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Abstract

We present a novel interactive approach
for the visual analysis of intonation con-
tours. Audio data are processed algo-
rithmically and presented to researchers
through interactive visualizations. To this
end, we automatically analyze the data
using machine learning in order to find
groups or patterns. These results are vi-
sualized with respect to meta-data. We
present a flexible, interactive system for
the analysis of prosodic data. Using real-
world application examples, one contain-
ing preprocessed, the other raw data, we
demonstrate that our system enables re-
searchers to interact dynamically with the
data at several levels and by means of dif-
ferent types of visualizations, thus arriving
at a better understanding of the data via a
cycle of hypothesis generation and testing
that takes full advantage of our visual pro-
cessing abilities.

1 Introduction and Related Work

Traditionally, linguistic research on F0 contours
has been conducted by manually annotating the
data using an agreed-upon set of pitch accents and
boundary tones such as the ToBI system (Beck-
man et al., 2005). However, the manual catego-
rization of F0 contours is open to subjectiveness
in decision making. To overcome this disadvan-
tage, recent research has focused on functional
data analysis of F0 contour data (Gubian et al.,
2013). The F0 contours are smoothed and normal-
ized resulting in comparable pitch vectors for dif-
ferent utterances of the same structure. However,
with this method, the original underlying data is
abstracted away from and cannot be easily ac-
cessed (or visualized) for individual analysis.

One of the typical tasks in prosodic research is

to determine specific F0 contours that signal cer-
tain functions. State of the art analysis is time
intensive and not ideal, because statistics or pro-
jections are applied to the data leading to a possi-
ble loss of important aspects of original data. To
overcome these problems, we offer a visual analy-
tics system that allows for the use of preprocessed
F0 pitch vectors in data analysis as well as the
ability to work with the original, individual data
points. Moreover, the linguistic researcher is in-
teractively involved in the visual analytics process
by guiding the machine learning and by interact-
ing with the visualization according to the visual
analytics mantra “Analyze first, Show the Impor-
tant, Zoom, filter and analyze further, Details on
demand” (Keim et al., 2008).

Our system consists of three components. The
Data Input where all input files are read and con-
verted into the internal data model. The second
part covers Machine Learning where we make use
of Self Organizing Maps (SOM) in order to find
clusters of similar pitch contours. The visualiza-
tion based on the SOM result is realized within our
last component, the Interactive Visualization. The
researcher can interpret the data directly via this
visualization, but may also interact with the sys-
tem in order to steer the underlying model. The
overall work flow is illustrated in Figure 1. This
combination of human knowledge and reasoning
with automated computational processing is the
key idea of visual analytics (Thomas and Cook,
2006) and supports human knowledge generation
processes (Sacha et al., 2014). Our contribution
builds on existing previous work on SOM based
visual analysis (Vesanto, 1999; Moehrmann et al.,
2011), but also on previous attempts to visually
investigate data from the domain of prosodic re-
search (Ward and Mccartney, 2010; Ward, 2014).
Furthermore, we profit from approaches to ana-
lyze speech using the SOM algorithm (Mayer et
al., 2009; Silva et al., 2011; Tadeusiewicz et al.,
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Figure 1: Work flow in four steps. A-Data Input, B-Configuration, C-Training, D-Visualization.

1999), but open up a new domain within this field
as we allow for a visualization of pitch contours
directly on a SOM-grid. We furthermore do not
just produce one SOM, but also compute and visu-
ally present several dependent/derivative SOMs.

2 System

The system pipeline consists of three main com-
ponents: 1) Data-Input; 2) Machine-Learning; 3)
Interactive Visualizations.

2.1 Data Input

Our system is able to process and visualize any
kind of data that satisfies the following restric-
tions. The data set needs to consist of a list of
data items, where each item contains a set of key-
value pairs, also called data attributes. The value
of a data attribute must be a primitive, i.e., either a
number, text string, or an array consisting of prim-
itives. Except for primitive-arrays we do not allow
nested data, thus we flatten the input data if nec-
essary. Overall, data items should be comparable
and contain attributes with equal keys (and differ-
ent values).

The system also expects comparable feature
vectors to which a distance measure can be ap-
plied. Furthermore, additional (meta) data can be
part of the input. In the use cases presented here,
each F0 data is connected with speaker informa-
tion such as the native language of the speaker, the
level of second language (L2) proficiency and the
context the data was produced in.

Vector Preprocessing After having loaded in
the data, our system allows for the inspection of
data prior to the actual analysis. Figure 1-A shows
the inspection view that is typically used in the
work flow at first. As part of the configuration
work flow, the user selects an attribute as the In-
put Vector (Figure 1-B). This forms the basis of

the machine learning component.
Before entering the machine learning of train-

ing phase, our system performs a validation of the
Input Vector and allows for its adjustment if nec-
essary. Whereas normalized and smoothed data,
i.e., data items with vectors of equal length, can be
processed directly, our system also offers the func-
tionality to perform basic preprocessing of raw In-
put Vectors. If it is found that not all vectors have
equal length, we offer several preprocessing tech-
niques from which one can be chosen: Besides
simple approaches of adding mean-values (mean-
padding) or 0s (zero-padding), we also offer an ap-
proach that makes use of linear interpolation (pair-
wise). If time and landmark-information is avail-
able, it is also possible to divide the vectors into
parts and adjust each of the parts separately. As
a result, all the parts have equal length and are
therefore better suited for comparison. The Input
Vectors values can be normalized using Semitone-
Normalization. The mean value can also be sub-
tracted from each contour, in order to minimize
gender effects.

In sum, we offer a very flexible preprocessing
functionality for the Input Vectors. The available
techniques can be combined flexibly and dynam-
ically according to what is most suitable for the
analysis task at hand. However, there are still
methods that could be added. For example, one
could additionally enhance the vector processing
by a stronger leveraging of the time information
in order to prepare the data for duration focused
analysis tasks.

2.2 Machine Learning

We make use of Machine Learning (ML) for the
detection of groups/clusters that are present in the
data based on the Input Vectors. Additionally, the
system detects correlations to the meta data. In
our use cases this included information about the
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Figure 2: SOM-Training illustrated by 4 steps. For each cluster the prototype and the distances be-
tween adjacent cells are visualized by black lines in between. In step 4 the training has finished and the
dedicated F0 contours are also drawn in each cell.

native language of the speakers and the level of
their language proficiency.

In principle, any distance function, projection or
clustering method could be applied in our extensi-
ble framework. The central problem that needs to
be resolved is that the high dimensional data from
the Input Vectors needs to be reduced to a two-
dimensional visualization that can be rendered on
a computer screen or a piece of paper. We exper-
imented with several different methods and found
that SOMs, also known as Kohonen Maps (Koho-
nen, 2001), match the demands of this task best.
SOMs are a well established ML technique that
can be used for clustering or as a classifier based
on feature vectors. SOMs are very suitable for
our purpose for several reasons. First we can use
SOMs as an unsupervised ML-technique to find a
fixed number of clusters subsequent to a training
phase. SOMs also provide a topology where sim-
ilar clusters are adjacent. Finally, the algorithm
adapts to the given input data depending on the
amounts of desired clusters and data.

Furthermore, in our system, the clustering and
dimensionality reduction are integrated in one
step. This stands in contrast to other clustering and
dimensionality reduction techniques like Multi Di-
mensional Scaling (MDS), Principal Component
Analysis (PCA) or Non-negative Matrix Factor-
ization (NMF). A disadvantage found with these
other methods is that they tend to lead to clutter
in the two-dimensionsal space (when there is high
degree of overlap in the data). It is also unclear
when to perform the clustering: in the high di-
mensional space before projection or in the two-
dimensional space afterwards.

Our system proceeds as follows. First, the
SOM-grid is initialized with random cluster cen-
troids, which are feature vector prototypes for
each cluster. Afterwards each feature vector is

used to train the SOM in a random order. For
each vector the SOM algorithm determines the
best matching unit (BMU) and adjusts the BMU
and adjacent clusters prototypes based on the in-
put vector. This process is repeated n-times until
the SOM is in a stable state (Figure 2, steps A-C).
After the training phase the resulting grid can be
used for clustering. Each vector is assigned to the
cluster with the least distance to the cluster proto-
type (BMU). In Step D of Figure 2 each cell rep-
resents a cluster containing the cluster prototype
(black vector) and the cluster members (colored
vectors).

Note that we did not rely on existing software
libraries like the SOM-toolbox, but instead imple-
mented the algorithm from scratch. The reason for
this is that we aim at being able to visualize and
steer the algorithm at every step (see Section 2.4).

2.3 Visualizations
We build on Schreck et al.’s work on SOM-based
visual analysis (Schreck, 2010). Within the ba-
sic SOM-grid, we provide several different ways
of visualizing the information of interest to the re-
searcher. As shown in Figure 3-A, we provide an
overview visualization which shows the SOM-grid
(Figure 3-A) filled by the clustered pitch contours.
The individual cells also show the cluster centroid
and the vectors (contours) that belong to that cell
in relation to the centroid (Figure 3-F). We also vi-
sualize the training history of a cluster in the back-
ground in each cell (Figure 3-A) in order to keep
track of the training phase.

Beyond the clustered contours, we furthermore
provide possible visualizations (these can be se-
lected or not), which add in simple highlighters or
bar charts to the SOM result (Figure 3-C). We also
experimented with heatmaps,1 which turned out

1In our approach a color overlay for the SOM grid
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Figure 3: Different approaches to visualize SOM-results according to available meta data. (A) Grid
visualization, (B) word cloud, (C) bar charts, (D) mixed color cells, (E) ranked group clusters, (F) one
single cell that visualizes contained vectors and the cluster prototype, (G) separated heatmaps for all
values of a categorical attribute.

to be good for visualizing the distribution of data
attributes among the SOM-grid (3-G). The color-
intensity of a node depends on the number of data
items it contains; the more data items, the stronger
the intensity.

We offer several normalization options. One
approach takes the global maximum (of all
groups/grids), whereas the other one takes a lo-
cal maximum for each single group/grid. Different
kinds of normalizations can also be chosen in or-
der to handle outliers or small variabilities in the
data. Depending on the underlying data, an ade-
quate normalization technique is needed to obtain
visible patterns in the data.

A drawback of the heatmaps is that it is not
easy to detect if cells are homogeneous or hetero-
geneous. That means that it is hard to determine
whether a cell contains only vectors of a specific
group (i.e., in our use cases just native Japanese or
native Germans) or if it is a mixed cell. For that
reason we also offer another visualization. For
each cell we derive the color depending on the
number of group members. Therefore we assign
a color (e.g. red vs. blue) to each group and mix
them accordingly. As a result homogeneous (red
vs. blue) and heterogeneous (purple) clusters are
easy to detect (see Figure 3-D, where GL stands
for “German learner” and “JN” for Japanese na-
tive). Finally, we also offer word cloud visualiza-
tions for each cell (Figure 3-B). These allow the
user an overview of the values contained in a cell if
the selected attribute has many categories/values.

Each of these visualizations offers different per-

spectives on the data and the user is able to interact
dynamically with each of the different visualiza-
tion possibilities.

2.4 Interaction

The system offers various possibilities for interac-
tion: 1) Configuration/Encoding Interactions; 2)
SOM Interactions; 3) Selection Interactions.

Configuration/Encoding Interactions: The
algorithm and the visualization techniques offer
many possibilities for individualized configura-
tion, e.g., the grid dimensions of the SOM or the
normalization techniques that are applied by the
visualization techniques. Furthermore the cell lay-
out can be toggled interactively from the SOM-
grid to a grouped alignment. An advantage of the
grouped alignment is that the typical feature clus-
ters for each group can be determined by their po-
sition. In combination with our coloring approach,
the analysts are thus able to locate the top group
clusters and detect if they are homogeneous or het-
erogeneous (Figure 3-E). Users may also define
and change visual mappings like the colors that
are assigned to the attribute values.

SOM Interactions: We incorporate the idea
that the analyst should be able to steer the train-
ing phase of the algorithm as well (Schreck et al.,
2009). The analyst is able to enter into an iterative
process that refines the analysis in each step. In
each step the SOM result can be manipulated and
serves as an input for the next iteration. For one, it
is possible to delete cells directly on the grid. An-
other interactive possibility is to move cells to a
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desired position and to “pin” them to this position.
That means that for the next SOM training this cell
is fixed. We make use of these interactions to steer
the SOM-algorithm to deliver visually similar out-
puts. For example, if we fix a cell near the up-
per right corner, in the next round of training this
cell and the cells similar to it will be in the same
corner (e.g., in Figure 4-E the two gray cells are
fixed). Finally, it is possible to break off the cur-
rent training process and to restart or to investi-
gate the current state in more detail if the analyst
already perceives a pattern or discovers problems.

Selection Interactions: These interactions help
to filter and select the data during the analysis pro-
cess. The data that are contained in the current
SOM visualization serve as input for the next it-
eration of the analysis work flow. Besides remov-
ing data elements directly on the SOM grid, data
can be selected to be removed directly in the at-
tribute table (Figure 4-D). This feature allows the
analyst to drill down into selected data subspaces.
Details on Demand operations also enable the user
to inspect subsets of clusters. Furthermore, single
cells can be selected and investigated in a separate
linked detail view.

By enabling these interactions we present the
analyst with the flexible possibilities for an itera-
tive analysis process. The system first provides an
overview of the data, the analyst is able to interact
with the data in iterations of hypothesis formation
and testing. The hypothesis testing can be done
with respect to the entire data set, or with respect
to a selected subset. In order to keep track of the
various visualizations and interactions conducted
by the analyst, we offer a visualization history that
displays the developed SOM grids next to one an-
other (e.g., Figure 5). Clicking on one of these
grids will automatically bring the selected SOM
to the front of the screen.

3 Use Cases

We demonstrate the added value that our approach
brings to prosodic research with respect to two lin-
guistic experiments that were originally conducted
independently of this work. We take a “paired ana-
lytics” approach for an evaluation of the potential
of our system (Arias-Hernandez et al., 2011). In
this approach, an expert for visual analytics col-
laborates with a domain expert. The domain ex-
pert places their focus on tasks, hypotheses and
ideas while an analysis expert operates the system.

Figure 4: Interaction techniques that enable for
an iterative data exploration. Configuration Inter-
actions can be used to define parameters like the
grid dimensions or visual mappings (e.g., select-
ing the attribute colors). SOM Interactions include
the direct manipulation of the SOM-visualization
(move, delete, or pin cells, begin or stop SOM
training). Selection Interactions enable the analyst
to dismiss data in each step in order to drill down
into interesting data subspaces.

We are well aware that the standards for eval-
uation in natural language processing are quanti-
tative in nature. There is an inherent conflict be-
tween quantitative evaluation and the rationale for
using a visual analytics system in the first place.
Visual analytics has the overall aim of allowing
an interactive, exploratory access to an underlying
complex data set. It is very difficult to quantify
data exploration and cycles of hypothesis testing
in the absence of a bench mark or gold standard.
This is a known problem within visual analytics
(Keim et al., 2010; Sacha et al., 2014), but one
which cannot be addressed within the scope of this
paper. The two use cases presented here should
be seen as an initial test as to the added value of
our system. An application to other scenarios and
other use cases is planned as future work.

The use cases discussed below consist of exper-
iments that were concerned with whether linguis-
tic structures of a native language (henceforth L1)
influence second language (henceforth L2) learn-
ing. The experiments involved Japanese native
speakers vs. German learners of Japanese. The lat-
ter group had varying degrees of L2 competence.
The data set consists of F0 contours and meta data
about the speakers.

3.1 Experiment 1

The first experiment investigated how native
speakers of an intonation language (German) pro-
duce attitudinal differences in an L2 that has lexi-
cally specified pitch movement (Japanese).
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Methods
15 Japanese native speakers and 15 German na-
tive speakers, who were proficient in the respective
languages participated in the experiment. They
produced the German word Entschuldigung and
the Japanese word sumimasen, which both mean
‘excuse me’. The Japanese word contains a lexi-
cally specified pitch fall associated with the penul-
timate mora in the word, /se/. Materials were pre-
sented with descriptions of short scenes. The task
was to produce the target word three times in or-
der to attract an imaginary waiter’s attention in a
crowded and noisy bar.

Our hypotheses were that Japanese native
speakers would not change the F0 contours across
the three attempts, because the Japanese falling
pitch accent is lexically fixed. German learners
would change them, because German F0 can be
changed in order to convey attitude or emotion.

Segmental boundary annotation was carried out
on the recorded raw data using Praat (Boersma and
Weenink, 2011) as the first step. In Experiment
1, segmental boundaries were put between the
Japanese smallest segmental unit, morae, which
resulted in —su—mi—ma—se—n— (the straight
lines signal the segmental boundaries). Then, F0
contours were computed from the annotated data
using the F0 tracking algorithm in the Praat toolkit
with the default range of 70-350 Hz for males and
100-500 Hz for females. Following the proce-
dures of Functional Data Analysis (Ramsay and
Silverman, 2009), we first smoothed the sampled
F0 contours into a continuous curve represented by
a mathematical function of time f (t) adopting B-
splines (de Boor, 2001). Values of F0 were ex-
pressed in semitones (=st) and the mean value was
subtracted from each value, in order to minimize
gender effects. After smoothing the curves we
automatically carried out landmark registration in
order to align corresponding segmental boundaries
in time (Gubian et al., 2013; Ramsay et al., 2009).
After these steps, the smoothed F0 data all had the
same duration.

Analysis
The analysis process of analyzing Experiment
1 is shown in Figure 5. The first SOM of-
fers an overview for the whole dataset. The
word cloud visualization additionally shows the
utterances that occur in the cells (sumimasen,
Entschuldigung). In a next step the data set was
filtered to show only the data for sumimasen (Fig-

Figure 5: Experiment 1 work flow history: An
overview is shown first. In the following steps data
is filtered and the analysis refines stepwise into
an interesting subspace. First, only the utterances
sumimasen ’excuse me’ are selected (A). These
are then further subdivided according to speaker
group (B/C): Japanese Native (JN) vs. German
(DE).

Figure 6: Experiment 1: Heatmaps for the rep-
etition attribute for each speaker group. German
learner contours clearly include more variations
compared to native speaker contours.

ure 5-A) and a second SOM with only this data
was trained. In the 2nd SOM in Figure 5 the
cells are coloured according to the number of
speaker groups in each cell. Our analyst was
able to discover different pitch contours per group
(blue-German cells on the left-hand side and red-
Japanese cells on the right-hand side).

In order to get more details we decided to train
an additional SOM for each speaker group. We
simply added the relevant filters and began a new
SOM training for each group (Figure 5-B/C). As a
result the two visualizations now clearly show that
the F0 produced by the groups look different. For
further analysis, we also opened a heatmap visual-
ization for another attribute for each group based
on the SOM-grids B and C. In Figure 6 the repeti-
tions (1st, 2nd, or 3rd) are shown for each group.
One can clearly discover that the Japanese native
speakers’ (top) F0 contours rarely vary in compar-
ison with the German speakers (bottom).
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3.2 Experiment 2
In Experiment 1 we were able to determine that
German learners did not produce typical Japanese
F0 contours, namely flat F0 followed by a drastic
pitch fall, just on the basis of unannotated F0 data.
The second experiment examined whether Ger-
man learners can produce this typical Japanese F0
phonetic form in an imitation experiment. The ex-
periment was originally conducted independently
of Experiment 1.

Methods
24 Japanese native speakers and 48 German learn-
ers were asked to imitate Japanese disyllabic non-
words consisting of three-morae (/CV:CV/) with a
long-vowel. All stimuli were recorded either with
a flat pitch (high-high, HH) or with a falling pitch
(high-low, HL) that occurs after the long-vowel.
F0 contours produced by Japanese native speak-
ers are expected to imitate the stimuli correctly by
realizing the typical phonetic form of a Japanese
pitch accent, namely a drastic pitch fall preceded
by a flat F0. In contrast, as per the results of Ex-
periment 1, German learners are expected not to
produce this phonetic form.

In analogy to Experiment 1, segmental annota-
tion was carried out. Segmental boundaries were
put between consonants and vowels, which re-
sulted in —c—v—(c)c—(v)v—. Then, F0 contours
were computed as in Experiment 1. The data con-
tained the raw Hertz values of F0 and additional in-
formation included data about segments, speaker
information, time and landmark information for
the produced pitch contour. In total 2393 data
records were put into the SOM system.

Analysis
The analysis workflow for Experiment 2 is shown
in Figure 7. The first SOM offers an overview for
the whole dataset. This overview clearly shows
two clusters for flat and falling F0 contours (“HH”-
blue and “HL”-red). On the lower most right cor-
ner, there is a red cell in the blue cluster. This type
of pattern could be indicative of an error or noise
in the data set.

Note that the SOM system did not know which
experimental conditions the data contained. With-
out any information about the experimental vari-
ables, SOM detected differences across condi-
tions. Furthermore, no other current analysis tech-
niques enable an overview of F0 data in this man-
ner. Since we were interested in the phonetic re-

alization of Japanese pitch accent, we further ana-
lyzed only the data of the falling F0 condition.

As a consequence, a second SOM containing
only the “HL” contours was trained (Figure 7-A).
The next step was to remove the noise from the
data (Figure 7-2nd SOM). In the second SOM
we discovered one cell that contains non falling
F0 contours (lower left corner). We deleted this
cell and fixed/pinned the other corner cells in or-
der to steer the SOM algorithm to produce a sim-
ilar SOM in the next training phase (Figure 7-
B). In the next SOM the cells are colored accord-
ing to the number of speaker groups in each cell
(blue-German, red-Japanese). The three cells in
the lower left corner were the most frequent F0
contours produced only by German learners of
Japanese. To analyze this further, we also changed
the grid based layout to the ranked group layout to
show the three most frequent F0 contours in each
language group (Figure 7-C). As a result, the last
SOM visualization now clearly shows that the F0
produced by the groups look different: Japanese
native speakers produced typical Japanese F0 con-
tours consisting of a flat F0 before a drastic F0 fall
(Gussenhoven, 2004). The third cells from above
in both of the language groups show the same F0
forms, suggesting that some German native speak-
ers produced F0 contours that were very similar to
those of Japanese native speakers. Note however,
that the most frequent contours produced by Ger-
man learners clearly differed from the Japanese
contours. Finally, one of the most important con-
tributions of the SOM system was that it delivered
us the findings without the necessity of having first
manually annotated a large amount of data, saving
personell costs.

4 Conclusion

We provide an interactive system for the analy-
sis of prosodic feature vectors. To complement
other state of the art techniques we make use of
machine learning in combination with interactive
visualizations. We implemented an iterative pro-
cess using chains of SOM-trainings for a step-by-
step refinement of the analysis. We show with
real experiment data that the system supports lin-
guistic research. Importantly, the analysis allows
for a clustering of F0 contours that works with-
out time-intensive and possibly subjective man-
ual intonational analysis. The clustered contours
can be subjected to intensive phonological analy-
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Figure 7: Experiment 2 work flow history: An overview is shown first. Then only “HL” F0 contours
(red colored cells) are selected (A). The researcher interacted directly with the second SOM: The noise
cluster was removed (bottom left corner) and the other corner cells were fixed in order to steer the SOM
algorithm to produce a visually similar SOM for the next training (B). The resulting SOM reveals blue
clusters on the left hand side. Changing the layout to the top clusters per group (C) allows for a better
comparison.

sis and furthermore allow the potential detection
of more fine-grained phonetic differences across
conditions. The analyses hence provide an impor-
tant first step that the linguist can then focus on for
subsequent analysis. For example, it is very easy
to filter the data (e.g., examine only a subset of the
data) or to adjust the grid size. More importantly,
the approach is advantageous for an analysis of L2
data, since the learners’ language has a dynamic
character (Selinker, 1972) and it is difficult to de-
termine intonational categories beforehand. Our
SOM approach is generalizable to all kinds of data
for which feature vectors can be derived, including
other linguistic features as intensity, amplitude or
duration.

We learned that the visualization of F0 contours
provides the most intuitive access for an under-
standing of the underlying data. One reason is that
the F0 contour can be visually inspected and di-
rectly related to meta data (e.g., through colors).
Even without time-intensive manual annotation of
F0 contours, we could clearly see the differences
between L1 and L2 performance despite the dif-
ferent characteristics of the two experimental data
sets. We visualizaed and animated the SOM train-
ing phase and presented this to the researcher as
well. This may seem unnecessary, but experience
has shown that it helps users that are not experi-
enced with ML to better understand the processes.

We applied our technique to two different
datasets. A comparison of the achieved results
shows that our approach works very well “out of
the box” with preprocessed data and also with less
effort on the preprocessing. To overcome the prob-

lem of handling less preprocessed data we added
simple methods that turned out to be sufficient in
order to reveal new insights. The system helped us
to handle unexpected outliers or noise in the data.
All the F0 contours that do not match the major
clusters of the SOM-algorithm are assigned to a
few single cells. The data in these cells could eas-
ily be removed.

We plan to make the system available for other
researchers in the future and are considering sev-
eral expansions as well. For one, other machine
learning and visualization techniques could be
added for additional or further tasks. We also
could try to support the user more in detecting
interesting subspaces in the data. It is possible,
for instance to visualize an overview of attribute-
heatmaps that enables the human to detect patterns
in each iteration.

In sum, this paper has presented an innovative
and promising new approach for the automatic
analysis of prosodic data. Key components are
that prosodic data is translated into vectors that can
be processed and analyzed further by SOM tech-
niques and presented to the user as an interactive
visual analytic system.
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