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Abstract 

Determining explicit user characteristics 

based on interactions on Social Media is a 

crucial task in developing recommendation 

and social polling solutions. For this purpose, 

rule based and N-gram based techniques have 
been proposed to develop user profiles, but 

they are only fit for detecting user attributes 

that can be classified by a relatively simple 

logic or rely on the presence of a large amount 

of training data. In this paper, we propose a 

general purpose, end-to-end architecture for 

text analytics, and demonstrate its effective-

ness for analytics based on tweets with a rela-

tively small training set. By performing 

unsupervised feature learning and deep learn-

ing over labeled and unlabeled tweets, we are 

able to learn in a more generalizable way than 
N-gram techniques. Our proposed hidden 

layer sharing approach makes it possible to ef-

ficiently transfer knowledge between related 

NLP tasks. This approach is extensible, and 

can learn even more from metadata available 

about Social Media users. For the task of user 

age prediction over a relatively small corpus, 

we demonstrate 38.3% error reduction over 

single task baselines, a total of 44.7% error 

reduction with the incorporation of two re-

lated tasks, and achieve 90.1% accuracy when 

useful metadata is present.  

1 Introduction 

Two major Social Media Analytics use cases that 
are driving business value for businesses today are 

social recommendation systems and social polling 
applications. 

Social recommendation systems analyze 
attributes of Social Media users and historical 
trends to recommend personalized products and 
advertisements to users. The accuracy and robust-

ness of these systems has a direct impact on user 
satisfaction and ROI, making improvement of 
these systems a very worthwhile area of study.  

Social polling refers to effectively carrying out 
massive surveys over Social Media. Organizations 
find applications with these capabilities useful for 
brand management, campaign management, and 
understanding key social trends. State of the art 
social polling systems include a capability of mea-

suring trending topics and sentiment. These sys-
tems also include a capability to analyze the user 
characteristic level dependencies of these trends. 
For this use case, informative characteristics for 
businesses to analyze may include a user’s age 
range, gender, ethnicity, income range, location, 
hobbies, political leanings, and brand affinities. 
Additionally, both high precision and high recall 
for all features is paramount to the success of these 
systems. Low precision or low recall for user 

attributes skew trends seen over aggregate data, 
and defeat the purpose of using these solutions to 
discover statistically founded business insights.   

Social Media organizations, generally with 
strong inherent privacy restrictions, like Facebook 
have access to many user level characteristics that 
have been directly inputted to the website. Howev-
er, there is great interest in analyzing these same 
kinds of qualities on more public platforms like 

Twitter and Blogs, where comments are more rea-
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dily accessible to organizations interested in Social 
Media analytics. In this situation, text analytics 
techniques are commonly used to infer qualities 
about these users that are not explicitly provided to 
organizations analyzing this content.    

The difficulty of extracting a characteristic 
about a user based on tweets alone varies greatly 
by the type of characteristic. NLP rule based ap-
proaches (Krishnamurthy et al., 2009) have been 
commonly used as a means to perform micro-
segment analysis of Social Media users. These 
techniques have been very effective at creating 
extractors for user attributes like “fan of” relation-
ships, and gender determination with the presence 

of very little training data. For example, by know-
ing the key characters, actors, and plot details of a 
TV show, the logic is intuitive for making an indi-
vidual rule based extractor that monitors expressed 
interest by a Social Media user in that show. 
Moreover, a gender prediction system can be made 
pretty reliable simply by extracting profile first 
names, and matching to large lists of female and 
male names. However, rule based techniques are 
not good solutions for analyzing more subtle rela-

tionships in social posts like those needed for pre-
dicting a user’s age range, income range, or 
political leanings. Additionally, as social trends 
change and users age, it is very desirable for clas-
sifiers focused on these tasks to be adaptive and 
have the ability to efficiently relearn from scratch. 

As such, Machine Learning techniques make 
sense as a means for creating classifiers of more 
complex user characteristics. N-gram based tech-

niques have commonly been applied to social me-
dia analytics problems (Go et al., 2009), (Kökciyan 
et al., 2013), and (Speriosu et al., 2011). However, 
we have found that these techniques are not effec-
tive without a substantial amount of supervised 
training data or an extremely reliable semi-
supervised method of creating a stand-in corpus. 

In this paper, we propose an end-to-end archi-
tecture to address the key problems exhibited with 

common NLP techniques in analyzing subtly ex-
pressed social media user characteristics. We will 
demonstrate our architecture’s effectiveness at 
predicting user age based on a modest 1266 user 
training set compiled by a team of four researchers 
in a few hours of work for each person manually 
annotating data. Our end-to-end method improves 
on N-gram machine learning techniques by:  

1. Building unsupervised text representations 
that naturally pick up semantic and syntactic 
synonymy relationships. 

2. Effectively utilizing knowledge acquired 

from unlabelled data. 
3. Taking advantage of powerful deep neural 

networks to increase prediction accuracy. 
4. Leveraging a practical framework for trans-

ferring knowledge between related user cha-
racteristic classifiers for increased 
performance without increasing the number 
of free parameters.  

5. Establishing a methodology for efficient 
knowledge transfer from structured metadata 
related to a user.  

Although our main intent is to show the effec-
tiveness of our architecture for Social Media ana-
lytics use cases, there is little about our system that 
has virtues specific to the social media domain. 
Considering the collection of a user’s historical 

tweets as equivalent to a text document, our ap-
proach can serve as a general purpose text analyt-
ics architecture, especially for use cases with 
limited training data. In fact, tweets are generally 
regarded as more challenging to analyze than other 
text because of the noisy language and ambiguous 
content.  

The rest of the paper is organized as follows: 
In Section 2, we describe our data set and go over 

our experimental methodology. Section 3 gives an 
overview of the benefits we see by exploring unsu-
pervised text vector techniques. In Section 4 we 
explain the benefit of building deep learning mod-
els on top of unsupervised features. We proceed to 
explain popular multitask deep learning techniques 
and their failures for our problem statement in Sec-
tion 5. Section 6 is an overview of our hidden layer 
sharing approach, which we validate in Section 7. 

Section 8 explains how our model is extensible for 
the incorporation of structured metadata. Finally, 
Section 9 concludes the paper.  

2 Experimental Methodology  

Without access to any reliable user provided age 
information, we had to rely on human judgment to 
create gold standard annotations for the ages of 
users on Twitter. We randomly generated Twitter 
usernames and had a team of four people manually 
go to Twitter.com and look at their profile. The 
instructions were to look at the user’s Twitter pro-
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file including pictures and their tweets to judge 
their age range and discard any users for whom the 
age range was not clear. The annotators looked 
through the user’s recent tweets to validate their 
age and also annotated with gender and ethnicity 

where possible. Each user in our dataset was ana-
lyzed by two different annotators, and only those 
in which there was agreement for all characteristics 
were kept. Ultimately, we compiled a dataset of 
1808 annotated Twitter profiles, and retrieved his-
torical tweets from their accounts. Depending on 
individual usage patterns, we retrieved a very vari-
able number of tweets. The minimum was 5, the 
maximum was 7115, the average was 226.6, the 

median was 96, and the standard deviation was 
326.  
 
Age Range Training Count Test Count 

Generation Y 590 253 

Generation X 352 152 

Older 323 138 

Table 1: Total counts of the annotated Twitter users in 
our training set and test set by age range.  

 

       For our first attempt to create an age prediction 

system, we attempted to use rules. However, we 
quickly found that even things like usage of cur-
rently trending slang were not reliable in predicting 
age groups. Moreover, rule based systems did not 
seem to have the potential to achieve even modest 
recall. Clearly, age prediction could not be accu-
rately performed deterministically based on tweets, 
and a technique that used a complex evidence 

based model would be needed. 
      Our second attempt at age prediction then was 
to use popular machine learning text analytics 
models based on N-grams. We deployed these 
models using classifiers in the NLTK python pack-
age (Bird et al., 2009). We tried Naïve Bayes, and 
Maximum Entropy models for unigrams, bigrams, 

and trigrams. We found that it was optimal to re-
quire a minimum of 3 training corpus occurrences 
for an N-gram to be included in our feature space.  
 

 
Table 2: F1 scores by age range category for Naïve 
Bayes and Maximum Entropy unigram, bigram, and 

trigram models. 

 

Table 2 depicts the test set results from our 
Maximum Entropy and Naïve Bayes analysis. In-

creasing the our granularity to include bigrams and 
trigrams resulted in an better training set perfor-
mance for Maximum Entropy and Naïve Bayes, 
but those increases did not generalize to the test 
set. Maximum Entropy models saw degradation in 
accuracy with higher level N-grams. For Naïve 
Bayes, there was a slight improvement based on an 

increase in performance at predicting the oldest 
age range. Regardless, these results would not be 
suitable for a deployed system to make confident 
judgments. 

As we began exploring other techniques 
which we will describe in more detail in subse-
quent sections, we use Paragraph Vector as pro-
vided by the original developers (Mesnil et al., 

2015). Additionally, we used the theano-hf python 
package (Boulanger-Lewandowski et al., 2012) as 
the beginning building block for our deep learning 
based approaches.  

3 Unsupervised Text Vectors  

Neural Network Language Models (NNLMs) were 
first proposed by (Bengio et al., 2001), and have 
since become a major focus of research in building 
feature representations for text. (Mikolov et al., 
2013), (Pennington et al., 2014), and (Levy and 

Goldberg, 2014) demonstrate that high quality vec-
tors mapping N-gram phrases to latent vectors can 
be learned over large amounts of unlabelled data. 
These vectors have been shown to be able to natu-
rally express synonymy through vector similarity 
and relationships through vector arithmetic. From a 
practical perspective, this work can be very useful 
to systems with limited training data as unlabelled 
public data is readily available, while supervised 

labeled training data often is not.  
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Table 3: Accuracies and F1 scores by age prediction category for Paragraph Vector (PV), Maximum Entropy (ME), 

and Naïve Bayes (NB) models. 

 
In this paper we use Paragraph Vector, pro-

posed by (Le & Mikolov, 2014), to build unsuper-
vised language models. The key idea of this model 
is to predict nearby words with a fixed context 
window of surrounding words. Paragraph Vector 

extends to any segment of text with any length by 
allowing each unit of text (i.e. units in our experi-
ments are a group of historical tweets for a particu-
lar user) to be represented by its own vector that is 
learned by contributing to the prediction of nearby 
words along with the words in the context window. 
Paragraph Vector has been shown to be a state of 
the art technique for analyzing supervised docu-
ment level sentiment. However, we envision our 

end-to-end architecture as not being tied to a par-
ticular unsupervised feature learning technique. In 
fact, the drawback of Paragraph Vector is that all 
text units must be stored in memory, and an itera-
tive inference step is needed during runtime. Even-
tually it is not unlikely that advances and variation 
in Recurrent Neural Network Language Models, as 
discussed in (Mikolov et al., 2010) and (Sutskever 
et al., 2011), or Recursive Neural Networks, as in 

(Socher et al., 2013) and (Socher et al., 2011), will 
provide a more scalable alternative for mapping 
text segments of arbitrary length to vectors.  

In this section we will explore the perfor-
mance of the unsupervised text vector component 
of our end-to-end architecture. We will first dis-
cuss the comparison between the unmodified Para-
graph Vector method and popular N-gram machine 
learning models. Then we will discuss the effect of 

augmenting Paragraph Vector with unlabelled data.  

3.1 Comparison with N-gram Models 

In this experiment we implemented Naïve Bayes 
and Maximum Entropy N-gram models to serve as 

machine learning baselines over our age prediction 
dataset. We trained Paragraph Vector with a word 
context window of 8, 20 training epochs, and text 
vectors of length 300. After establishing text vec-
tors for the training set of user tweet collections, 
we trained a logistic regression classifier as (Le & 

Mikolov, 2014) do in their original sentiment anal-
ysis paper.  
       Table 3 displays the results of this analysis. 
When it comes to testing accuracies and age range 

specific F1 scores, Paragraph Vector seems to re-
sult in the most well rounded representation, but 
the Naïve Bayes trigram model actually achieves a 
slightly higher overall accuracy. However, one 
clearly evident differentiator between the tech-
niques can be seen in the breakdown of the results 
over the training set.  

       The trigram Maximum Entropy model expe-
riences a 35.4% drop-off in accuracy from the 
training set to the test set, Naïve Bayes experiences 
a 28.1% drop-off in accuracy, and Paragraph Vec-
tor only falls 1%. It seems as though particularly 
for the case of the tougher Generation X and Older 
ranges, the N-gram models overfit on this small 
training set in a way that does not generalize. The 

Paragraph Vector model, however, has built a no-
tion of text synonym that constricts its learning to 
knowledge that will generalize. Table 3 seems to 
indicate that despite similar performance, the Para-
graph Vector model has a far better idea of its own 
true accuracy than N-gram models and has the po-
tential at least to significantly improve whereas the 

N-gram models are much closer to their accuracy 
limitations given the small training dataset.  

3.2 Knowledge Transfer From Unlabelled 

Data  

In order to extend the Paragraph Vector model, we 
explored the possibility of expanding its know-
ledge coverage by incorporating unlabelled data. 
As we were concerned about the effect on perfor-
mance of both storing and conducting inference 
over text segment vectors at scale, we did not in-
clude any additional user profile vectors in our 

model. Instead, additional unlabelled tweets were 
added to the Paragraph Vector training and only 
the words were considered.  
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Table 4: Logistic regression Paragraph Vector results 

with the incorporation of additional text.  

 
Table 4 shows that as more tweets are in-

cluded, the Paragraph Vector model becomes bet-
ter. In fact, the addition of 10 million unlabelled 
tweets results in a 12.5% relative improvement in 
the accuracy of the original Paragraph Vector 

model. It should be noted that each of these cor-
puses was analyzed over 20 training epochs of Pa-
ragraph Vector. It is also important to note at this 
stage that we have found that the number of train-
ing epochs has a big impact on the quality of the 
text vectors produced by Paragraph Vector. The 
implication being that training on massive corpuses 

only makes sense if the time is allotted for a signif-
icant number of iterations.  

4 Learning Deep Neural Networks from 

Unsupervised Text Feature Vectors  

A logical first step in building powerful repre-
sentations on top of unsupervised text vectors is to 
analyze the performance differences between lo-
gistic regression and generic deep neural network 
architectures. 3.03 million total free parameters is a 
good number that we established as the desired 

size for our neural network architecture. In these 
experiments (and all that follow) we kept that size 
constant across different numbers of hidden layers 
and every hidden layer was set to be the same size 
within an individual single task network.  

We also restricted our analysis to Paragraph 
Vector with 10 million unlabelled tweets because it 
achieves the best performance with logistic regres-
sion. Our neural network leverages the Hessian 

Free Optimizer (Martens, 2010) and (Martens and 
Sutskever, 2011) in order to traverse pathological 
curvatures in the error function. We found this me-
thod to be considerably better than straightforward 
stochastic gradient descent in practice. Additional-
ly, our deep neural network was initialized with 
greedy layer wise pretraining (Hinton et al., 2006). 
We used sigmoid activation units, a preconditioner, 
and a cross entropy loss function.  

Our deep learning results are depicted in Table 
5. Our network increase in performance as we in-
crease the number of hidden layers until hitting a 
maximum total accuracy of 73.1% with three hid-

den layers. The three hidden layer network is the 
most efficient in its use of free parameters, and 
shines above the rest due to a considerable separa-
tion from the pack in predicting Generation X 
Twitter users – the toughest age range to predict.  
 

 
Table 5: Results for different numbers of equal sized 

hidden layers with a fixed total parameter size.  

5 Deep Multitask Learning Architectures 

Multitask learning across deep neural network ar-
chitectures is far from a new idea. The architecture 
portrayed in Figure 1, taken from (Socher and 
Manning, 2013), is seemingly of general consensus 
in the deep learning community (Bengio et al., 
2013). The main idea is that a shared input is sent 
to an arbitrary amount of Neural Network hidden 
layers that are shared between related tasks and 
then classified by an arbitrary number of task spe-

cific Neural Network hidden layers and a task spe-
cific output layer.  

 
Figure 1: Standard Deep Multitask Learning Architec-
ture Diagram 

 

In (Collobert & Weston, 2008) this general 
architecture is extended in an attempt to perform 

Semantic Role Labeling and an unsupervised lan-
guage model is used to initialize word vectors. 
However, it is important to note that they have 
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many more training examples in their experiments 
than we do. In a situation where there is a relative-
ly small number of training examples, we believe it 
makes more sense to treat unsupervised text map-
pings as an input feature space for training that is 

shared across tasks (as opposed to just an initia-
lized layer). Although feature spaces created by 
unsupervised learning could contain errors, with 
limited training examples algorithms cannot afford 
to perform sparse updates based on individual N-
grams. It is imperative in learning relationships 
that generalize well and do not overfit to associate 
discoveries about phrases with synonyms and 
phrases of similar meaning. As we have already 

shown, doing this with high quality unsupervised 
feature vectors constrains the space of learning and 
prevents supervised machine learning algorithms 
from reading too much into misleading co-
occurances present in smaller datasets. 

A very simple paradigm of multi-task learning 
can be achieved by concatenating the output for 
each task and learning a single neural network that 
simultaneously classifies all tasks. Interestingly, 
this paradigm resulted in a consistent slight per-

formance degradation in our experiments over sin-
gle tasks. It seems like adding the extra output 
indicators must be complicating the process of mi-
nimizing error despite more information, even con-
sidering the small training corpus. Additionally, 
this method is only possible for training data that is 
jointly labeled, which significantly limits it appli-
cability as a technique and seems inconsistent with 
the individual attention humans successfully exhi-

bit when learning new skills. This limitation moti-
vates the general architecture of Figure 1, which 
has no requirement for jointly labelled training da-
ta.  

However, in the general multi-task deep learn-
ing model depicted in Figure 1, it is not clear how 
to approach the order of training tasks. In an ex-
treme example, if you imagine first training one 

task for all epochs and then training another for all 
epochs, the first task would essentially serve as an 
initialization of the base network close to the input 
that will eventually get very much customized for 
the second task after enough iterations. We did not 
find this technique useful in our experiments. In 
fact, it seems like we may be relatively far from 
realizing the totality of the apparent promise of 

multi-task learning with an architecture in the form 
of Figure 1. In our experiments, we found that 
training a framework of that form by alternating 
between tasks every epoch (and even in mini-

batches) actually resulted in a degradation of per-
formance over single task learning. In fact, in 
(Collobert & Weston, 2008), where they loop 
through tasks in alternating order and update one 
random training example at a time, the authors find 
that Semantic Role Labeling is performed better 
over a large corpus just with Language Model in-
itialization than it is with the additional contribu-

tions of knowledge of Part of Speech Tagging, 
Chunking, and Named Entity Recognition. This 
result is quite unintuitive given how related these 
tasks are, and points to a similar phenomenon to 
what we saw in implementing this paradigm.   

6 Hidden Layer Sharing 

Our proposed approach to multitask learning is 
performed with the following procedure: 

1. Linguistic input is mapped to a shared unsu-
pervised layer that serves as the effective in-

put feature space for subsequent classifiers.  
2. Each task is trained as its own deep neural 

network – the size of which is specified as a 
parameter of the model.  

3. The output layer of each model is discarded 
and the top hidden layers for each model are 
concatenated. 

4. The concatenated hidden layers are treated as 
a new input feature space to subsequent deep 

neural networks trained for each task. In our 
experiments we found a one layer logistic 
regression network with no additional hidden 
layers to make optimal use of free parame-
ters, but this effect may change for different 
domains.  

Figure 2 depicts an example architecture for 
hidden layer sharing between two tasks. In contrast 
to Figure 1, Figure 2c only illustrates classification 

of a single output at a time. This serves to unders-
core a critical practical point about prioritization. 

In practice the number of free parameters is a 
constrained value for a production NLP system. 
We expect machine learning models to increase in 
performance with an increase in free parameters. 
On the other hand, there are practical limits  
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Figure 2: An example of the process and final deployment architecture for our hidden layer sharing approach. Task 1 

is the main task to optimize. In this configuration, Task 1 is allotted three task specific hidden layers, Task 2 is allot-

ted one task specific hidden layer, and the network that processes the output from the combined hidden layers in A is 

allotted one hidden layer on top of the combined input. The logical flow of steps goes from A to B for training and C 

for deployment. Optionally, fine-tuning can be conducted with the architecture in C.  

 
imposed by the direct relationship between increas-
ing the number of free parameters, increasing a 
model’s memory footprint, and decreasing its run-
time throughput. That being said, given the modern 
hardware these systems are deployed on today, 
most models hit a point of diminishing returns 
where increasing parameters has less and less im-

pact on the model’s accuracy. As such, the practic-
al promise of multitask learning and knowledge 
transfer techniques today is to achieve a lift in pre-
dictive performance of models while staying con-
stant at the allowable limit for total free 
parameters. When viewed in this way, it is clear 
that when considered as the main task being opti-
mized, Task 1 would probably benefit from a dif-
ferent split of free parameters than Task 2 in 
Figure 2. All else being equal, although Task 2 is 

useful for improving Task 1, it is not as mission 
critical as the main task, so Task 1 likely should 
have more dedicated free parameters than Task 2 if 
you are classifying Task 1. The reverse would be 
true if you were classifying Task 2.  

In our experiments we see two major positive 
effects of the hidden layer sharing technique. First, 
training the models separately seems to allow for a 
more stable learning for each task that overcomes 

early local minimums hit by other common archi-
tecture types. Second, the ability to directly specify 
the number of free parameters allocated to each 
model in early layers results in an ability to tune 
models for optimal prioritization of related tasks.  

7 Measuring The Effectiveness of Hidden 

Layer Sharing 

As discussed in Section 6, a key aspect of our hid-
den layer sharing approach is the ability to directly 

adjust the prioritization of tasks. For the case of 
training age prediction alongside the gender pre-

diction task, we saw significant gains by limiting 
the amount of parameters in the model allocated to 
gender prediction. Training the model with a 50-50 
split in free parameters allocated between tasks 
resulted in 68.9% total accuracy (a net decrease in 
performance from single task results), however, a 

70-30 split in favor of the age prediction task 
brought total accuracy to 73.3%. A 90-10 split 
achieved the best two task result with 75.0% total 
accuracy. For the case of training age prediction 
alongside the ethnicity prediction task, we saw the 
opposite relationship. When the ethnicity learning 
task wasn’t given enough stake in the shared hid-

den layer at a 90-10 free parameter split, it hurt our 
predictive accuracy by bringing it down to 70.7%. 
However, at an even 50-50 split the ethnicity task 
free parameters helped age prediction learning 
enough to overcome our 3 hidden layer single task 
result by achieving 73.9% total accuracy.  

 
Table 6: Top results with a constrained free parameter 

size at different architecture points.  

 
Table 6 highlights our best result, which came 

from integrating a scaled down version of the three 

hidden layer model with enough free parameters 
left over to give ethnicity and gender each an equal 
10% of the total free parameter stake in the model. 
A logistic regression layer was built on top of the 
concatenated shared hidden layers to create a final 
output. 75.9% total accuracy constitutes a 3.8% 
relative improvement over deep learning models 
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due to knowledge transfer from two related tasks 
and a 34.6% relative accuracy improvement over 
the best performing baseline N-gram model. The 
hidden layer sharing approach was capable of inte-

grating both gender and ethnicity detection as re-
lated tasks to age detection for significant 
additional gains on top of the large gains resulting 
from building deep learning on top of unsupervised 
language model feature vectors. This is a pheno-
menon that was expected, but not achieved with 
concatenated output and joint learning driven 
shared hidden layer architectures.   

8 Extensibility of Architecture to Incorpo-

rate Available Metadata 

 
Table 7: Comparison of results in age range prediction 

between neural network architectures with a fixed pa-

rameter size that are given gender and ethnicity infor-

mation as structured metadata.  

 
Beyond being able to leverage knowledge from 
multiple related learned tasks, it is important for a 

social media analytics solution to be able to prop-
erly leverage structured metadata when available. 
To showcase the ease in which a model in our ar-
chitecture could do this, we ran an experiment as-
suming that gender and ethnicity are always given 
as metadata to our system. In this case we can see 
in Table 7 that both a single hidden layer model 
and multiple hidden layer models can benefit sig-

nificantly from additional structured input that is 
concatenated with the input unsupervised language 
model feature vectors. Our 3 hidden layer model 
from before is able to efficiently incorporate in this 
structured data for 23.2% relative improvement 
over the same single task model. This is a very en-
couraging result to achieve 90.1% total accuracy 

with such a small age related training set.  
The 14.2% gap between our hidden layer 

sharing result and what is possible with direct 
knowledge of the same tasks as metadata points 

out that if we had more training data on related 
tasks such as gender and ethnicity, it should be 
possible to achieve high accuracy results without 
the need for the metadata being directly given. Li-

mitations in accuracy increases resulting from 
knowledge transfer are at least in part due to the 
limited accuracy for the individual gender and eth-
nicity tasks in our current experiments, which are 
learned over the same small dataset used for age 
prediction. 

9 Conclusion and Future Work 

Prediction tasks like age prediction based solely on 
historical tweets from a user are not possible using 
rule based techniques and are not possible with 

limited training data for N-gram machine learning 
techniques. In this paper, we have shown that using 
modern machine learning techniques such as the 
addition of unlabelled training data, deep learning, 
and knowledge transfer between related tasks, it is 
possible to achieve 75.9% predictive accuracy with 
limited training data. In fact, we have shown that 

these models are very extensible and achieve 
86.6% accuracy for the common case where gend-
er is known. Moreover, we can achieve 90.1% pre-
dictive accuracy when other useful metadata like 
ethnicity is present. 

In this paper we have proposed a text analyt-
ics process flow and hidden layer sharing architec-

ture suitable for solving tough prediction problems 
on noisy social media text. However, our approach 
in this paper can be translated to other even see-
mingly unrelated domains as well, such as business 
to business lead prediction, which will be the focus 
of future publications. Our hidden layer sharing 
approach gives developers the power to specify 
how a deep neural network stores and prioritizes 

knowledge between related tasks, where popular 
techniques generally allow the neural network to 
figure this out.  

The success of this approach points out the 
need for improvement of shared hidden layer deep 
neural network approaches which in some cases 
have a difficult time prioritizing effectively and 

balancing learning across multiple complex error 
functions. Additionally, the huge improvements we 
see with direct knowledge of structured metadata 
are indicative of the potential that multitask archi-
tectures have for classification problems in the so-
cial media domain with limited training data. 

46



 

 

References  

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. 

2001. A Neural Probabilistic Language Model. Ad-

vances in Neural Information Processing Systems 

‘2000, pages 932-938.  

Yoshua Bengio, Aaron Courville, and Pascal Vincent. 

2013. Representation learning: A review and new 
perspectives. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on 35, no. 8, pages 1798-

1828. 

Steven Bird, Edward Loper, and Ewan Klein. 2009. 

Natural Language Processing with Python. O’Reilly 

Media Inc. 

N. Boulanger-Lewandowski, Y. Bengio and P. Vincent. 

2012. Modeling Temporal Dependencies in High-

Dimensional Sequences: Application to Polyphonic 

Music Generation and Transcription. In Proceedings 

of ICML, page 29.  

Ronan Collobert, and Jason Weston. 2008. A unified 

architecture for natural language processing: Deep 

neural networks with multitask learning. In Proceed-
ings of the 25th international conference on Machine 

learning, pages 160-167.  

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twitter 

sentiment classification using distant supervision. 

CS224N Project Report, Stanford, pages 1-12. 

Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh. 

2006. A fast learning algorithm for deep belief nets. 

Neural computation 18, no. 7, pages 1527-1554. 

Nadin Kökciyan, Arda Celebi, Arzucan Ozgür, and Su-

zan Usküdarlı. 2013. Bounce: Sentiment classifica-

tion in Twitter using rich feature sets. In Second Joint 

Conference on Lexical and Computational Semantics 

(* SEM), vol. 2, pages 554-561. 
Rajasekar Krishnamurthy, Yunyao Li, Sriram Ragha-

van, Frederick Reiss, Shivakumar Vaithyanathan, 

and Huaiyu Zhu. 2009. SystemT: a system for dec-

larative information extraction. ACM SIGMOD 

Record 37, no. 4, pages 7-13. 

 Quoc Le, and Tomas Mikolov. Distributed Representa-

tions of Sentences and Documents. 2014. In Proceed-

ings of the 31st International Conference on Machine 

Learning (ICML-14), pages 1188-1196. 

Omer Levy, and Yoav Goldberg. Neural word embed-

ding as implicit matrix factorization. 2014. In Ad-

vances in Neural Information Processing Systems, 
pages 2177-2185.  

James Martens. Deep learning via Hessian-free optimi-

zation. 2010. In Proceedings of the 27th Internation-

al Conference on Machine Learning (ICML-10), 

pages 735-742. 

James Martens, and Ilya Sutskever. 2011. Learning re-

current neural networks with hessian-free optimiza-

tion. In Proceedings of the 28th International 

Conference on Machine Learning (ICML-11), pages 

1033-1040. 

Grégoire Mesnil, Tomas Mikolov, Marc'Aurelio and 

Yoshua Bengio. 2015. Ensemble of Generative and 

Discriminative Techniques for Sentiment Analysis of 

Movie Reviews. Submitted to the workshop track of 
ICLR 2015.  

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan 

Cernocký, and Sanjeev Khudanpur. Recurrent neural 

network based language model. 2010. In 

INTERSPEECH 2010, 11th Annual Conference of the 

International Speech Communication Association, 

Makuhari, Chiba, Japan, September 26-30, 2010, 

pages 1045-1048.  

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-

rado, and Jeff Dean. Distributed representations of 

words and phrases and their compositionality. 2013. 

In Advances in Neural Information Processing Sys-
tems, pages 3111-3119. 

Jeffrey Pennington, Richard Socher, and Christopher D. 

Manning. 2014. Glove: Global vectors for word re-

presentation. In Proceedings of the Empiricial Me-

thods in Natural Language Processing (EMNLP 

2014) page 12. 

Michael Speriosu, Nikita Sudan, Sid Upadhyay, and 

Jason Baldridge. 2011. Twitter polarity classification 

with label propagation over lexical links and the fol-

lower graph. In Proceedings of the First workshop on 

Unsupervised Learning in NLP, pages 53-63. Asso-

ciation for Computational Linguistics.  
Richard Socher, Christopher D. Manning, and Andrew 

Y. Ng. Learning continuous phrase representations 

and syntactic parsing with recursive neural networks. 

2010. In Proceedings of the NIPS-2010 Deep Learn-

ing and Unsupervised Feature Learning Workshop, 

pages 1-9. 

Richard Socher, and Chrisopher Manning. 2013. Deep 

Learning for Natural Language Processing (without 

Magic). 2013. Tutorial at NAACL HLT 2013.  

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason 

Chuang, Christopher D. Manning, Andrew Y. Ng, 

and Christopher Potts. 2013. Recursive deep models 
for semantic compositionality over a sentiment tree-

bank. In Proceedings of the conference on empirical 

methods in natural language processing (EMNLP), 

vol. 1631, pages 1642. 

Ilya Sutskever, James Martens, and Geoffrey E. Hinton. 

2011. Generating text with recurrent neural networks. 

In Proceedings of the 28th International Conference 

on Machine Learning (ICML-11), pages 1017-1024. 

 

47


