
ery token needs to collect all its dependents before
it can be attached to its own head.

The supertag features mimic the information
provided by stacking. For instance, in stacking the
Level 0 predictions explicitly include whether sg
is the head of s;. In supertagging this is approx-
imated by combining the direction of the head of
s1 with whether sy expects dependents on the left.

121

Stacking features

headg (d) = h
label (d)
headg (d) = h @ labelg (d)

Supertag features

stag g (h) stag 4 (d)
labels (d) hdirg (d)
labels (d) @ hdirg(d)

hasLg (h) hasRs (h)

hdirg (d) @ hasLgs (h)
labels (d) @ hasLgs (h)
labels (d) @ hdirg (d) @ hasLg (h)
labels (d) @ hdirs (d) @ hasRgs (h)

hdirs (d) @ hasRg (h)
labels (d) @ hasRgs (h)

Table 4: Feature templates used for stacking and
supertagging in the graph-based parser. & denotes
conjunctions of basic templates. All templates are
conjoined with the direction of that arc and with
the POS tag of the head and the dependent.

Graph-based Parser. The graph-based parser
we use is TurboParser,> which solves the parsing
task by doing global inference using a dual de-
composition algorithm and outputs non-projective
structures natively (Martins et al., 2013).

Table 4 shows the stacking and supertagging
features as we implemented them in TurboParser.
They are synchronized with the features for the
transition-based parser where possible. We extract
these features only on first-order factors, with d
and h denoting the dependent and the head, re-
spectively. Unlike in Nivre and McDonald (2008),
the features cannot access the label of the current
arc during feature extraction, as it is automatically
combined with the features after the extraction.

Like in the transition-based parser, supertag and
stacking features are modeled to capture similar
information. However, features that combine in-
formation about dependents of dependents with
information about the head are not included since
these would require higher-order factors.

3.5 Evaluation

We evaluate the parsing experiments using La-
beled Attachment Score (LAS).® We mark statis-
tical significance against respective baselines by |
and I, denoting p-value < 0.05 and p-value < 0.01
respectively. Significance testing is carried out us-
ing the Wilcoxon signed-rank test. Averages and
oracle experiments are not tested for significance.

SWe use version 2.0.1 from http://www.ark.cs.cmu.
edu/TurboParser/. We train TurboParser with MODEL-
TYPE=FULL which uses third-order features.

®The ratio of tokens with a correct head and label to the
total number of tokens in the test data.



avg. ar eu fr

de

he hu ko NY en

® BL® 8445 8499 8279 8395 8853 794l 83.98 8618 8496 7959  90.12
@  stac$ 85.15 85.54%  8324%  8433%  8o.14%  g0.107  8552F  86.48 85.48 80.63%  90.99%
B® sTack$ 8516  85.65%  8332F 8420 89.15%  80.03%  8546F  86.59F 85527 80.66F  90.95
@ BL™ 8437 8509 8177 8347 8789 7970 8525 85.71 8434 7997  90.54
B  sTAGH 85.01  85.58%  8299%  83.88%  88.88%  80.04 85.37 86.31%  85.03 81.04%  90.98%
® sTACKEE 8508  85.60%  83.14%  84.16%  88.91F  80.30 85.38 86.06" 85067  81.32F  90.88%

Table 5: Parsing results (LAS) on test sets.

4 Comparing Supertagging and Stacking

The purpose of the following experiments is to
compare supertagging and stacking and to derive
some conclusions about their relationship to each
other. We use one parser as the Level O parser and
the other one as Level 1 parser. In stacking, the
Level 1 parser exploits the tree produced by the
Level O parser as additional features. In supertag-
ging, we derive the supertag of each token from
the tree that is output by the Level O parser. The
Level 1 parser then uses these supertags as addi-
tional features. Although supertags are normally
predicted with sequence labelers, using a parser
on Level 0 in both cases ensures that the only
difference between the two settings is the means
by which the information is given to the Level 1
parser, i.e. as a tree or as a sequence of supertags.
Figure 2 illustrates this setup.

[ stacking

John loves Mary

L.

Level 1 parser

=
9]
@
4
3
.

E
>
9]

=

subj/R
Toot/L+LR
obj/L

supertagging

Figure 2: Setup for comparing stacking and su-
pertagging.

The training sets are annotated with predicted
dependency trees or supertags via 5-fold jackknif-
ing. In the tables, GB stands for the graph-based
parser and TB for the transition-based parser.

4.1 Supertagging and Stacking Accuracy

First of all we convince ourselves that both strate-
gies, supertagging and stacking, indeed improve
over the baseline. Table 5 gives the performance
of the Level 1 parser on the test sets: In the base-
line setting (BL) the parser is run without any ad-
ditional information. STAG and STACK show the
performance of the Level 1 parser when provided
with supertags or a tree from the Level O parser.
As demonstrated by previous work, both stack-
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ing and supertagging consistently improve the
parsing performance of the Level 1 parser. More-
over, both methods improve the parsing accuracies
to the same extent, with the average improvements
about 0.7% points absolute for both the graph-
based and the transition-based parser. Almost all
of the improvements are statistically significant,
with a few exceptions, most notably Polish. For
supertagging, our results confirm the findings by
Ouchi et al. (2014) and Ambati et al. (2014). The
stacking results are in line with Nivre and McDon-
ald (2008) and Martins et al. (2008). Here, it is
worth noting that even though dependency parsers
have markedly advanced since 2008, the fact re-
mains that stacking parsers improves performance.
We now continue with a more in-depth analy-
sis to find out where the improvements are coming
from. We perform the analysis on the development
sets in order to not compromise our test sets. The
corresponding accuracies for the development sets
can be found in Tables 6 and 7 in rows @ to 3.

4.2 In-Depth Analysis

The overall improvements with supertagging and
stacking are similar, but they might still come
about in different ways. To investigate this, we
follow McDonald and Nivre (2007) and look into
accuracy distributions of comparable systems rela-
tive to sentence length and dependency length, i.e.
the distance between the dependent and the head.

We present the analysis on the concatenation of
all the development sets. We also looked at the
corresponding plots for the individual treebanks.
While the absolute numbers vary across the differ-
ent data sets, the relative differences between the
baseline, supertagging, and stacking models are
consistent with the concatenation.

Figure 3 gives the accuracy of both parsers rela-
tive to sentence length in bins of size 10. Bin sizes
are represented as grey bars.’

"Note that if there are fewer items in a bin, the curves are
more sensitive to small absolute changes.
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Figure 4: The dependency precision and recall of the graph-based parser relative to dependency length.

avg. ar eu fr de he hu ko pl sV en
® BL® 84.16 8564 8337 8478 9146 7871 8260 8608 8517 7524  88.59
@  sTAGS 84.81 86257  8396% 85057  92.10f  7936"  83.92%  86.24 8552 7627t 89.47F
B3  STACKS 84.79 8625t  8378% 8514 9201F 7956  83.72F 86347 8529  76.44F  8941%
@  sTAGSR4. 9573 9378 9666 9643  98.60 9443 9437 9348 974l 9422 9791
(®  stacK$Bae 9643 9867 9687 9838 9890 9262 9421 9646 9655 9333 9834
®  sTAGS: 8444 85831  83.68% 8491 91.64%  7931%  8287F  86.28%  85.18 75.89%  88.77%
@  sTACKS: 8423 85.69T 8344 8480 9149  7890T 8264 8608 8524 7539  88.62

Table 6: Results (LAS) for the graph-based parser for different experiments on development sets.

avg. ar eu fr de he hu ko pl sV en
® BL™ 8404 8569 8222 8407 9115 7880 8327 8597 8451 7565  89.06
@  sTAGH 84.94  86.06%  84.02F  84.68% 91.98% 7982 83.83F 86.56% 85737  77.20%  89.48t
®  STACKE 84.86  86.19%  83.86%  84.55%  9198F 7976  83.87F  86.25 85.65 77.16% 8930
@  STAGIae 96.66 9409  97.65 9664 9880 9570 9646 9490 9850 9565  98.16
®  sTACKMae 9683 9880  97.08 9862 9865 9296 96.14 9727 9721  93.18 9842
®  sTAGH 84.16 8577 8249  84.05 9144 7869 8361% 8592 8484 7578  89.01
@  STACKIS 84.12  85.73 8224  8429T  9135% 7867 83457 8586 8476 7566  89.22

Table 7: Results (LAS) for the transition-based parser for different experiments on development sets.

Figure 4 displays the graph-based parser’s per-
formance relative to dependency length in terms of
precision and recall.® Precision is defined as the

percentage of correct predictions among all pre-

8The corresponding curves for the transition-based parser
look very similar.
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dicted arcs of length [ and recall is the percent-
age of correct predictions among gold standard
arcs of length [.° In all graphs, the stacked and

°For precision, the bin sizes shown as grey bars are aver-
ages over all three systems, as the number of predicted arcs
of a certain length can vary.



supertagged systems show a consistent improve-
ment over the baseline. Moreover, the curves of
the stacked and supertagged systems are mostly
parallel and close to each other.

Supertagging and stacking thus do not just ap-
pear similar at the macro level in terms of LAS.
The analysis shows that their contributions are also
very similar when broken down by dependency or
sentence length and the improvements are not re-
stricted to sentences or arcs of particular lengths.
We therefore conclude that both methods are in-
deed doing the same thing.

4.3 Oracle Experiments

In order to assess the potential utility of supertags
we provided the parsers with gold supertags. We
expect the gold supertags to give a considerable
boost to accuracy as they encode correct syntactic
information. Intuitively, we would expect the cor-
responding stacking experiment (providing gold
trees) to reach 100% accuracy since the parser re-
ceives the full solution as features. However, this
assumption turns out not to hold.

Row @ in Tables 6 and 7 shows the results for
the supertag experiments. Comparing row @ with
row @, we find big jumps (between 7 and 20%
absolute) in performance. For German, English,
and Polish performance goes up even to 97/98%.
These huge jumps are due to the amount of syntac-
tic information encoded in the supertags, which is
much higher than in POS tags for example.

Row @ in Tables 6 and 7 shows the results for
the stacking experiments. Surprisingly, stacking
with gold dependency trees does not reach 100%
accuracy. Moreover, comparing rows @ and @ we
find that on average supertagging and stacking im-
prove performance of a parser to the same extent.

The fact that gold supertags do not yield max-
imum accuracy is not so surprising since a su-
pertag sequence does not encode the full depen-
dency tree, but merely indicates direction of heads
and dependents. However, it is puzzling that stack-
ing with gold trees does not lead to perfect parsing
results. In case of the transition-based parser, the
reason might be that the parser does not do exhaus-
tive search but uses beam search to explore only a
fraction of the search space. That is, the gold so-
lution can get pruned early enough that the parser
never considers it. For the graph-based parser this
result is more unexpected since this parser does
exact search. We currently do not have any expla-
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nation for this, however we hypothesize that the
lack of regularization during training might assign
enough weight on the regular features such that
they can override the few stacking features that
convey the correct solution.

4.4 Self-Application

Rows ® and @ in Tables 6 and 7 show experi-
ments where we use the same parser at Level 0 and
Level 1. We know from Martins et al. (2008) that
self-application, i.e. stacking a parser on its own
output, leads to at most tiny improvements, espe-
cially compared to a setting with different parsers.
Our results corroborate these findings. More in-
terestingly, we find a similar effect for supertag-
ging.!® This effect demonstrates that it is impor-
tant that Level O and Level 1 use different ways
of modeling the data in order to benefit from the
combination (cf. Surdeanu and Manning (2010)).

5 Supertagging Without Parsers

One potential advantage of supertagging over
stacking is the fact that one can predict supertags
without a parser. Most previous work predicts
supertags using classifiers or sequence models,
which is the standard for tagging problems. As
tagging is commonly considered an “easier” task
than parsing, one could assume that supertags can
be predicted very efficiently using standard se-
quence labeling algorithms. But sequence labelers
would not be able to predict the dependency tree
in a stacking setup.

The two parsers that we use in the experi-
ments are indeed unlikely to outperform standard
sequence labelers in terms of speed. However,
greedy arc-standard parsers are very fast. In the
next experiment, we therefore compare a greedy
arc-standard parser, which is the transition-based
parser without beam search, with MarMoT (see
Section 3.1). We follow Ouchi et al. (2014) in
adding POS tags and morphological information
to the feature model of the sequence labeler.

The purpose of this experiment is two-fold: So
far, we predicted supertags by predicting a tree
first and then deriving the supertags from that tree.
Now we test how our previous results compare to
supertags predicted by a sequence labeler, which is

!"Note that most of the improvements in STAGS: are actu-
ally statistically significant. However, the difference to BL®®
is considerably smaller than in the predicted setting in row @
(avg. difference is 0.28% vs. 0.65% points absolute).



avg. ar eu fr de he hu ko pl sV en
@ BL® 84.16  85.64 8337 8478 9146 7871 8260 8608 8517 7524 8859
®  stacS? 8491 86.24%  8433%  84.89 91.89%F  79.82%  83.54%  86.85F 8589  76.62F  89.06%
B®  STAGE, 84.65 86.16' 8356  85.02T 9197 7941  8336F  86.07 8529 76561 89.12%
@  sTAckS:,  84.66  86.24% 8357 85.117  91.97t  79.50%  83.22F  86.22 85.45 76261 89.09%
® L™ 84.04  85.69 8222 8407  91.15 7880 8327 8597 8451 75.65 89.06
®  sTaG® 84.63  85.81 83.58%  84.07 9137t 79.86%  8391%  86.98%  84.93 76871 8891
@D  STAGL 84.16 8570 8244 8416 9131 79.38 83.16 8591 8459 7612 88.81
STACKS,  84.17 85841 8246 8419 9122 7893 8330 8577 8492  76.12 88.95

Table 8: Parsing results (LAS) with a sequence labeler and a greedy transition-based parser on develop-

ment sets.

the common way of predicting supertags. But fur-
thermore, we want to see how supertagging with
a sequence labeler compares to supertagging and
stacking with a parser that is equally efficient.

Table 8 gives the result of the experiment. We
denote the sequence labeler by SL and the greedy
parser by GTB. Rows @ and ® show that, on aver-
age, the parsing performance is not harmed by pre-
dicting supertags with the sequence labeler instead
of one of the parsers (compare to row @ in Ta-
bles 6 and 7). It depends on the individual data set
whether the sequence labeler is more useful than
one of the parsers or not. The supertags predicted
by the sequence labeler improve parsing perfor-
mance to a similar extent.

The experiments with the greedy parser yield
different results for the graph-based and the
transition-based parser on Level 1: When the
graph-based parser acts as Level 1, the greedy
parser is slightly behind the sequence labeler. This
holds both for supertagging and stacking experi-
ments (compare row @ to rows @ and @), which
again suggests that supertagging and stacking are
interchangeable. However, when Level 1 is the
transition-based parser, we find a self-application
effect for the greedy parser, both in supertagging
and stacking (rows ® vs. @ and ®). This is not sur-
prising since the decoding algorithms in the beam-
search and greedy transition-based parser are iden-
tical. It simply underlines the importance of hav-
ing different algorithms in the setup.

5.1 Out-of-Domain Application

The previous experiment shows that the greedy
parser at Level 0 gives competitive results com-
pared to a sequence labeler. Having fast predictors
available for stacking or supertagging suggests an
application where speed matters, e.g. Ambati et
al. (2014) propose supertags to improve the per-
formance of fast parsers in a web scale scenario.
As web data can be any kind of text, the ques-
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tion is whether the positive effects of supertagging
and stacking are actually preserved in such an out-
of-domain setting. To test this, we conduct exper-
iments on the English Web Treebank (Bies et al.,
2012) converted to Stanford Dependency format.
Models are trained on sections 2-21 from the En-
glish Penn Treebank.

avg. answ. email news. review blog
BL® 76.28 74.09 7506 76.16 7632 79.78
STAGS?  76.82 74.52% 75.75% 76.88% 76.99% 79.98
STACKSE 76.93 74.88% 7572% 7649  77.10% 80.44%
BL™ 7651 7441 7516 7609 7676  80.13
STAGY  76.83 7437 75.85% 76.61T 77.06 80.28
STACKS: 76.83 74.64 75.68% 76.96% 77.14% 81.05
BLI™® 7442 7232 7325 7400 7473 7779
STAGS™®  75.01 72.75 73.86% 74.88% 7533% 78.24%

Table 9: Results (LAS) on the English Web Tree-
bank.

The results in Table 9 show consistent improve-
ments on the five genres of the data set both for
supertagging and stacking. Both are thus good
methods to improve parsing accuracies when pars-
ing out-of-domain data. Since parsing speed also
depends on the Level 1 parser, a greedy transition-
based parser would be preferable in such an ap-
plication. Using supertagging with a sequence
labeler to provide syntactic information to the
greedy parser is then a good choice because it
avoids a self-application effect.

The last two rows in Table 9 show the perfor-
mance when the greedy parser is acting as Level 1.
Supertagging improves over the baseline signif-
icantly on 4 out of 5 data sets. However, the
baseline for the greedy parser is on average about
2% points absolute behind the other two parsers.
This loss in accuracy buys a significant speed-
up though. The greedy parser is about 29 times
faster'! than the graph-based parser on the English

"'We report parsing time. Exact runtimes depend on im-
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BLS 1 . 37 7 . 78.71 : ) 17 75 5
GB 84.16 85.64 8337 8478 9146 78 8260 86.08 85 524  88.59

max(STAGg;, STACKT . X .33 . X . . X . X 417
® ( o8 S8 85.00 86.25% 8433% 85.14% 92.01% 79.82% 83.72% 86.85% 85897 76.62F 89.41%
(® (STAGs +STACKq5)"® 8520 86.62F 84.51% 8535 9222f 7990f 8423t 86.67F 85787 76.98% 89.74%
@ BL™ 84.04 8569 8222 8407 91.15 7880 8327 8597 8451 7565 89.06

max(STAGs; , STACK¢p ) X X . . . 79. . X . 7. X

» By 8494 86.197 83.86% 84.55% 91.98% 79867 8391 86.98% 85.65 16 89.30

(® (STAGs +STACKGs)™ 85.13 86.43% 84.09% 84.59% 92.04% 79.75T 84.08% 87.32% 86.01T 77.30% 89.67%

Table 10: Results (LAS) on development sets for combining supertags and stacking.

data set and even 80 times faster on the Arabic data
set. As the Arabic data set has very long sentences,
the higher complexity of the graph-based parser
has a notable effect on its performance. Com-
pared to the beam-search transition-based parser,
the greedy parser is about 10 times faster on En-
glish and 5 times faster on Arabic.

6 Combining Supertagging and Stacking

We now explore whether the combination of su-
pertagging and stacking yields even better parsers.

In rows @® and ® in Table 10, we show re-
sults when supertag and stacking features come
from different sources, i.e. they were predicted by
different tools!?. For both parsers, the sequence
labeler predicts the supertags and the respective
other parser provides the tree for the stacking fea-
tures. The combinations are better than the base-
line. Rows @ and (3 give results from the best sin-
gle source, i.e. either STAGY; or STACKY.

For most of the languages the difference
between the combination and the best sin-
gle component is statistically not significant,
except Arabic, German, Hungarian, and En-
glish for (STAGs +STACK5)®E, and Arabic for
(STAGs +STACKgg)™. The increment goes up
to 0.51 in case of Hungarian. On average, the
gains are, however, marginal — the graph-based
parser’s accuracy increases by 0.2% absolute and
the transition-based parser improves by 0.18% ab-
solute. Although these differences denote im-
provements, they are not nearly as high as the im-
provements over the baseline for the single com-
ponents and it depends on the actual data set
whether it is worth the effort.

In Section 4, we argued that supertagging and
stacking are similar and the diversity of tools is the

plementation and hardware. We therefore give relative num-
bers so the reader gets an impression of the magnitude.

12We did experiments with combining supertags and stack-
ing from the same Level 0 tool, however since the features
were derived from the same tree the differences compared to
stacking only were negligible as expected.
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more important factor. The improvements by the
combination can also be interpreted along these
lines: They are caused by using different tools
rather than the fact that we are combining the two
methods. It is like stacking onto two parsers in-
stead of one.

7 Conclusion

In this paper, we have shown that supertagging as
a method for providing syntactic features for sta-
tistical dependency parsing (Ambati et al., 2014;
Ouchi et al., 2014) is a form of stacking. Although
supertags do not convey as much information as
full trees, they improve dependency parsers to an
equal amount. The two methods are thus in prin-
ciple interchangeable.

Combining stacking and supertagging only
gives improvements if different tools are used. In
this case, the improvements come from the in-
volvement of different tools rather than their com-
bination. Furthermore, using supertags in a parser
that predicted them itself does not lead to improve-
ments. This is in line with findings by Surdeanu
and Manning (2010) on stacking, of which su-
pertagging is a variant. Therefore, while it is not
so important which method is used, it is important
to use different algorithms in these setups.

Finally, we have shown that sequence labelers
can be replaced by greedy parsers in supertagging
without compromising quality or speed. We ap-
plied them in a cross-domain parsing scenario and
demonstrated that supertagging and stacking im-
prove parsing also in this setting.

However, there are circumstances where one
method might be preferable over the other, for ex-
ample, when one wants to stack on a slow parser
(cf. @Qvrelid et al. (2009)). Rather than running the
slow parser on every sentence in a stacking setup,
it can be run once on some training data. A su-
pertagger can then be trained on this data to pro-
vide syntactic information at a fraction of the cost
(see Ambati et al. (2014) for CCG).
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