
Improving cross-domain dependency parsing
with dependency-derived clusters

Jostein Lien Erik Velldal Lilja Øvrelid

Department of Informatics
University of Oslo, Norway

{josteili, erikve, liljao}@ifi.uio.no

Abstract

This paper describes a semi-supervised
approach to improving statistical depen-
dency parsing using dependency-based
word clusters. After applying a baseline
parser to unlabeled text, clusters are in-
duced using K-means with word features
based on the dependency structures. The
parser is then re-trained using information
about the clusters, yielding improved pars-
ing accuracy on a range of different data
sets, including WSJ and the English Web
Treebank. We report improved results
using both in-domain and out-of-domain
data, and also include a comparison with
using n-gram–based Brown clustering.

1 Introduction

Several recent studies have attempted to im-
prove dependency parsers by including informa-
tion about word clusters into their statistical pars-
ing models. This is typically motivated by at least
two concerns, both of which relate to the shortage
of labeled training data. As argued by Koo et al.
(2008), the lexicalized statistics important to dis-
ambiguation in parsing are often sparse, and mod-
eling relationships on a more general level than the
words themselves may therefore be helpful. The
other motivation is domain adaptation, attempting
to leverage a parsing model for use on data from
a new domain. By including information about
word clusters estimated from unlabeled in-domain
data, one can hope to reduce the loss in perfor-
mance expected from using a parser trained on an
out-of-domain treebank.

While previous approaches have typically relied
on the n-gram–based Brown clustering (Brown

et al., 1992), this paper instead describes ex-
periments using dependency-based word clusters
formed using the generic clustering algorithm K-
means. After applying a baseline dependency
parser to unlabeled text, K-means is applied to
form word clusters with features based on the
dependency structures produced by the parser.
The parser is then re-trained using features that
record information about the dependency-derived
clusters, thereby introducing an element of self-
training. The re-trained parser obtains improved
parsing accuracy on a range of different data sets,
including the five web domains of the English Web
Treebank (EWT) (Bies et al., 2012) and the Wall
Street Journal (WSJ) portion of the Penn Tree-
bank (PTB) (Marcus et al., 1993). We docu-
ment improvements using both in-domain and out-
of-domain data, and also when compared to us-
ing Brown clusters. All our parsing experiments
use MaltParser (Nivre et al., 2007), a data-driven
transition-based dependency parser.

The rest of the paper is structured as follows.
Section 2 provides an overview of previous work.
Section 3 details the data sets we use, including
comments on the pre-processing. Section 4 then
describes the experimental set-up, while the actual
experiments and results are described in Section 5.
A summary with thoughts about future directions
is provided in Section 6.

2 Related work

The task of assigning word-to-word relations is at
the core of dependency parsing, and statistics re-
garding relations between different words in the
training data therefore provide vital information.
These lexical statistics are, however, often sparse,
and there exists a growing body of work which ex-
amines various strategies for generalizing over the

Proceedings of the 20th Nordic Conference of Computational Linguistics (NODALIDA 2015) 117



distributions of words and using different kinds of
lexical categories. This section reviews relevant
previous work in this direction based on the use of
word clusters.

Several prior studies on using word clusters for
improving statistical parsers have relied on the
Brown algorithm (Brown et al., 1992) to produce
the clusters. The Brown algorithm produces a hi-
erarchical clustering, with each node in the tree
corresponding to a pairwise merge operation. The
criterion for merging clusters in the Brown algo-
rithm is to minimize the decrease in the likelihood
of a given corpus according to a class-based bi-
gram language model. As with any hierarchical
clustering method, the result is actually a set of
nested partitions, and in order to produce a final
set of flat clusters, a cut must somehow be defined
on the tree (i.e., selecting all nodes at a certain
depth from the root and collapsing all nodes be-
low them).

One of the reports on using Brown clusters is
the study presented by Koo et al. (2008). In ex-
periments with dependency parsing of PTB and
the Prague Dependency Treebank (PDT) (Hajič,
1998), Koo et al. (2008) showed substantial per-
formance gains for both English and Czech when
incorporating cluster-based features in their dis-
criminative learner (averaged perceptron). The
English word clusters were derived from the
BLLIP corpus (Charniak et al., 2000), which con-
tains roughly 30 million words of Wall Street Jour-
nal text (and overlaps with the Penn Treebank).
Czech word clusters were derived from the raw
text section of the PDT 1.0, reported to contain
about 39 million words of newswire text. In both
cases the clustering is performed on data overlap-
ping with what is used for parsing.

Koo et al. (2008) experiment with different fea-
ture configurations, extending the baseline feature
sets of McDonald et al. (2005; Carreras (2007),
but only generate cluster-based features for the top
N=800 most frequent words in the corpus, and set
the Brown algorithm to only recover at most 1,000
distinct clusters. Koo et al. (2008) reports relative
error reductions of up to 14% for unlabeled pars-
ing of PTB when adding cluster features to their
baseline parser. Looking at learning curves, Koo
et al. (2008) show that the use of word clusters can
also be used to compensate for reduced training
data for the parser.

Candito and Seddah (2010) apply Brown clus-

ters in the context of statistical constituent parsing
for French, experimenting with creating clusters
of lemmas and PoS-tagged lemmas. The clusters
themselves are created from the L’Est Républicain
corpus (using up to 1,000 clusters), comprising
125 million words of news text, and cluster-based
features are then added to the Berkeley PCFG
parser with latent annotations (Petrov et al., 2006),
before parsing the French Treebank (Abeillé et al.,
2003). Candito and Seddah (2010) analyze the
results with respect to word frequency and find
improvements in performance for all strata; un-
seen or rare words, as well as medium- to high-
frequency words. Adding PoS-information to the
lemmas also appeared beneficial, though depend-
ing on the quality of the tagger.

Øvrelid and Skjærholt (2012) apply Brown
clusters to improve dependency parsing of En-
glish web data using MaltParser. Augmenting a
WSJ-trained parser with Brown clusters – using
the cluster labels of Turian et al. (2010) computed
for the Reuters corpus – is shown to improve pars-
ing accuracy on a range of web texts, including
the Twitter and user forum data from the web 2.0
data sets described by Foster et al. (2011) and
web data from various sources in the OntoNotes
corpus, release 4 (Weischedel et al., 2011). In
the experiments of Øvrelid and Skjærholt (2012),
cluster information was found to be more benefi-
cial for parsing with automatically assigned PoS
tags (using SVMTool), while less so when using
gold PoS tags. Improvements were also more pro-
nounced for the web data than on WSJ. Experi-
menting with different tree cut-offs, producing dif-
ferent numbers of clusters, Øvrelid and Skjærholt
(2012) found that using a smaller number of large
and general clusters (100–320) worked better than
using a higher number of smaller and more fine-
grained clusters (experimenting with up to 3200
clusters).

As an alternative to the above approaches using
n-gram-based Brown clusters, the current paper
documents experiments with using syntactically
informed clusters instead, generated with a generic
clustering algorithm. One previous study follow-
ing a related line of investigation is that of Sagae
and Gordon (2009) who also used parsed data for
creating syntactically informed clusters. The clus-
tering is there performed by applying the general
method of (average-link) hierarchical agglomera-
tive clustering to the 5,000 most frequent words of

Proceedings of the 20th Nordic Conference of Computational Linguistics (NODALIDA 2015) 118



the BLLIP WSJ corpus, containing approximately
30 million words of WSJ news articles, parsed
with the Charniak (2000) parser. The features
used for the clustering encode phrase-structure
tree paths that include direction information and
non-terminal node labels, but does not include lex-
ical information or part-of-speech tags. The clus-
ters are then added as features in a data-driven
transition-based dependency parser which is again
used to identify predicate-argument dependencies
extracted from the HPSG Treebank developed by
Miyao et al. (2004) comprising the standard PTB
WSJ sections. The pipeline described by Sagae
and Tsujii (2008) thus include several layers of
cross-framework interactions. Cutting the clus-
ter hierarchy to include 600 clusters was shown
to given the highest F-score, significantly improv-
ing the accuracy of the predicate-argument depen-
dency parser.

The goal of Sagae and Gordon (2009) is to im-
prove the accuracy of a fast dependency parser
by using a corpus which has previously been au-
tomatically annotated using a more accurate but
slower phrase-structure parser. In our experiments
we seek to improve a baseline dependency parser
by using clusters formed directly on the basis of
the annotations of the baseline parser itself, with-
out the complexity of involving a second parser.
Using the method of K-means we will define a flat
partition directly, without the need to cut the tree
formed by a hierarchical method. While Sagae and
Gordon (2009) focus on cross-framework leverag-
ing, all testing is for in-domain models only, like
for Koo et al. (2008), whereas the current paper
will also investigate the benefit of dependency-
based word clusters for porting a parser to new
domains and text-types. The following section
presents the various data sets we use, before mov-
ing on to describe the experimental set-up and the
results.

3 Data sets

We experiment with using several different data
sets, both for forming the word clusters and for
evaluating the re-trained cluster-informed parser.
We describe the data sets as well as the relevant
pre-processing steps below.

The shared task1 on parsing English web data
hosted by the First Workshop on Syntactic Anal-

1https://sites.google.com/site/sancl2012/
home/shared-task

ysis of Non-Canonical Language (SANCL 2012)
provided both unlabeled and labeled data for the
five different domains from the English Web Tree-
bank (EWT): weblogs, emails, question-answers,
newsgroups, and reviews (Petrov and McDon-
ald, 2012). In addition to the web texts, the
SANCL data also contains the WSJ portion of
the OntoNotes corpus, release 4.0 (Weischedel et
al., 2011). (The OntoNotes version of WSJ dif-
fers slightly from the original PTB in terms of
tokenization and noun-phrases analysis in certain
places.) For the shared task, the data for we-
blogs and emails were used for development test-
ing, while answers, newsgroups, and reviews were
reserved for held-out testing. We will be following
that same structure here.

The SANCL data comprises both labeled and
unlabeled data. The labeled web data, correspond-
ing to the EWT,2 is what we will be using for our
parser evaluations in addition to WSJ sections 22
(dev.) and 23 (held-out). The unlabeled SANCL
data will be used for clustering, in addition to the
newswire collection of the Reuters Corpus Volume
I (RCV1) (Lewis et al., 2004). All the unlabeled
data sets are summarized in Table 1. Note that
the SANCL data is provided pre-segmented, tok-
enized and converted to Stanford dependencies in
the CoNLL06/07 data format. For Reuters we seg-
mented and tokenized the data using NLTK (Bird
et al., 2009).

Various other pre-processing steps are ap-
plied to the unlabeled data prior to clustering.
First, PoS-tagging is performed using SVMTool
(Giménez and Màrquez, 2004) (using version
1.3.1 with the pre-trained WSJ model and the fol-
lowing options: ’-S LRL -T 0’). Note that
we are clustering lemmas rather than word forms,
and lemmatization is performed using the NLTK
WordNet lemmatizer (Bird et al., 2009). Finally,
a baseline configuration of MaltParser is applied
using the parse model of Foster et al. (2011) and
Øvrelid and Skjærholt (2012) – more information
about the parser and the feature set is provided in
Section 4.2.

In Section 5.4 we also compare results to Øvre-
lid and Skjærholt (2012) for using Brown clusters
rather than K-means with dependency features.
For this comparison we use some additional data

2Despite the separation into development and test domain,
the SANCL data still defines development and test splits for
the labeled data in all five domains, but we will simply merge
all the labeled data for each domain.

Proceedings of the 20th Nordic Conference of Computational Linguistics (NODALIDA 2015) 119



Reuters Weblogs Emails Answers Newsgroups Reviews

Sentences 12,515,901 524,834 1,194,172 27,274 1,000,000 1,965,350
Tokens 217,635,636 10,356,138 17,046,119 424,292 18,424,049 29,288,947

Table 1: The number of sentences and tokens in the unlabeled corpora used for clustering.

WSJ 02-21 WSJ 22 WSJ 23 Weblogs Emails Answers Newsgr. Reviews

Sentences 30,060 1,336 1,640 4,060 4,900 6,976 4,782 7,627
Tokens 731,678 32,092 39,590 88,762 57,807 108,006 86098 111,182

Table 2: The number of sentences and tokens in the labeled corpora used for parsing.

from the OntoNotes corpus: general English web
data (Eng.: 71,500 tokens) and a larger set of sen-
tences originally selected to improve sense cover-
age in the corpus (Sel.: 279,000 tokens).

4 Experimental set-up

In this section we present the set-up of the experi-
mental process. We start by describing the set-up
for the clustering before turning to how the parser
is trained and applied. The actual experiments and
results are the provided in Section 5.

4.1 K-means word clustering with
dependency features

We experiment with forming word clusters of lem-
mas in several different data sets: Reuters and
the unlabeled SANCL data for five different web
domains. The web data is clustered per-domain
as well as all together. To run clustering on a
given corpus, we first extract the 50,000 most
frequent lemmas, only considering verbs, nouns
and adjectives.3 The next step – after the initial
pre-processing with the SVMTool PoS tagger and
MaltParser – is to record features for the various
lemma occurrences across the corpus.

The features we use for the K-means cluster-
ing record information about the target lemma, its
head, its leftmost / rightmost siblings, and its left-
most / rightmost dependents. The siblings of a tar-
get are defined as the tokens having the same head
as the target. The dependents of a target are all
the tokens having the target as the head. For both
these notions, the leftmost or rightmost token cor-
responds to the one furthest to the left or right in
the sentence, respectively. The clustering features

3More specifically, we only consider lemmas with a PoS
tag from one of the sets {NN, NNS, NNP, NNPS}, {VB,
VBD, VBG, VBN, VBP, VBZ} or {JJ, JJR, JJZ}.

record the following information for each lemma
token:

- PoS
- Dependency label
- PoS of head
- Dependency label of head
- Lemma of head
- PoS leftmost/rightmost sibling
- Dependency label of leftmost/rightmost sibling
- Lemma of leftmost/rightmost sibling
- PoS leftmost/rightmost dependent
- Dependency label of leftmost/rightmost dependent
- Lemma of leftmost/rightmost dependent

The actual clustering is performed using the K-
means implementation of the Python-based toolkit
scikit-learn (Pedregosa et al., 2011), using its
mini-batch version of the algorithm – an alter-
native online implementation optimized for large
samples (Sculley, 2010). We perform clustering
for K (i.e., the pre-defined number of clusters) set
to 10, 50 and 100 (using higher values forK failed
due to memory constraints).

4.2 Parser set-up
As said, our experiments our based on MaltParser
(Nivre et al., 2007) (v. 1.7.2), a system for data-
driven dependency parsing which is based on a
deterministic parsing strategy in combination with
treebank-induced classifiers for predicting parse
transitions. It supports a rich feature represen-
tation of the parse history and can easily be ex-
tended to take additional features into account. We
choose to use MaltParser primarily due to its easily
extendable feature model which facilitates experi-
mentation with additional features during parsing.
As our baseline parser, we use the parse model de-
scribed by Foster et al. (2011) and Øvrelid and

Proceedings of the 20th Nordic Conference of Computational Linguistics (NODALIDA 2015) 120



Feature set Feature templates

Baseline S0p, S1p, S2p, S3p, L0p, L1p, L2p, I0p,
S0lp, S0rp, S1rp, S0ld, S1rd, S0w, S1w,
S2w, L0w, L1w, S0lw, S1rw, S0pS1p,
S0wL0w, S0pS0w, S1pS1w, L0pL0w,
S1rdS0ld, S1rpS1lp, S0pS1pL0p,
S0pS1pS2p, S0pL0pL1p, L0pL1pL2p,
L1pL2pL3p, S0pL0pI0p, S1pS1ldS1rd

PoS simple + S0l, S1l, S2l, S3l, L0l, L1l, L2l, I0l,
S0ll, S0rl, S1rl

Form simple + S0l, S1l, S2l, L0l, L1l, S0ll, S1rl

Form all + S0l, S1l, S2l, L0l, L1l, S0ll, S1rl,
S0lL0l, S0pS0l, S1pS1l, L0pL0l,

Table 3: Feature models for the baseline and the
re-trained parser, where p = PoS-tag, w = word
form, d = dependency label in the graph con-
structed so far (if any), and l = cluster label. Malt-
Parser’s stacklazy algorithm operates over three
data structures: a stack (S) of partially processed
tokens, a list (I) of nodes that have been on the
stack, and a “lookahead” list (L) of nodes that have
not been on the stack. We refer to the top of the
stack using S0 and subsequent nodes using S1, S2,
etc., and the leftmost/rightmost dependent of S0
with S0l/S0r.

Skjærholt (2012). It employs the stacklazy algo-
rithm (Nivre, 2009), along with the LIBLINEAR
package (Fan et al., 2008) for inducing parse tran-
sition SVM classifiers.

4.2.1 Parser features
Table 3 describes the baseline feature set, along
with three additional feature sets based on the
models described in Øvrelid and Skjærholt (2012)
and that in various ways include information about
cluster labels: PoS simple, Form simple and Form
all. These augmented feature sets are constructed
by copying the full baseline feature set (all) or
only the features that pertain to a single token
(simple) and involve either the PoS-tag or the word
form respectively. (Note that a PoS all feature set
was also tried but proved to be too large for prac-
tical experimentation.) Preliminary experimenta-
tion on the development sets showed that the Form
all feature model consistently outperformed the
other two cluster-based feature set, so we will only
be reporting results for this feature set in the paper,
in addition to the baseline.

We evaluate the parser outputs in terms of La-
beled Attachment Score (LAS) – computed using

PoS in training

Gold Predicted
WSJ 22 81.54 84.88
WSJ 23 81.88 84.79

Table 4: The effect on LAS for training on gold
vs. predicted PoS tags, when testing on predicted
PoS tags.

the evaluation script4 of the CoNLL-X shared task
on multi-lingual dependency parsing – and com-
pare them using Dan Bikel’s Randomized Parsing
Evaluation Comparator with p ≤ α = 0.05 con-
sidered statistically significant.

4.2.2 Gold vs. predicted PoS tags
In preliminary experiments we assessed the ef-
fect of using gold standard versus automatically
assigned part-of-speech-tags tags when training
the parser, in both cases testing on automatically
tagged text. (These experiments used the base-
line MaltParser without cluster information and
using only default parameter settings, including
C = 0.1 for the SVM.) We trained two ver-
sions of the parser on WSJ sections 02–21 (from
OntoNotes/SANCL) using (1) the gold PoS tags
provided in the treebank and (2) replacing these
with tags automatically predicted by SVMTool.
We then applied the parsers to WSJ 22 and 23, for
both parsers using SVMTool tags during testing.
The results are shown in Table 4.2.2 and reveal that
there is a clear advantage to training on predicted
tags (all differences are statistically significant at
α = 0.05). For all parsing results reported else-
where in this paper automatically predicted PoS
tags are used in both training and testing.

5 Experiments and results

The development results reported below are ob-
tained by; parsing unlabeled data using the base-
line feature set trained on WSJ 02-21; comput-
ing lemma clusters from dependency features; re-
training the parser on WSJ 02-21 with the aug-
mented Form all feature set; and finally tuning the
number of clusters (K) and the C parameter5 of

4http://ilk.uvt.nl/conll/software.html
5The penalty factor C governs the trade-off between train-

ing error and margin. It can have a large impact on the re-
sulting model and, in our case, parser performance. In our
empirical tuning on the dev. set we first tested values in the
interval [2−7, 2−6 . . . 26, 27] and after identifying the ap-
propriate neighborhood further fine-tuned the value using in-

Proceedings of the 20th Nordic Conference of Computational Linguistics (NODALIDA 2015) 121



WSJ 22 Weblogs Emails

Baseline 86.72 80.00 72.85
Reuters clusters 86.79 80.34 73.11
SANCL clusters, per-domain n/a 80.20 73.35
SANCL clusters, all n/a 80.26 73.27

Table 5: LAS results for the development data
– WSJ 22 and the two SANCL test domains –
comparing the baseline parser to parsers re-trained
using word clusters from various sources of un-
labeled data: the Reuters corpus, the unlabeled
SANCL data for the respective domains, or clus-
tering all the unlabeled SANCL data from all five
domains together. (All data sets are PoS-tagged
automatically using SVMTool.)

the parser’s SVM classifier to find the configura-
tion with the highest LAS. The best configuration
found for the development data is then applied to
the held-out data.

5.1 Reuters clusters
Instantiating the clustering features described in
Section 4.1 for the top 50k lemmas of Reuters
resulted in a total of 1,673,744 feature types.
Specifying a feature frequency cut-off of >= 10
brought this down to a more manageable set of
339,473 features. After running K-means for 10,
50 and 100 clusters and tuning the SVM penalty
parameter of the parser, the best configuration for
all the development data sets was found to be
K = 50 and C = 0.0625. The results can be
seen in Table 5, including the scores of the initial
baseline parser.6 Looking at the baseline scores,
the results clearly demonstrates the difficulty in
applying parsers to text outside the domain of the
training data, combined with the added noise we
can expect to find in web data text types com-
pared to newswire text: There is a clear drop in
performance for the web data compared to WSJ
22. While we see that the cluster-informed parser
improves over the baseline across all data sets,
we also see that the improvements are larger for
the web data than for WSJ 22: For Weblogs and
Emails the relative reductions of error rate (RER)

crements of 0.015: The best performance was typically found
for C = 0.0625.

6For the baseline model, the best C value varied slightly
across the different development sets, with C = 0.0625 for
WSJ 22, 0.0775 for Weblogs, and 0.0925 for Emails. In sub-
sequent held-out testing for the baseline we use the model
trained with C = 0.0625 for the WSJ data and 0.0775 for
the web data.

Answers Newsgroups Reviews

Baseline 73.10 76.13 75.01
Reuters 73.58 76.97 75.43
SANCL per-domain 73.39 76.87 75.51
SANCL all 73.52 76.94 75.53

Table 6: Held-out LAS evaluation on the three
SANCL test domains using the baseline parser
compared to parsers re-trained with informa-
tion about word clusters generated from vari-
ous sources: the Reuters corpus, the unlabeled
SANCL data for the respective test domains, or
clustering all the unlabeled SANCL data from all
five domains together. (All data sets are PoS-
tagged automatically using SVMTool.)

are 1.7% and 0.96% respectively, compared to
RER = 0.53% for WSJ. When applying these mod-
els to the held-out data, the gains of the cluster-
informed models are even larger, as shown in Ta-
ble 6, with error reductions of up to 3.52%. When
testing on WSJ 23 (not included in the table), the
baseline obtained LAS = 86.88, compared to 87.16
for the cluster model, amounting to RER = 2.13%.
The differences in held-out performance where de-
tected as statistically significant across all the data
sets.

Note that one complication with respect to as-
sessing the effect of K-means clustering is the fact
that the algorithm is sensitive to the initial random
seeding of the cluster centers. Using the mini-
batch implementation in scikit-learn alleviates this
problem to some degree in that it will compute a
handful of different seedings and choose the one
with the lowest inertia (i.e., within-cluster sum-
of-squares) before starting the clustering. Still,
repeated runs with the same parameters and the
same input can generate different outputs. In or-
der to quantify the extent of this effect we run
K-means for K = 100 clusters 10 times on the
Reuters data and parsed WSJ 22 with the re-
trained parser (fixing the SVM parameter C to
0.0625). This resulted in mean and median LAS
scores of 86.78 and 86.81 respectively, with a vari-
ance of 0.009 and a standard deviation of 0.095.

5.2 Per-domain SANCL clusters

While we already see improvements in parsing ac-
curacy for the web data, one could expect to see
even greater gains when using clusters generated
from texts in the same domain that is to be parsed.

Proceedings of the 20th Nordic Conference of Computational Linguistics (NODALIDA 2015) 122



We therefore tried running K-means on the unla-
beled SANCL data from respective test domains7

(while still training the parser on WSJ like above).
This means that, for example, the 4,060 sentences
in the labeled Weblogs data is parsed using clus-
ters generated for the 50K most frequent lemmas
of the 524,834 sentences in the unlabeled Weblogs
data. After empirically tuning the parameters, the
highest LAS scores on the development sets were
observed for the configuration of K = 100 and
C = 0.0625. (As for all clustering results reported
here we use the Form all feature set of Table 3.)

Development results are provided in Table 5 and
held-out results in Table 6, see the row SANCL
per-domain. Although the re-trained parser with
per-domain clusters again significantly outper-
forms the baseline across all data sets, there is
no clear advantage to using per-domain clusters
compared to the Reuters cluster of the news do-
main. The parser using per-domain web clusters
improves on the parser using Reuters clusters for
two out of five domains: Emails (development)
and Reviews (held-out). Interestingly, these are
also the two domains with the largest unlabeled
data sets, as shown in Table 1. At the same time,
we see that the Reuters corpus is vastly larger than
any of the unlabeled SANCL corpora. For our next
round of experiments we therefore wanted to see
whether we could compensate for this difference
in size by clustering all the unlabeled SANCL data
combined, while still hoping to see positive effects
of using data closer to the test domain.

5.3 All-in-one SANCL clusters

The motivation of the experiments in this section
is to see whether using word clusters generated
from all the five unlabeled SANCL sections to-
gether yields better parsing performance than us-
ing clusters from each domain individually. Using
a feature cut-off of ≥ 3, a total of 375,793 feature
types are extracted for clustering the 50K most fre-
quent noun/verb/adjective lemmas in the concate-
nated SANCL data. Using 100 clusters generated
by K-means and setting C = 0.0625 for the SVM
classifier in MaltParser, the results are shown as
SANCL all in Tables 5–6.

We see that for all but one data set, the use of
all-in-one SANCL clusters yield better results than

7The frequency cut-off on the dependency features for the
clustering was set to≥ 2 for these runs. Note also that the vo-
cabulary extracted for the unlabeled Answers data only com-
prises 22,227 lemmas, due to the smaller size of this data set.

per-domain clusters. The exception is the Emails
(development) data, where the per-domain clusters
still yields the highest LAS overall. At the same
time, we see that the initial Reuters clusters still
provide the highest score for three of the data sets,
while the all-in-one SANCL model has the highest
overall score for the (held-out) Reviews section. It
is also worth noting that at 75 million tokens, the
concatenated unlabeled SANCL data is still a third
of the size of Reuters. When testing for statistical
significance on the held-out data, none of the dif-
ferences between the Reuters and SANCL runs are
detected as being significant.

In sum, it is not possible to conclude any-
thing about which data set provides the optimal
source for generating the dependency-based word
clusters for the parser, although it is clear that
whichever data set is used, the re-trained parser
with cluster features improves significantly on the
baseline parser. For the final round of experiments,
we investigate the use of the dependency-based
clusters compared to n-gram Brown clusters as
used in most previous studies.

5.4 Comparison to using Brown clusters

In this section, we report the results of parsing the
English web data of the OntoNotes corpus as de-
scribed in Section 3, in addition to the OntoNotes
version of WSJ section 23, mirroring the data sets
used by Øvrelid and Skjærholt (2012). The pur-
pose is to compare the results obtained using our
dependency-based clusters and the Brown clusters
used by Øvrelid and Skjærholt (2012) and sev-
eral previous studies. As to isolate the effect of
the clustering approach as best as possible, we
here use the same version of MaltParser as used
by Øvrelid and Skjærholt (2012) (i.e., v.1.4.1).
We otherwise apply the model configuration that
was found to give the best results for the develop-
ment experiments in Table 5, i.e., K = 100 and
C = 0.0625, and apply models based on both the
Reuters clusters and the all-in-one SANCL clus-
ters.

The LAS results for the different models are
compared in Table 7. It is important to note that
while the scores for the dependency-based clus-
ters represent strict held-out results, the results for
Øvrelid and Skjærholt (2012) are to be regarded
as development results: The scores of Øvrelid and
Skjærholt (2012) are maximums after tuning the
model parameters directly on the given data. The

Proceedings of the 20th Nordic Conference of Computational Linguistics (NODALIDA 2015) 123



WSJ 23 Eng Sel

Baseline, Øvrelid (2012) 86.24 76.99 74.84
Baseline 86.67 78.45 76.02
Brown, Øvrelid (2012) 86.67 78.30 75.82
Reuters 86.98 78.71 76.23
SANCL all 86.90 78.79 76.30

Table 7: Comparing LAS with Øvrelid and
Skjærholt (2012), using data sets with automatic
part-of-speech tags generated by SVMTool.

parameters include the number of clusters and the
choice of feature set for the parser, corresponding
to the various options listed in Table 3. In spite of
this, we find that all the models using dependency-
based clusters yield quite a bit higher LAS than
the Brown-based models of Øvrelid and Skjærholt
(2012). At the same time, even our baseline mod-
els perform on par with or better than the Brown
models, so it is likely that other factors not ac-
counted for are also affecting the results reported
in Øvrelid and Skjærholt (2012). Note that the ta-
ble include baseline results for both our own set-up
and the scores provided in Øvrelid and Skjærholt
(2012). Despite our efforts to replicate the set-
up described by Øvrelid and Skjærholt (2012) we
were not able to reproduce the results. The scores
shown for our own baseline in Table 7 were pro-
duced using our tuned C parameters fpr the SVMs
(though using the same version of the parser and
tagger), but even when using the default parame-
ters like reported by Øvrelid and Skjærholt (2012)
our scores diverged.

6 Summary and future work

This paper has described a semi-supervised ap-
proach for improving a data-driven dependency
parser using dependency-based clusters. The
parser is first applied to a large corpus of unla-
beled text, providing the input to K-means clus-
tering of lemmas using features extracted from the
dependency structures. The parser is the re-trained
with new features that include information about
the word clusters, thereby introducing an element
of self-training. The cluster-informed parser is
shown to improve significantly over the baseline
on both in- and out-of-domain tests, including a
wide range of web texts. For held-out tests on the
web data the use of clusters yields error reductions
of up to 3.52% relative to the baseline. The re-
sults of using our dependency-based clusters also

compare favorably to previous studies using the n-
gram based Brown clusters.

There are several directions we wish to pursue
in follow-up work. The experiments in this paper
were based on the feature set described by Øvrelid
and Skjærholt (2012). Further work will give pri-
ority to the design and experimentation with addi-
tional cluster-based features in the parser, prefer-
ably informed by an analysis of the parser errors.
The clustering described above comprise a fairly
large vocabulary of 50,000 lemmas. In future ex-
periments we would like to gauge the trade-off be-
tween the vocabulary size N and the number of
clusters K: Decreasing N would allow us to spec-
ify a higher K. Moreover, when inspecting the
the word clusters many of them can be seen to
be fairly specific to distinct parts-of-speech – un-
surprisingly, given the feature templates described
in Section 4.1. In further experiments we there-
fore plan on performing the clustering separately
for lemmas of different parts-of-speech. This will
also be beneficial in terms of scalability: Com-
putational considerations otherwise enforce limi-
tations on vocabulary size, the number of clusters,
and the size of the feature space, but running mul-
tiple and separate K-means clusterings for differ-
ent PoS classes means we can increase the number
of total clusters used and the lexical coverage of
the clusters.

References
Anne Abeillé, Lionel Clément, and François Toussenel,

2003. Treebanks: Building and Using Parsed
Corpora, chapter Building a Treebank for French.
Kluwer, Dordrecht.

Ann Bies, Justin Mott, Colin Warner, and Seth Kulick.
2012. English Web Treebank LDC2012T13.

Steven Bird, Edward Loper, and Ewan Klein.
2009. Natural Language Processing with Python.
O’Reilly Media Inc.

Peter F. Brown, Peter V. deSouza, Robert L. Mer-
cer, Vincent J. Della Pietra, and Jenifer C. Lai.
1992. Class-based n-gram models of natural lan-
guage. Computational Linguistics, 18(4):467–479,
December.

Marie Candito and Djame Seddah. 2010. Pars-
ing word clusters. In Proceedings of the NAACL
HLT 2010 First Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 76–84, Los
Angeles, CA.

Xavier Carreras. 2007. Experiments with a higher-
order projective dependency parser. In Proceedings

Proceedings of the 20th Nordic Conference of Computational Linguistics (NODALIDA 2015) 124



of the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computa-
tional Natural Language Learning, pages 957–961,
Prague, Czech Republic.

Eugene Charniak, Don Blaheta, Niyu Ge, Keith Hall,
John Hale, and Mark Johnson. 2000. Brown labo-
ratory for linguistic information processing (BLLIP)
1987–89 WSJ corpus release 1 LDC2000T43.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. In Proceedings of the 1st Meeting of
the North American Chapter of the Association for
Computational Linguistics, pages 132–139, Seattle,
WA.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. LIBLINEAR:
A library for large linear classification. Journal of
Machine Learning Research, (9).

Jennifer Foster, Özlem Çetinoğlu, Joachim Wagner,
Joseph Le Roux, Stephen Hogan, Joakim Nivre,
Deirdre Hogan, and Josef van Genabith. 2011.
#hardtoparse: POS tagging and parsing the twitter-
verse. In Proceedings of the AAAI Workshop on
Analysing Microtext, pages 20–25, San Francisco,
CA.

Jesús Giménez and Lluı́s Màrquez. 2004. SVMTool:
A general POS tagger generator based on Support
Vector Machines. In Proceedings of the 4th Interna-
tional Conference on Language Resources and Eval-
uation, Lisbon, Portugal.

Jan Hajič. 1998. Building a syntactically annotated
corpus: The Prague Dependency Treebank. In Eva
Hajičová, editor, Issues of Valency and Meaning.
Studies in Honor of Jarmila Panevová, pages 12–19.
Prague Karolinum, Charles University Press.

Terry Koo, Xavier Carreras, and Michael Collins.
2008. Simple semi-supervised dependency parsing.
In Proceedings of the 46th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 595–603, Columbus,
OH.

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan
Li. 2004. RCV1: A new benchmark collection
for text categorization research. Journal of Machine
Learning Research, 5:361–397.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English. The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics, pages 91–98, Ann Arbor, MI.

Yusuke Miyao, Takashi Ninomiya, and Jun’ichi Tsu-
jii. 2004. Corpus-oriented grammar development
for acquiring a Head-driven Phrase Structure Gram-
mar from the Penn Treebank. In Proceedings of the
1st International Joint Conference on Natural Lan-
guage Processing, pages 684–693, Hainan Island,
China.

Joakim Nivre, Johan Hall, Jens Nilsson, Gülsen
Eryigit, Sandra Kübler, Marinov Svetoslav, Erwin
Marsi, and Atanas Chanev. 2007. MaltParser:
A language-independent system for data-driven de-
pendency parsing. Natural Language Engineering,
13(2):95–135.

Joakim Nivre. 2009. Non-projective dependency pars-
ing in expected linear time. In Proceedings of the
47th Meeting of the Association for Computational
Linguistics, pages 351–359, Suntec, Singapore.

Lilja Øvrelid and Arne Skjærholt. 2012. Lexical cat-
egories for improved parsing of web data. In Pro-
ceedings of the 24th International Conference on
Computational Linguistics (COLING), pages 903–
912, Bombay, India.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830.

Slav Petrov and Ryan McDonald. 2012. Overview of
the 2012 shared task on parsing the web. In Notes
of the First Workshop on Syntactic Analysis of Non-
Canonical Language (SANCL).

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and
interpretable tree annotation. In Proceedings of
the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 433–440,
Sydney, Australia, July.

Kenji Sagae and Andrew S. Gordon. 2009. Cluster-
ing words by syntactic similarity improves depen-
dency parsing of predicate-argument structures. In
Proceedings of the 11th International Conference on
Parsing Technologies (IWPT), pages 192–201, Paris,
France.

Kenji Sagae and Jun’ichi Tsujii. 2008. Shift-reduce
dependency DAG parsing. In Proceedings of the
22nd International Conference on Computational
Linguistics, pages 753–760, Manchester.

David Sculley. 2010. Web-scale K-means clustering.
In Proceedings of the 19th International Conference
on World Wide Web, pages 1177–1178, Raleigh,
NC.

Proceedings of the 20th Nordic Conference of Computational Linguistics (NODALIDA 2015) 125



Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th Meeting of the Association for Computational
Linguistics, pages 384–394, Uppsala, Sweden.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw,
Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, Mohammed El-Bachouti, Robert Belvin,
and Ann Houston. 2011. OntoNotes release 4.0
LDC2011T03.

Proceedings of the 20th Nordic Conference of Computational Linguistics (NODALIDA 2015) 126


