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Abstract

This paper discusses methodological
strengths and shortcomings of the
Constraint Grammar paradigm (CGQG),
showing how the classical CG formalism
can be extended to achieve greater
expressive power and how it can be
enhanced and hybridized with techniques
from other parsing paradigms. We present
a new, largely theory-independent CG
framework and rule compiler (CG-3), that
allows the linguist to write CG rules
incorporating different types of linguistic
information and methodology from a wide
range of parsing approaches, covering not
only CG's native topological technique,
but also dependency grammar, phrase
structure  grammar and  unification
grammar. In addition, we allow the
integration of statistical-numerical
constraints and non-discrete tag and string
sets.

1 Introduction

Within Computational Linguistics, Constraint
Grammar (CG) is more a methodological than a
descriptive paradigm, designed for the robust
parsing of running text (Karlsson et al., 1995).
The formalism provides a framework for

expressing contextual linguistic constraints
allowing the grammarian to assign or
disambiguate  token-based, = morphosyntactic

readings. However, CG's primary concern is not
the tag inventory itself, or the underlying
linguistic theory of the categories and structures
used, but rather the efficiency and accuracy of the
method used to achieve a given linguistic
annotation. Conceptually, a Constraint Grammar
can be seen as a declarative whole of contextual
possibilities and impossibilities for a language or
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genre, but in programming terms, it is
implemented procedurally as a set of
consecutively iterated rules that add, remove or
select tag-encoded information. In its classical
form (Karlsson, 1990; Karlsson et al., 1995),
Constraint Grammar relies on a morphological
analyzer providing so-called cohorts of possible
readings for a given word, and uses constraints
that are largely topological' in nature, for both
part-of-speech disambiguation and the
assignment of syntactic function tags. (a-c)
provide examples for close context (a) and wide
context (b) POS rules, and syntactic mapping (c).

(a) REMOVE VFIN IF (0 N) (-1 ART OR
<poss> OR GEN); remove a finite verb reading
if self (0) can also be a noun (N), and if there is
an article (ART), possessive (<poss>) or
genitive (GEN) 1 position left (-1).

(b)  SELECT VFIN IF (NOT *1 VFIN) (*-1C
CLB-WORD BARRIER VFIN); select a finite
verb reading, if there is no other finite verb
candidate (VFIN) to the right (*1), and if there
is an unambiguous (C) clause boundary word
(CLB-WORD) somewhere to the left (*-1), with
no (BARRIER) finite verb in between.

(¢c) MAP (@SUBJ) TARGET N (*-1 >>>
BARRIER NON-PRE-N) (1C VFIN) ; map a
subject reading (@SUBJ) on noun (N) targets if
there is a sentence-boundary (>>>) left
without non-prenominals (NON-PRE-N) in
between, and an unambiguous (C) finite verb
(VFIN) immediately to the right (1C).

As can be seen from the examples, the original
formalism refers only to the linear order of
tokens, with absolute (>>>) or relative fields

With "topological" we mean that grammar rules
refer to relative, left/right-pointing token positions
(or word fields), e.g. -2 = 2 tokens to the left, *1
= anywhere to the right.
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counting tokens left (-) or right (+) from a
zero/target position in the sentence. Though in
principle a methodological limitation, this
topological approach also has descriptive "side
effects": For instance, it supports local syntactic
function tags (such as the @SUBJ tag on the head
noun of an NP), but it does not easily lend itself
to structural-relational ~ annotation. Thus,
dependency relations or constituent brackets can
neither be created or referred to by purely
topological CG rules®. Even chunking constraints,
though topologically more manageable than tree
structures, have to be expressed in an indirect
way (cp. the NON-PRE-N barrier condition in
example rule (c), and syntactic phrases cannot be
addressed as wholes, let alone subjected to
rewriting rules.

A second design limitation in classical CG
concerns the expression of vague, probabilistic
truths about language. Thus, the formalism does
not allow numerical tags or numerical feature-
value pairs, and while many current main stream
NLP tools are based on probabilistic methods and
machine learning, classical CG is entirely rule-
based, and the only way to integrate likelihoods is
through lexical "Rare" tags or by ordering rules in
batches with more heuristic rules applying last.

Third, classical CG tags and tokens are discrete
units and are handled as string constants. While
this design option facilitated efficient processing
and even FST methods, it also limited the
linguist, who was not allowed to use regular
expressions, feature variables or unification.
Another aspect of discreteness concerns
tokenization: Classical CG regarded token form,
number and order as fixed, so the formalism had
difficulty in accommodating, for instance, the
rule-based creation of a (fused) named-entitity
token, the insertion or removal of tokens in spell
and grammar checking, or the reordering of
tokens needed for machine translation.

Finally, when classical CG was designed, it
had isolated sentences in mind. Though rule
scope can be arbitrarily defined by a "window"
delimiter set, and though "global" window rules
clearly surpass the scope of HMM n-grams, it

was not possible to span several windows at a
2 As a work-around, attachment direction markers
(arrows) were introduced in the syntactic function
tags, such as @>N or @N> for pre-nominal and
@N< or @<N for post-nominal NP-material.

time or to link referents across sentence, nor was
it possible to contextually trigger genre variables
or in other ways to make a grammar interact with
a given text type. Descriptively, this limitation
meant that CG as such could not be used for
higher-level annotation such as anaphora or
discourse relations, and that grammars were
agnostic of genre and task types.

Following Karlsson's original proposal, two
standards for CG rule compilers emerged in the
late 90'ies. The first, CG-1, was used by
Karlsson's team at Helsinki University and
commercially by the spin-off company LingSoft
for English (ENGCG), Swedish and German
(GERCQG) taggers, as well as for applied products
such as Scandinavian grammar checkers (Arppe,
2000; Birn, 2000 for Swedish, Hagen et al., 2001
for Norwegian). The second compiler, CG-2, was
programmed and distributed by Pasi Tapainen
(1996), who made several notational
improvements® to the rule  formalisms (in
particular, regarding BARRIER conditions, SET
definitions and REPLACE operations), but left
the basic topological interpretation of constraints
unchanged. Five years later, a third company,
GrammarSoft ApS, in cooperation with the
University of Southern Denmark, launched an
open source CG compiler, vislcg, which was
backward compatible with CG-2, but also
introduced a few new features®, in particular the
SUBSTITUTE and APPEND operators designed
to allow system hybridization where input from a
probabilistic tagger could be corrected with CG
rules in preparation of a syntactic or semantic CG
stage, as implemented e.g. in the earliest version
of the French FrAG parser (Bick, 2004). Vislcg,
too, was used in spell and grammar checkers
(Bick, 2006a), but because of its open-source
environment it also marked the transition to a
wider spectrum of CG wusers and research
languages.

Tapanainen also created a very efficient compiling
and run-time interpretation algorithm for cg2,
involving fintite state transducers, as well as a
finite state dependency grammar, FDG
(Tapanainen, 1997), for his company Conexor and
its Machinese parsers.

The vislcg compiler was programmed over
several years by Martin Carlsen for VISL and
GrammarSoft. For a technical comparison of CG-
2 and vislcg, cf. http://beta.visl.sdu.dk/visl/vislcg-
doc.html .
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But though constraint grammars using the CG-
2/VISLCG compiler standard did achieve a tag
granularity and accuracy that allowed them to
support external modules for both constituent and
dependency tree generation, they remained
topological in nature and did not permit explicit
reference to linguistic relations and structure in
the formalism itself. The same is true for virtually
all related work outside the CG community itself,
where the basic idea of CG constraints has
sometimes been exploited to enhance or hybridize
HMM-style probabilistic methods (e.g. Graiia et
al.,, 2003) or combined with machine learning
(Lindberg & Eineborg, 1998; Lager, 1999), but
always in the form of (mostly close-context)
topological rather than structural-relational rules
and always with discrete tag and string constants.
It is only with the CG-3 compiler presented here,
that these and most of the other above-mentioned
design issues have been addressed in a principled
way and inside the CG formalism itself. CG-3°
(or VISL CG-3 because of its backward
compatibility with VISLCG) was developed over
a period of 6 years, where new features were
designed and implemented continually, while
existing features were tested in real-life parsing
applications. In the following sections we will
discuss the most important of these features and
compare the finished framework with other
approaches.

2 Expressive power: Relational tags

In CG all information is expressed as token-based
tags, and this is true of CG-3 relational tags, too.
Though each token can be part of any number of
relations, the individual relation is binary, linking
a from- and a to-token. Dependency annotation
can be seen as a special type of such a relation,
where each dependent (daughter, child) is
assigned exactly one head (mother, parent), but
where each head can have any number of
dependents. In CG-3, we mark dependency
relations on the daughter token with a #n->m tag,
where 'n' is the token id of the dependent, and 'm'
the token id of the head. Thus, dependency is a
tag field, just like the ".."-marked lemma field, the

For detailed technical documentation on CG-3, cf.

http://beta.visl.sdu.dk/cg3.html, for tutorials,
associated tools, parser demos and resources, see

http://visl.sdu.dk/constraint grammar.html.
Cagetories and tag abbreviations are explained at

http://visl.sdu.dk/tagset cg general.html .

upper-case POS and inflection fields or the @-
marke syntactic function field®:

Both "both" <quant> DET P @>N #1->2
companies "company" <HH> N P @SUBJ> #2->3
said "say" <speak> <mv> V IMPF @FS-STA #3->0
they "they" <clb> PERS 3P NOM @SUBIJ> #4->5
would "will" <aux> V IMPF @FS-<ACC #5->3
lauch "launch" <mv> V INF @ICL-AUX< #6->5
an "a" <indef> ART S @>N #7->9

electric "electric" <jpert> ADJ POS @>N #8->9
car "car" <Vground> N S NOM @<ACC #9->6
."."PU @PU #10->0

Instead of the "topological" left/right-pointing
position markers, CG rules with dependency
contexts can refer to three types of relations: p
(parent/head), ¢ (child/dependent) and s (sibling).

ADD (§AG) TARGET @SUBJ (p V-HUM
LINK ¢ @ ACC LINK 0 N-NON-HUM) ;

(Add an AGENT tag to a subject reading if its
parent verb is a human verb that in turn has a
child accusative object that is a non-human noun.
E.g. "BMW launched an electric car.”)

In order to add dependency annotation to ”virgin”
input, the operators SETPARENT and
SETCHILD are used together with a TO target.
Thus, for the sentence "We know for a fact that
the flat had not been used in months."

SETPARENT @FS-<ACC (*-1 (that” KS)
BARRIER CLB TO (**-1 <mv> LINK 0 V-
COGNITIVE) (NOT | @<ACC):

will link a finite object clause (underlined, marked
@FS-<ACC on 'had’) with a that-conjunction to a
main verb (<mv>) anywhere to the left (**-1) if
the latter is a cognitive verb (V-COG) and is not
followed by an ordinary direct object (@<ACC).
Both the SET-target and the TO-target can have
their own independent context conditions, and that
these can either be traditional positional contexts,
or exploit already established dependency
relations. CG-3 has a built-in check against
circularity, preventing attachments that would
create a dependency loop’. Dependency operators
can be combined with a number of options:

All of these fields can easily be converted into
xml-encoded feature-value pairs for compatibility.
The authors provide scripts for conversion into
e.g. MALT xml and TIGER xml.
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1.) * (Deep scan) allows a child- or parent-test to
continue searching along a straight line of
descendants and ancestors, respectively, until the
test condition is matched or until the end of a
relation chain is reached.

2.) C (All scan) requires a child- or sibling-
relation to match all children or all siblings,
respectively. Note that this is different from the
ordinary C (= safe) option which applies to
readings. Thus 'cC ADJ' means 'only adjectives as
children' — e.g. no articles or PP's, while 'c (¥)
LINK 0C ADJ' means 'any one daughter with an
unambiguous adjective reading'.

3.) S (Self) can be combined with c, p or s to look
at the current target as well. For example, 'c
@SUBJ LINK cS HUM' looks for a human
subject NP — where either the head noun
(@SUBJ) itself is human, or where it has a
modifier that is tagged as human.

Apart from dependency relations, we also allow
general named relations in CG-3, that can be used
for arbitrary relation types, such as secondary
dependencies between object and object
complement, anaphora (Bick, 2010), discourse
relations etc. Thus, the following establishes an
identity relation between a relative pronoun and
its noun antecedent:

SETRELATION (identity) TARGET (<rel>)
TO (*-1 N)

Where matched, this will add a relational tag on

the pronoun token: ID:n R:identity:m, where R:

specifies the relation, and n and m are token id's

for the pronoun and noun, respectively.

It is even possible to set bidirectional relations
with separate labels, to be tag-marked at both ends
of the relation arc. Thus, the example rule sets a
relation between a human noun subject and a
sense-verb object, labelling the former as
"experiencer" and the latter as "stimulus":

SETRELATIONS (experiencer) (stimulus)
TARGET N-HUM + @SUBJ TO (p V-SENSE
LINK ¢ @ACC) ;

7 Though descriptively undesirable, loops can be

explicitly allowed with the ALLOWLOOP and
NEAREST options (cf. visl.sdu.dk/cg3.html)

3 Constituent structure: Inspiration
from the generative paradigm

Because dependency syntax bases its structural
description on tokens (words), it is inherently
closer to the native CG approach than the
competing generative family of syntactic
formalisms, which operate with non-terminal
nodes and constituent brackets.

3.1 Tree transformation

Classical CG does not support constituent
brackets in any form, be it flat chunks or nested
constituents, so external modules had to be used
to create constituent trees. The oldest example
are PSGs with CG functions as terminals (Bick,
2003), used for CALL applications within the
VISL project, followed by dependency-to-
constituent tree transformation employing an
external dependency grammar (Bick, 2005; Bick,
2006b). Of course the same transformation could
be used with our new, native CG dependency
(cp. previous section), but CG-3 does offer more
direct ways to express linguistic structure in
generative terms, allowing linguists used to think
along PSG lines to directly translate generative
descriptions and constraints into the CG
formalism.

3.2 Chunking

There are at least two distinct methods in CG-3 to
perform chunking, using either (a) cohort insertion or (b)
relation-adding. For traditional, shallow chunking,
without overlaps and nesting, only about 20 rules are
needed (Bick, 2013), inserting opening (a) and closing
(b) edge marker tokens.

(a) ADDCOHORT ("<$np>" "CHUNK" NP)
BEFORE @>N OR N/PROP/PRON OR
DET/NUM/PERS - @ATTR (NOT -1 @>A OR
@>N) (NEGATE -1 ITLINK -1 @>N);

(b) ADDCOHORT ("<$/np>" "ENDCHUNK"
NP) AFTER N/PROP/PRON OR DET/NUM/PERS
- @ATTR (NOT 0 @>N) (*-1 CHUNK-NP
BARRIER CHUNK) ;

NP opening markers (a) are inserted before prenominal
noun dependents (@>N) or NP  heads
(N/PROP/PRON), accepting even determiners and
numerals if they have no attributive function (@ ATTR).
Likewise, NP closing markers (b) are inserted affer the
above NP head candidates, in the presence of the left-
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hand (*-1) NP-chunk opener. The NOT contexts in (a)
make sure that the triggering prenominal is in fact the
first element in the NP, and not preceded by an adverbial
dependent of its own, or part of a coordination. The
inserted chunk-opening and -closing tokens can then be
interpreted as labelled brackets: (np We_PRON /np)
had (np very_@>A delicious_@>N icecream_N /np)
with (np strawberries_N /np).

The second method is better suited for layered, deep
chunking, because it uses relational tags to individually
link chunk edges to each other or to the chunk head.
With full layering, this approach can create complete
xml-formated constituent trees from CG dependency-
tagged input without the need of an external converter, if
chunk brackets are expressed as xml opening/closing
markers. However, using relations to delimit topological
units such as chunks, introduces certain complexities in
the face of crossing branches and needs to specify the
"handedness" (left/right) and "outermostness" of
dependency arcs, features that are normally left
underspecified in dependency annotation. In CG3, we
support these features as I/r- (leftright) and 1l/r-
(leftmost/rightmost) additions:

(a) ADDRELATIONS (np-head-1) (np-start)
TARGET (*) (¢ @>N OR @N<&) TO (11Scc
)

(b) ADDRELATIONS (np-head-r) (np-stop)
TARGET (*) (c @>N OR @N<&) (r:np-head-1 (¥))
TO (1rScc (¥)) ;

Both rules are bidirectional and mark both chunk
head and chunk edges. The head target is any
word (*) with an adnominal dependent (¢ @>N
OR @NKk), and the TO-edge is the leftmost (11)
resp. rightmost (1r) descendant (cc) or self (S).
This second method will yield complete, nested
structures, including adjective phrases (adjp) and
prepositional phrases (pp) in the NPs: (np-start
(adjp-start very_@>A delicious_@>N adjp-stop)
icecream_N (pp-start with_PRP_@N<
strawberries_@ P< pp-stop) np-stop)’.

3.3 Phrase templates

Both of the above chunking methods are intended
to be used late in the annotation pipe, and exploit
existing morphosyntactic markup or even
dependencies, so the chunking cannot itself be
seen as methodological part of parsing per se.
8  For clarity, only phrases with 2 or more
constituents were bracketed in the 2" method.

However, CG-3 also offers another way of
expressing chunks, the femplate, which can be
integrated into CG rules also at early tagging
stages. A template is basically a pre-defined
sequence of tokens, POS or functions that can be
referred to as a whole in rule contexts, or even in
other templates. The basic idea goes back to
Karlsson et al. (1995), but was not implemented
in either CG-1 or CG-2.

For instance, an NP could be defined as

(a) TEMPLATE np = ([ART, N])
OR ([ART,ADJ,N])

(b)TEMPLATE np = (? ART LINK 1 N)
OR (? ART LINK 1 ADJ LINK 1 N)

(c)TEMPLATE np = ? ART LINK *1 N
BARRIER NON-PRE-N

and then used in ordinary rules with a T:-prefix
(*1 VFIN LINK *1 T:np).

(a) is closest to the original idea, and reminiscent
of generative rewriting rules, while (b) and (c) are
shorthand for ordinary CG contexts and harness
the full power of the latter. Independently of the
format, however, the linguistic motivation behind
templates is to allow direct reference to
constituent units, to think in terms of phrase
structure and to subsume aspects of generative
grammar into CG. Thus, constituent templates
allow a direct conceptual transfer from generative
rules, and a simple generative NP grammar for the
NP "a very delicious icecream with strawberries":

np = adjp? n pp? ;

adjp = adv? adj ;

PP =prpnp;
could be expressed in CG3 as:

TEMPLATE np = (N)
OR (T:adjp LINK 1 N)
OR (T:adjp LINK 1 N LINK 1 T:pp)
OR (NLINK 1 T:pp) ;
TEMPLATE adjp = (ADJ) OR (ADV LINK 1
ADJ) ;
TEMPLATE pp =PRP LINK 1 T:np ;

In the example, "very_ADV delicious_ADJ"
matches T:adjp, and "with_PRP icecream_N"
matches T:pp, and the whole expression could
then be referred to as a T:np context by CG rules.
CGe-internally, templates could also simply be
interpreted as shorthand (variables) for context
parentheses, so-called context templates. As such,
they logically need to allow internal, predefined
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positions, as in the following example for a
human verb-template, where the motivation is not
a constituent definition, but simply to integrate
two context alternatives into one’, and to label the
result with one simple variable.

TEMPLATE v-hum = ((c @SUBJ + HUM) OR
(*1 (’that” KS) BARRIER V)) ; "human verb"
defined as either having a subject (@SUBJ) child
(¢) that is human (HUM), or having a
subordinating conjunction (KS) anywhere to the
right (*1) without another verb (V) in between.

Compiler-internally, both template types are
processed in a similar way, which is why
constituent templates have question marks or O-
positions as place holders for an external position
marker, which will be inserted into the template
by the compiler at run-time.

When using templates together with (external)
BARRIER's or LINKed conditions, the template
can be thought of as one token — meaning that
right-looking contexts with a template (*1 T:x
BARRIER) will be interpreted against the left
edge of the template, while left-looking contexts
(*-1 T:x) will be interpreted against the right edge
of the template so as to avoid internal,
unpredictable parts of the template itself to trigger
the BARRIER condition.

4 Beyond discrete tags and string
constants: Regular expressions,
variables and unification

A formal grammar has to strike a balance between
computational efficiency on the one hand, and
linguistic ease and rule writing efficiency on the
other. Thus, the "classical" CG compilers treated
tags and strings (lemma & word form) as
constants and CG-2, in particular, achieved very
high processing speeds exploiting this fact in its
finite state implementation. Some flexibility was
introduced through set definitions, and vislcg
went on to allow sets as targets, too, as well as
multiple conditions for the same position, but
many rules had still be to be written in multiple
versions because of expressive limitations in the
formalism:

(a) OR'ing only for tags/sets, not contexts
(b) no nesting of NOT conditions

In traditional CG, this OR'ed expression could
not even be expressed in one rule, let alone be
referenced as one label.

(c) no C-restriction for BARRIERSs

CG-3 adds all of the above'’, but while increasing
rule-writing efficiency, these changes to not affect
the discreteness of tags and  strings.
Methodologically more important, therefore, is
our introduction of regular expressions and
variables. The former can be used instead of sets
for open-class items, primarily lemma and word
class, e.g. ".*i[zs]le"r V in a transitivity set or
"*ist" N as a heuristic candidate for the <Hprof>
or <Hideo> classes  ("professional" or
"ideological" humans). But the feature is useful
even with a closed-class semantic set such as
+HUM, and <H.*>r will work across grammars
and languages leaving grammarians the option to
introduce ad hoc sub-distinctions (e.g. <Hsick>
for words like ‘'diabetic'). Finally, regular
expressions can be used to substitute for, or
enhance, morphological analysis, for instance in
stemming or affix recognition, supporting the
creation of so-called "barebones" Constraint
Grammars without lexical resources (Bick, 2011).

Variables can be used in connection with
regular expressions, when appending readings (a)
or for instantiating valency conditions (b):

APPEND ("$1"v ADJ) TARGET ("<(.*(icloidl
ous))>"r) ; # recognizing adjective endings

REMOVE (N) (0 (<(.+)*vp>r INF)) (-1 INFM) (1
("$1"v PRP)) ; # e.g. to minister to the tribe

With the example given, the second rule can
remove the noun reading for 'minister' because the
'to' in the valency marker <tovp> of the verb
'minister’ matches the lemma "to" of the following
preposition, even if the infinitive marker is still
unsafe and potentially a preposition itself (-1
rather than -1C).

The methodologically most important use of
variables, however, resides in feature unification.
Thus, CG3 allows the use of sets as to-be-unified
variables by prefixing $$ before the set name. Set
unification integrates yet another methodological
feature, used in other parsing paradigms, such as
HPSG, but so far accessible in CG only at the cost
of considerable "rule explosion". Apart from the
obvious gender/number/case-disambiguation of
noun phrases, unification is also useful in for

' The nesting of NOT conditions is achieved by

making a distinction between ordinary NOT, that
only negates its immediate position, and
NEGATE, which a scope over the whole context
bracket - including other NOTs or NEGATEs.
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instance coordination, as with the following LIST
set of semantic roles (agent, patient, theme and
location):

LIST ROLE = §AG §PAT §TH §LOC ;
SELECT $$ROLE (-1 KC) (-2C $$ROLE) ;

Sometimes unification has to be vague in order to
work. This is the case when underspecified
"Portmanteau” tags are used (e.g. nC - nocase
unified with NOM or ACC cases), or in the face
of very finegrained semantic distinctions. We
therefore make a distinction between list
unification ($$-prefix) and set unification (&&-
prefix), where the former unifies "terminal” set
members, while the latter unifies subsets
belonging to a superset. Two contexts will set-
unify if they have tags sharing the same subset. In
the example below, N-SEMS is defined as a
superset, with N-SEM as one of the subsets.

LIST N-SEM = <sem> <sem-1> <sem-r> <sem-
w> <sem-Cc> <sem-s> <sem-e> <coll-sem>
<sem-nons> <system> <system-h> ;

SET N-SEMS = N-HUM OR N-LOC ... OR N-
SEM ... OR N-SUBSTANCE ;

REMOVE @SUBJ>
(0 $$@<ARG LINK 0 &&N-SEMS)
(*-1 KC BARRIER NON-PRE-N/ADV LINK
*-1C $$@<ARG BARRIER CLB-ORD OR
&MV OR @ARG/ADVL> LINK 0 &&N-
SEMS) ; # ... offered the reader detailed notes
and instructions on most of the prayers ...

The example sentence has an ambiguous
coordination, where it is not clear if 'and' starts a
new clause, and the task of the REMOVE rule is
to exclude a subject reading for ‘'instructions'
(tagged <sem-s>) by semantically aligning it with
notes' (tagged <sem-r>) because both <sem-r>
and <sem-s> are part of the N-SEM subset of the
&&N-SEMS superset, - and by checking if both
nouns also have matching left-pointing argument
readings ($$@<ARG), in this case @<ACC
(direct objects).

5 Integrating statistical data:
Numerical tags

CG-3 moves beyond traditional <Rare> sets and
heuristic rule batching by allowing rules to make
reference to statistical information. This is
achieved by introducing numerical secondary tags
of the type <LABEL:number>, which can be used

to encode and use corpus-harvested frequencies.
The simplified example rule (a) exploits relative
lexical POS frequencies for bigram
disambiguation in a way reminiscent of hidden
Markov models (HMMs), while (b) is a spell
checker fall-back rule selecting the word with the
highest phonetical similarity value

REMOVE (<fr<10> N) (0 (<fr>60> V)) (1 N)
SELECT (<PHONSIM=MAX>)

A more complex example is the use of CG-
annotated data to boot-strap statistical "wordnets"
or "framenets", containing the likelihood of
semantic types or roles given an established

syntactic  function. Thus, the Portuguese
PALAVRAS parser (Bick, 2014) assigns and
exploits tags like <fSUBJ/H:41>,

<fSUBJ/org:27> and <fACC/deverbal:53> for the
verb "propor” (suggest), meaning that "propor”
has a 53% probability of having a deverbal direct
object (action/activity/process/ event), and subject
likelihoods of 41% and 27% for person and
organization, respectively'’.

Obviously, numerical tags could be used for other
ends than statistics, for instance to assign
confidence values to mapped syntactic tags or
semantic roles, or for similarity degrees in spell-
checking. Finally, using only the equal-operator,
numerical tags can be seen as a special case of
(numerical) global variables, e.g. for numbered
genre types or Wordnet synset id's.

6 Grammar-text interaction

The fourth and last design limitation of classical
CG to be treated here concerns ways to let a
constraint grammar mold itself on the fly and to
adapt to the text (or speech transcript) it is used to
annotate. In CG-3 we introduce 3 types of such
self-organizing behaviour:

(a) scope control
(b) rule or section triggering
(c) parameter variables

Scope control is achieved by allowing the
grammarian not only to define window (read:
sentence) delimiters, but also a spanning width of
n windows left or right of the rule focus.
Unbounded context conditions can breach

11

Simplifying, we here only list high-percentage

semantic types for subjects and objects.
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window boundaries by adding a 'W', e.g. *-1W for
scanning left across the window boundary. This
feature is especially useful for higher-order
relations such as anaphora (Bick, 2010) or
discourse  relations.  Another  scope-related
innovation are (definable) paired brackets that
allow rules to scan across brackets in a first pass,
and make reference to them in a second pass. Like
templates, bracket eclipsing is meant to help
reduce CG's topological complexity problem, i.e.
allow syntactic function carriers to "see" each
other more easily across intervening tokens.

CG-3, unlike earlier CG compilers, applies
rules strictly sequentially, and each rule is run on
all cohorts in a window before the next rule is
tried. This makes rule tracing more predictable,
but also facilitates grammar self-organisation.
Thus, we allow context-triggered JUMPs to rule
ANCHORs, to INCLUDE additional rules from a
file or to call EXTERNAL programs. For
instance, an early rule can scan the window for
verbo-nominal ambiguities, and if there are none,
bypass the rule section in question.

Because CG does not depend on training data,
it is generally assumed to be more genre-robust
than machine-learning systems'?, and a few
manual rule changes will often have a great effect
on genre tuning (e.g. allowing/forbidding
imperative readings for recipes or science articles,
respectively). In CG-3, we further enhance this
methodological advantage by introducing
parameter variables, that can be set or unset either
in the data stream (e.g. corpus section headers) or
dynamically-contextually by the grammar itself.
The example rule below assigns the value "recipe"
to a '"genre" \variable, when encountering
imperatives followed by quantified food nouns.

SETVARIABLE (genre) (recipe) TARGET (IMP)
(*1 N-FOOD LINK *-1 NUM OR N-UNIT
BARRIER (*) - ("of"))

Finally, grammar-text interaction may take the
form of rule-governed changes to the text itself.
Thus, the ADDCOHORT feature used for
chunking in section 3.2., and its REMCOHORT
counterpart can be used for adding or removing
commas in grammar checking, and the MOVE

2 The rationale for this is that an ML system

basically is a snapshot of the linguistic knowledge
contained in its training data, and therefore will
need new training data for each new genre in
order to perform optimally.

BEFORE, MOVE AFTER and SWITCH WITH
operators can be used to express syntactic
movement rules in machine translation. The
example rule will change Danish VS into English
SV in the presence of a fronted adverb: MOVE
WITHCHILD"” (*) @<SUBJ BEFORE (*-1
VFIN) (-1 ADV LINK -1 >>>).

Applied to the Danish sentence "I gar sd jeg et
rensdyr”, this will turn the literal translation
"Yesterday saw [ a reindeer" into the correctly
ordered "Yesterday I saw a reindeer".

7 Efficiency and hybridization options

This paper is primarily concerned with design
aspects and a linguistic discussion of the CG-3
formalism, and advances in expressive power
have been the main focus of innovation during
development. That said, the CG-3 rule parser
compiles mature grammars with thousands of
rules in fractions of a second and maintains the
processing speed of VISLCG inspite of the added
complexity caused by regular expressions,
variables, templates and numerical tags. For a
mature morphosyntactic core grammar with 6000
rules, on a single machine, this amounts to ~1000
words (cohorts) per second for each of the
morphological and syntactic levels. However, Yli-
Jyrda (2011) has shown that much higher speeds
(by about 1 order of magnitude'* on a comparable
machine) are possible, at least for VISLCG-
compatible rules without the above complexities,
when using a double finite-state representation,
where rule conditions are matched against a string
of feature vectors that summarize compact
representations of local ambiguity. Future work
should therefore explore the possibility of
sectioned grammars, where a distinction is made
between FST-compatible rule sections on the one
hand, and smaller specialized rule sections on the
other hand, which for their part would allow the
complete range of CG-3 features. This way,
simpel "traditional" rules would run at the higher
FST speed, and the current procedural compiler
architecture would only be used where necessary,
greatly reducing overall processing time.

" The WITHCHILD option means that heads are
moved together with their dependents, in this case
"reindeer" together with "a".

" The reported speed is 110,000 cohorts for
FINCG, an open morphological CG with ~ 950
low-complexity CG-1 rules, originally developed
by Fred Karlsson for Finnish.
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