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SocialNLP 2015@NAACL Chairs’ Welcome

It is our great pleasure to welcome you to the Third Workshop on Natural Language Processing for
Social Media – SocialNLP’15, associated with NAACL 2015. SocialNLP is a new inter-disciplinary
area of natural language processing (NLP) and social computing. There are three plausible directions
of SocialNLP: (1) addressing issues in social computing using NLP techniques; (2) solving NLP
problems using information from social media; and (3) handling new problems related to both social
computing and natural language processing.

Through this workshop, we anticipate to provide a platform for research outcome presentation
and head-to-head discussion in the area of SocialNLP, with the hope to combine the insight and
experience of prominent researchers from both NLP and social computing domains to contribute to the
area of SocialNLP jointly. Also, selected and expanded versions of papers presented at SocialNLP will
be published in two follow-on Special Issues of Springer Cognitive Computation (CogComp) and the
International Journal of Computational Linguistics and Chinese Language Processing (IJCLCLP).

The submissions to this year’s workshop were again of high quality and we had a competitive
selection process. We received 10 submissions from Asia, Europe, and the United States., and
due to a rigorous review process, we only accepted 5 of them. Thus the acceptance rate was 50
percent. The workshop papers cover a broad range of SocialNLP-related topics, such as location name
disambiguation, microblog and mobile game text processing, product mining, and social media user
analysis. We had a total of 27 program committee members, and each submission is evaluated by
at least 3 PC members. We warmly thank our PC members for the timely reviews and constructive
comments.

We are delighted to have two keynote speeches this year. Prof. Jacob Eisenstein, from Georgia
Institute of Technology, will give a talk entitled "Variation and Change in Social Media Language";
Prof. Michael C. Frank, from Stanford University, will give a talk entitled "Predicting Pragmatic
Reasoning about Language Use in Context". We also encourage attendees to attend the keynote talk
presentations. These valuable and insightful talks can and will guide us to a better understanding of the
future.

Putting together SocialNLP 2015 was a team effort. We first thank the authors for providing the
content of the program. We are grateful to the program committee members, who worked very hard
in reviewing papers and providing feedback for authors. Finally, we especially thank the Workshop
Committee Chairs Prof. Matt Post and Prof. Adam Lopez.

We hope you keep supporting SocialNLP workshop and enjoying it!

Organizers of SocialNLP 2015,

Shou-De Lin, Lun-Wei Ku, Cheng-Te Li and Erik Cambria
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Keynote Speech (I)

Keynote Speaker (Morning Session):

Jacob Eisenstein (Georgia Institute of Technology, USA)

Title:

Variation and Change in Social Media Language

Abstract:

Social media is sometimes described as a new domain, genre, or task for natural language pro-
cessing. This suggests that it has specific properties that distinguish it from other sources of text.
I will argue that there are exactly two such properties: variation and change. NLP research has
historically focused on genres such as newstext, where there is strong pressure towards standard-
ization. Far less pressure exists in social media, and so we must contend with variation on all
levels of the linguistic spectrum. This variation enables authors to mark a diverse array of so-
cial relationships and identities, and with this increasingly important interpersonal role, online
writing becomes enmeshed in complex social processes that lead to instability and change. The
inherently dynamic nature of social media language is why we can no longer annotate our way to
high accuracy NLP, so learning from unlabeled data will be increasingly critical. Finally, while
variation and change pose challenges, they also offer new opportunities for deepening our under-
standing of both language and social processes. I will describe our recent work on mining four
years of Twitter data to uncover macro-scale pathways of linguistic influence among American
cities.

Speaker Biography:

Jacob Eisenstein is an Assistant Professor in the School of Interactive Computing at Georgia Tech.
He works on statistical natural language processing, focusing on computational sociolinguistics,
social media analysis, discourse, and machine learning. He is a recipient of the NSF CAREER
Award, a member of the Air Force Office of Scientific Research (AFOSR) Young Investigator
Program, and was a SICSA Distinguished Visiting Fellow at the University of Edinburgh. His
work has also been supported by the National Institutes for Health, the National Endowment for
the Humanities, and Google. Jacob was a Postdoctoral researcher at Carnegie Mellon and the
University of Illinois. He completed his Ph.D. at MIT in 2008, winning the George M. Sprowls
dissertation award. Jacob’s research has been featured in the New York Times, National Public
Radio, and the BBC. Thanks to his brief appearance in If These Knishes Could Talk, Jacob has a
Bacon number of 2.
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Keynote Speech (II)

Keynote Speaker (Afternoon Session):

Michael C. Frank (Stanford University, USA)

Title:

Predicting Pragmatic Reasoning about Language Use in Context

Abstract:

A short, ambiguous message can convey a lot of information, provided the listener is willing
to make inferences based on assumptions about the speaker and the context of the message.
These sorts of pragmatic inferences are critical in facilitating efficient human communication,
and have been characterized informally using tools like Grice’s conversational maxims. In this
talk, I’ll describe our work on a new, probabilistic framework for referential communication
in context. This framework shows good fit to adults’ and children’s judgments across many
experiments, provides extensions to a variety of complex linguistic phenomena, and resolves
some important puzzles about language processing. I’ll end by describing how we have begun to
test this framework using data from large-scale corpora of social media conversations.

Speaker Biography:

Michael C. Frank is Associate Professor of Psychology at Stanford University. He earned his
BS from Stanford University in Symbolic Systems in 2005 and his PhD from MIT in Brain and
Cognitive Sciences in 2010. He studies both adults’ language use and children’s language learn-
ing and how both of these interact with social cognition. His work uses behavioral experiments,
computational tools, and novel measurement methods including large-scale web-based studies,
eye-tracking, and head-mounted cameras.
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Abstract

As the volume of documents on the Web in-
creases, technologies to extract useful infor-
mation from them become increasingly essen-
tial. For instance, information extracted from
social network services such as Twitter and
Facebook is useful because it contains a lot
of location-specific information. To extract
such information, it is necessary to identify the
location of each location-relevant expression
within a document. Previous studies on lo-
cation disambiguation have tackled this prob-
lem on the basis of word sense disambigua-
tion, and did not make use of location-specific
clues. In this paper, we propose a method for
location disambiguation that takes advantage
of the following two clues: spatial proximity
and temporal consistency. We confirm the ef-
fectiveness of these clues through experiments
on Twitter tweets with GPS information.

1 Introduction

As the volume of documents on the Web increases,
technologies to extract useful information from them
become increasingly essential. For instance, in-
formation extracted from social network services
(SNS) such as Twitter and Facebook is useful be-
cause it contains a lot of location-specific informa-
tion. To extract such information, it is necessary
to identify the location of each location-relevant ex-
pression within a document.

However, many previous studies on SNS rely only
on geo-tagged documents (e.g., (Han et al., 2013;
Han et al., 2014)), which include GPS information,

but these represent only a small proportion of the to-
tal.1 To extract as much location information as pos-
sible, it is important to develop a method that can es-
timate locations from numerous documents without
GPS information.

Previous studies on location disambiguation made
use of methods for word sense disambiguation and
are based only on textual information, i.e., the bag-
of-words in a document. It is, however, difficult to
solve this problem using only textual information in
a relatively short SNS document. For example, it is
difficult to identify the location of “Prefectural Of-
fice Ave.” from the following document based only
on word information.2

“I arrived at Prefectural Office Ave. from
Shuri Station!”

In this paper, we propose a method that identi-
fies the locations of location expressions in Twit-
ter tweets on the basis of the following two clues:
(1) spatial proximity, and (2) temporal consistency.
Spatial proximity assumes that all locations men-
tioned in a tweet are close to one another. In
the above document, for example, we would as-
sume that “Prefectural Office Ave.” is “Prefectural
Office Ave. (Okinawa)” using the proximity be-
tween “Shuri Station” and “Prefectural Office Ave.
(Okinawa)” The other clue is temporal consistency,

1Semiocast reported that GPS information is assigned to
only 0.77% of all public tweets.

2Although it is possible to learn a clue from “Shuri Station,”
which is located in Okinawa Prefecture, it would require a large
amount of training data to learn such lexical clues for each target
location expression.
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which assumes that the locations in a series of tweets
are near to each other.

In our experiments, we learn a location clas-
sifier for each ambiguous location expression in
Japanese. Hereafter, we call an ambiguous loca-
tion expression, such as “Prefectural Office Ave.,”
a Location EXpression (LEX), and a location to
which a LEX points, such as <Prefectural Office
Ave. (Okinawa)>, a Location Entity (LE), which
is linked to its GIS information. We call a LEX
linked to multiple LEs an ambiguous LEX, which
is the target of our location name disambiguation
system. That is unambiguous LEXs are not our tar-
get, such as “Tokyo Tower,” which points the LE
<Tokyo Tower>.

We define a set of LEXs and LEs on the basis of
Japanese Wikipedia. Training data for the location
classifiers are created from tweets containing GPS
information. The resulting location classifiers can be
applied to LEXs in any tweets or documents without
GPS information.

Our novel contributions can be summarized as
follows:

• two novel clues for location disambiguation are
proposed,

• training data is automatically created from
tweets with GPS information, and

• our method can identify LEs of LEXs in any
documents without GPS information.

The remainder of this paper is organized as fol-
lows. Section 2 introduces related work, while Sec-
tion 3 describes the resources used in this paper.
Section 4 details our proposed method and Section
5 reports the experimental results. Section 6 con-
cludes the paper.

2 Related Work

The location name disambiguation described in this
paper is closely connected with Word Sense Disam-
biguation (WSD), and so studies on WSD are dis-
cussed here. We describe studies in location name
disambiguation and in the significance of location
names in social media.

2.1 Location Estimation
Location name disambiguation has been studied for
a long time. It includes estimating one’s place of

residence and the entity of an ambiguous LEX. Sev-
eral approaches have been proposed. Although one
of the simplest and most reliable is to use IP ad-
dresses, many problems can occur, e.g., the IP ad-
dress of past content cannot be accessed, and this
approach is becoming increasingly ineffective with
the increased use of portable terminals. As a result,
location name disambiguation should now focus on
procedures that consider the original text. As infor-
mation references, Web pages and change logs in
Wikipedia have been used as the basis of location
name disambiguation. These resources are homoge-
neous and manageable. In contrast, the numerous
data on SNS often contain noise, which makes dis-
ambiguation unmanageable.

A number of studies have investigated location
name disambiguation. Han et al. (2012) extracted
location-indicative words from tweet data by cal-
culating the information gain ratios. Their paper
states that the words improved the estimation per-
formance of the users’ location. They concluded
that the procedure requires relatively little memory,
is fast, and could potentially be used by lexicog-
raphers to extract location-indicative words. Back-
strom et al. (2008) developed a probabilistic frame-
work to quantify the spatial variation manifested in
search queries. This allowed them to obtain a mea-
sure of spatial dispersion that indicates regional in-
formation.

Adams and Janowicz (2012) estimated ge-
ographic regions from unstructured, non geo-
referenced text by computing a probability distri-
bution over the Earth’s surface. Their methodology
combines natural language processing, geostatistics,
and a data-driven bottom-up semantics. Chandra et
al. (2011) estimated a city-level user location based
purely on a content of tweets, which may include
reply-tweet information, without the use of any ex-
ternal information, such as a gazetteer, IP informa-
tion etc. Chang et al. (2012) proposed two unsuper-
vised methods based on notions of Non-Localness
and Geometric-Localness to prune noisy data from
tweets. Kinsella et al. (2011) created language mod-
els of locations using coordinates extracted from
geotagged Twitter data. Van Laere et al. (2014) as-
signed coordinates to Flickr photos and to Wikipedia
articles with Kernel Density Estimation and Ripley’s
K statistic. Although these studies have estimated
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location names from location-indicative words or
the degree of popularity, most studies neglect spatial
proximity, i.e., the distance between two locations,
and temporal consistency, i.e., previous tweets from
the same user. This paper proposes a new method of
location name estimation that considers both spatial
proximity and temporal consistency.

2.2 The Importance of Location Name in
Social Media

Several researchers have attempted to extract infor-
mation from SNS such as Twitter. Sakaki et al.
(2010) detected earthquakes from tweets containing
geographic information system (GIS) information.
They judged whether the tweet was posted just af-
ter an earthquake using a support vector machine
(SVM), and determined the seismic center from the
formatted tweets. In addition, they developed a sys-
tem that raises the alarm about an earthquake from
the predicted results. Bollen et al. (2011) extracted
the social mood, and predicted the stock price fluc-
tuation N days from the day of observation by us-
ing evaluated data of the ’mood-related’ dictionary.
As a result, they concluded that they could show the
3 days from the ’calm-mood’ day might be able to
predict the stock price fluctuation. Aramaki et al.
(2011) predicted an influenza epidemic from tweets.
They showed the possibility of information extrac-
tion from the tweets that reflects the actual world’s
situation by using language processing technologies.
Boyd et al. (2010) examined a practice of retweeting
as a way by which participants can be “in a con-
versation.” Paul and Dredze (2011) considered a
broader range of public health applications for Twit-
ter and showed quantitative correlations with public
health data and qualitative evaluations of model out-
put. Baldwin et al. (2013) explored how linguisti-
cally noisy or otherwise it is over a range of social
media sources empirically over popular social me-
dia text types, in the form of YouTube comments,
Twitter posts, web user forum posts, blog posts and
Wikipedia. Yin et al. (2012) constructed a system
architecture for leveraging social media to enhance
emergency situation awareness with high-speed text
streams retrieved from Twitter during natural disas-
ters and crises.

In these researches, the location of an SNS docu-
ment plays an important role in extracting informa-

tion, and in most cases, rely on GPS function con-
nected to the tweets. However, in fact, there are less
than 1% of the entire tweets that are connected to
GPS. In order to enhance the accuracy of such re-
search, it is necessary to use the framework that en-
ables to discriminate the location out of the texts and
words of the tweets that do not contain GPS infor-
mation.

3 Resources

3.1 LEX Database

First, it is necessary to define the LEXs and LEs
handled in this study. We focus on LEXs and LEs
that have GIS information on Wikipedia. In this pa-
per, we call the database of LEXs and LEs LEX
database, and use two methods to obtain the LEX
database from Wikipedia according to the type of
GIS data:

• Infobox

• Latitude/longitude information

3.1.1 Infobox

The Infobox is a meta-template on a Wikipedia
page (as shown in Figure 1). Infobox, which the
article of a location name has, sometimes contains
its address and latitude/longitude. We extract entries
that have such Infoboxes as LEs.

We ran this process on the Japanese Wikipedia,
and extracted 759 LEXs and 884 LEs as a result.

3.1.2 Latitude/Longitude Information

The latitude/longitude information is often given
at the top of a Wikipedia article about a location (as
shown in Figure 2). We extract LEs and LEXs from
Wikipedia articles that contain such GIS informa-
tion. We extracted 17,140 LEXs and 17,426 LEs by
applying this method to the Japanese Wikipedia.

We merged these two databases to generate our
LEX database, deleting duplicate LEs in the process.
In total, we obtained 17,724 LEXs and 18,256 LEs.
Table 1 lists the LEs of “Prefectural Office Ave.” Ta-
ble 2 lists the frequencies of LEXs and LEs accord-
ing to the number of LEs for a LEX. From this ta-
ble, we can see that we have 462 ambiguous LEXs,
which correspond to 994 LEs.
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Figure 1: Infobox information

ID LE Lat Long
1 Prefectural Office Ave. (Hyogo) 34.69 135.18
2 Prefectural Office Ave. (Chiba) 35.60 140.12
3 Prefectural Office Ave. (Toyama) 36.69 137.20
4 Prefectural Office Ave. (Hiroshima) 34.39 132.45
5 Prefectural Office Ave. (Ehime) 33.84 132.76
6 Prefectural Office Ave. (Kohchi) 33.55 133.53
7 Prefectural Office Ave. (Okinawa) 26.21 127.67

Table 1: LEs for the LEX “Prefectural Office Ave.”

In this study, a location name with parenthesis
is used for an LE, such as <Times Square (De-
troit People Mover)> and <Times Square (Hong
Kong)> shown in Figure 1, 2, and a string with-
out the part in brackets is used for a LEX, such as
“Times Square.”

3.2 Corpus for Location Name Disambiguation

The disambiguation of LEXs requires a corpus in
which each LEX is assigned to an LE. We extract
this from Twitter data with GIS information. For ex-
ample, given a tweet “Let’s meet at the Prefectural
Office Ave.” that has GIS latitude and longitude in-
formation indicating Okinawa, it is natural that the
“Prefectural Office Ave.” in the tweet indicates the
LE <Prefectural Office Ave. (Okinawa)>. There-
fore, we assign LEs to LEXs in tweets based on their
GIS information using the following method.

Figure 2: Latitude/longitude information

# of LEs LEX LE
1 17,262 17,262
2 412 824
3 38 114
4 8 32
5 2 10
7 2 14

Sum 17,724 18,256

Table 2: Statistics of LEX database

• STEP 0 (pre-processing): Preparation of tweets

We obtained tweet data containing GIS infor-
mation from 2011/7/15 to 2012/7/31. We re-
moved duplicate tweets.

• STEP 1: Extraction of tweets including LEXs

Tweets including ambiguous LEXs are ex-
tracted based on the LEX database described
in Section 3.1. Tweets including unambigu-
ous LEXs are not used for our target tweets but
used for the clues of temporal consistency de-
scribed in Section 4.3. This process searches
for LEX strings within a tweet, and aggregates
such tweets for each LEX. If several ambiguous
LEXs are included in a tweet, this tweet is used
for each LEX. For example, “I’ll go to Mo-
tomachi station from Prefectural Office Ave.”
is used for “Motomachi station” and “Prefec-
tural Office Ave.”

• STEP 2: Assignment of LEs

An LE is assigned to tweets for each LEX ex-
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tracted in STEP 1. This process is conducted
on the basis of the GIS information in the tweet
and the LEs of the target LEX. Our idea is that
if the distance between the tweet GIS and an
LE GIS is short, the LEX in the tweet may
point to this LE. For example, if the GIS of
the tweet including “Prefectural Office Ave.”
is near <Prefectural Office Ave. (Okinawa)>,
this “Prefectural Office Ave.” may point to
<Prefectural Office Ave. (Okinawa)>. In this
paper, we set the distance threshold for the
judgment of LEs to 10km. That is, if the dis-
tance between the tweet GIS and an LE GIS
is less than 10 km, this LE is assigned to the
tweet; otherwise this tweet is discarded. If the
distance of several LEs is less than 10 km, the
LE with the shortest distance is assigned to the
tweet.

Approximately 180,000 tweets including ambigu-
ous LEXs were obtained. Out of 462 ambiguous
LEXs in the LEX database, 353 contain at least one
tweet. We employed them as the gold standard data
used in our experiments.

One of our novel contributions of this study is that
we automatically constructed this large-scale corpus
with GIS information, whereas previous studies on
toponym resolution created a corpus by hand (Leid-
ner, 2008).

4 Method for Location Name
Disambiguation

We propose a method for location name disambigua-
tion in tweets. Our approach automatically distin-
guishes LEs for a LEX in a tweet using a machine
learning algorithm: SVM. The SVM classifiers are
generated for each LEX. Each SVM classifier has
the following features.

4.1 Baseline Features
We use the following two features as baseline fea-
tures:

(1) Lexical feature: bag of words in the tweet
(2) Majority feature: frequency of LEs

4.2 Spatial Proximity Features
The distance between a target ambiguous LEX and
an unambiguous LEX in the tweets is used for the

★
★

★

★
★ ★

★

Figure 3: Locations of “Prefectural Office Ave.” in Japan

spatial proximity features. An example is shown be-
low.

(1) It takes about 20 minutes to get from Shuri
station to Prefectural Office Ave.

The ambiguous LEX “Prefectural Office Ave.” has
seven LEs (shown in Figure 3).

In this example, it is difficult to estimate the LE
based only on the lexical information. However, the
relation between the LEX and other unambiguous
locations in the same text provides a clue for the dis-
ambiguation of the LEX. In general, related LEXs
tend to exist alongside the target LEX. Although the
words in tweets may be learned implicitly from this
relation by SVM, they cannot also be expected to
occur. Thus, our method explicitly uses the dis-
tance between two locations as the relation. We as-
sume that the distances between the LE of the target
LEX and other LEs are short. For example, in the
above example of “Prefectural Office Ave.,” <Shuri
station> is relatively close to <Prefectural Office
Ave. (Okinawa)>, but is not near <Prefectural Of-
fice Ave. (Chiba)> Thus, it can be estimated that
the LE of “Prefectural Office Ave.” is <Prefectural
Office Ave. (Okinawa)>

To assign the spatial proximity features to a tweet,
we first check whether the tweet includes LEXs. If
the LEXs are unambiguous, we then calculate the
distance between the unambiguous LE and each tar-
get LE.3 Features depending on the distance are as-
signed to the tweet. If the LEXs are ambiguous, spa-
tial proximity features are not used, because the LEs

3If there are multiple unambiguous LEs in the tweet, all of
these are considered as features.

5



indicated by the LEXs cannot be determined.
For example, when a tweet with “Prefectural Of-

fice Ave.” contains the unambiguous LEX “Shuri
Station,” the distance between <Shuri Station>
and each LE indicating “Prefectural Office Ave.”
is calculated. If the distance between <Shuri
Station> and <Prefectural Office Ave. (Okinawa)>
is 0∼10 km and that between <Shuri Station> and
<Prefectural Office Ave. (Chiba)> is 500∼1,000
km, these distances are used as different features.
The number of spatial consistency features is ld,
where l is the number of LEs for the target LEX and
d is the number of distance bins, which are described
in Section 5.

4.3 Temporal Consistency Features

Until now, we have considered only a single tar-
get tweet to estimate locations. However, the tar-
get tweet sometimes contains few useful clues for
LEX disambiguation because the tweet is too short.
Therefore, this paper considers the preceding tweets
posted in the previous t hours. The baseline features
and the spatial proximity features are also extracted
from these preceding tweets. An example is shown
below.

(2) I arrived at the Prefectural Office Ave.

Its preceding tweets are as follows:

(3) I’m going to take an airplane. I’m looking
forward to Okinawa!

(4) I arrived in Okinawa!

(5) I’m heading for Shuri Station by Yui Rail.

In such a case, useful information for location es-
timation can be obtained by considering these pre-
ceding tweets. For example, “Okinawa” is re-
lated to <Prefectural Office Ave. (Okinawa)>, and
<Shuri Station> is near <Prefectural Office Ave.
(Okinawa)> Based on such information, it can be
estimated that the LE of “Prefectural Office Ave.” is
<Prefectural Office Ave. (Okinawa)>

It is necessary to determine the time threshold t.
This is because extremely old tweets are hardly re-
lated to the target tweet. We will discuss this issue
in Section 5.

Method Settings
+10∼100 km

SP +10∼50, 50∼100 km
(0∼10, 100∼500 km) +10∼100, 500∼1000 km

+10∼50, 50∼100, 500∼1000 km

TS

Indefinite
∼24 h
∼12 h
∼6 h
∼3 h
∼1 h

Table 3: Settings for SP and TS

5 Experiments and Discussion

5.1 Experimental Settings

We create an SVM classifier for each LEX to solve
location name disambiguation with the features de-
scribed in Section 4. This classifier identifies the
LE for an ambiguous LEX included in a tweet.
Since location name disambiguation is a multi-class
identification problem, we use the one-versus-the-
rest method for the SVM classifier. For the gold-
standard data, we used 70,184 tweets including the
LEXs that are associated with ten or more tweets
from the corpus described in Section 3.2. We
conducted 5-fold cross-validation using this data.
We adopted TinySVM,4 an SVM package with a
quadratic polynomial kernel. For the segmentation
of Japanese words, we used the Japanese morpho-
logical analyzer JUMAN.5

5.2 Methods for Comparison

We compare the following four methods in this
study:

• Baseline (B): This method uses only the fol-
lowing two features: (1) lexical features, and
(2) majority features. We used the base form
of words in a tweet as SVM features. Here, we
used only high-frequency words (top 100,000).
We regard the frequency of a word in a tweet as
the lexical feature.

• +Spatial Proximity (+SP): This method uses
the baseline features and the spatial proxim-
ity features. The spatial proximity features are
generated from the distance between the tar-
get LE and another unambiguous LEX (LE)

4http://chasen.org/˜taku/software/TinySVM/
5http://nlp.ist.i.kyoto-u.ac.jp/index.php?JUMAN
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mentioned in the same tweet (as described in
Section 4.2). We examined four sets of dis-
tance bins as listed in Table 3 (default: 0∼10,
100∼500 km). Each feature of spatial prox-
imity is considered separately according to the
distance bins. The values are the number of
LEs in the same tweet that satisfy the distance
condition.

• +Temporal Consistency (+TC): This method
uses baseline features and temporal consistency
features. The temporal consistency features
are generated from recent tweets (maximum of
three), as described in Section 4.3. This feature
disregards non-recent tweets. We investigated
six definitions of recency as listed in Table 3.

• +Spatial Proximity +Temporal Consistency
(+SP+TC): This method uses all features, i.e.,
baseline, spatial proximity, and temporal con-
sistency features. The spatial proximity fea-
tures are also generated from the preceding
tweets that are used to generate the temporal
consistency features.

5.3 Evaluation
The accuracy

s

c
is calculated from the system out-

put and the correct LEs, where s is the number of
tweets whose output had the correct LE and c is the
total number of tweets considered. Moreover, the
accuracy is calculated separately for each number of
tweets per LEX (10∼100: rare LEX, 100∼1,000:
intermediate LEX, 1,000∼: common LEX, 10∼:
all).

5.4 Experimental Results and Discussions
The results for all methods are compared in Table
4 with the following proximity and consistency fea-
tures:

• 0∼10, 10∼100, 100∼500 km

• ∼6 h

The Majority Baseline (MB) is a baseline method
that outputs the most frequent LE for each LEX.

Table 4 lists the accuracy of the estimated LEs
considering spatial proximity and temporal consis-
tency. In particular, considering the proximity im-
proves the accuracy, regardless of the number of
tweets for each LEX. Although the consideration of

# of Tweets
(Sum) Method # of Correct Accuracy

10∼100
(4,891)

MB 4,171 0.8528
B 4,485 0.9170

+SP 4,515 0.9231 ‡
+TC 4,491 0.9182 ‡

+SP+TC 4,520 0.9241 ‡

100∼1000
(25,758)

MB 22,477 0.8726
B 24,725 0.9599

+SP 24,752 0.9609
+TC 24,708 0.9592

+SP+TC 24,737 0.9604

1000∼
(39,535)

MB 36,896 0.9332
B 39,041 0.9875

+SP 39,054 0.9878
+TC 39,036 0.9874

+SP+TC 39,054 0.9878

10∼
(70,184)

MB 63,544 0.9054
B 68,251 0.9725

+SP 68,321 0.9735 ‡
+TC 68,235 0.9722

+SP+TC 68,311 0.9733 †
“†” means the superiority to B estimated at the 5%

significance level and “‡” means that at the 1% level.

Table 4: Main results

temporal consistency also improves accuracy forrare
LEXs. the accuracy is below the baseline for com-
mon LEXs.The accuracy considering both features
outperforms the baseline by 7.13% for rare LEXs.In
addition, a sign-test was adopted to demonstrate the
significance of the results. This test was performed
using R.6 “†” means the superiority to B estimated at
a significance level of 5%, and “‡” means that at the
1% level. This test shows the significance of the pro-
posed method, particularly for rare LEXs.Moreover,
the accuracy with all tweets verifies the significance
of the proposed method compared to the baseline.

The accuracy did not improve for common LEXs-
because of an imbalance in the tweet data. This
study only uses tweet data that include LEXs and
GIS information. Therefore, the LEs of the tweets
are imbalanced for each LEX. The high accuracy of
MB suggests this imbalance depends on the num-
ber of tweets for each LEX. Moreover, most tweets
with GIS information are generated automatically
by companies such as Foursquare. As a result, high
accuracy is obtained in many cases without consid-
ering the proximity or consistency. Although this
study used only tweets with GIS information, the ac-
curacy could clearly be improved using tweets with-

6http://cran.r-project.org/
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# of Tweets
(Sum) Proximity # of Correct Accuracy

10∼100
(4,891)

+10∼100 km 4,515 0.9231
+10∼50, 50∼100 km 4,513 0.9227

+10∼100, 500∼1000 km 4,519 0.9239
+10∼50, 50∼100, 500∼1000 km 4,520 0.9241

100∼1000
(25,758)

+10∼100 km 24,752 0.9599
+10∼50, 50∼100 km 24,758 0.9612

+10∼100, 500∼1000 km 24,744 0.9606
+10∼50, 50∼100, 500∼1000 km 24,746 0.9607

1000∼
(39,535)

+10∼100 km 39,053 0.9878
+10∼50, 50∼100 km 39,069 0.9882

+10∼100, 500∼1000 km 39,064 0.9881
+10∼50, 50∼100, 500∼1000 km 39,065 0.9881

Table 5: Comparison of SP features

# of Tweets
(Sum) Terms # of Correct Accuracy

indefinite 4,429 0.9055
∼24 h 4,491 0.9182

10∼100 ∼12 h 4,493 0.9186
(4,891) ∼6 h 4,491 0.9182

∼3 h 4,494 0.9188
∼1 h 4,493 0.9186

indefinite 24,694 0.9587
∼24 h 24,700 0.9589

100∼1,000 ∼12 h 24,709 0.9593
(25,758) ∼6 h 24,708 0.9592

∼3 h 24,718 0.9596
∼1 h 24,725 0.9599

indefinite 38,988 0.9862
∼24 h 38,988 0.9873

1,000∼ ∼12 h 39,036 0.9874
(39,535) ∼6 h 39,036 0.9874

∼3 h 39,033 0.9873
∼1 h 39,034 0.9873

Table 6: Comparison of TC features

out GIS information.
A comparison of the results for various proxim-

ity levels is shown in Table 5. As shown in Ta-
ble 5, the accuracy of location name disambigua-
tion with rare LEXs improves with the addition of
the 500∼1000 km bin. However, when many tweets
are considered, the accuracy improves with the ad-
dition of 10∼50 and 50∼100 km bins. This implies
that the LE estimation requires additional informa-
tion when there are few tweets, and less information
when many tweets are available.

A comparison of the results for different degrees
of temporal consistency is shown in Table 6. Al-
though there were few remarkable results, it is clear
that the accuracy does not improve significantly
when older tweets are considered. In particular, the
poorest accuracy was achieved when specific terms

are not defined. This shows the validity of consider-
ing specific terms.

6 Conclusions and Future Work

In this paper, we presented a method for location
name disambiguation for text snippets on SNS. We
considered both the spatial proximity and temporal
consistency to produce the estimates of LEs. As
a result, our method substantially outperformed the
baseline method that considers only lexical informa-
tion. More specifically:

• Considering the spatial proximity improves the
accuracy

• Considering the temporal consistency with
many tweets improves the accuracy

• Considering both of the above outperforms the
baseline by 7.13%

In future work, first, we plan to further investigate
the cause of the decrease in accuracy when the tem-
poral consistency feature considers many tweets.

Second, in this paper, only tweets including un-
ambiguous LEXs are used to calculate the proximity
feature for the target LEX. However, tweets includ-
ing ambiguous LEXs could also be used if the LEXs
have been disambiguated in advance.

In addition, we estimated the LEs of ambiguous
LEXs, although the location estimation has several
problems. One concerns whether the user posting
the tweet including the LEX is actually at that loca-
tion. Solving this problem is necessary for some ap-
plications specializing in GIS information. In future
work, we aim to solve this problem using the pro-
posed spatial proximity and temporal consistency.
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Abstract

Paraphrase Identification and Semantic Simi-
larity are two different yet well related tasks
in NLP. There are many studies on these two
tasks extensively on structured texts in the past.
However, with the strong rise of social me-
dia data, studying these tasks on unstructured
texts, particularly, social texts in Twitter is very
interesting as it could be more complicated
problems to deal with. We investigate and find
a set of simple features which enables us to
achieve very competitive performance on both
tasks in Twitter data. Interestingly, we also con-
firm the significance of using word alignment
techniques from evaluation metrics in machine
translation in the overall performance of these
tasks.

1 Introduction

Paraphrase Identification and Semantic Similarity
are important tasks that can be used as features to
improve many other Natural Language Processing
(NLP) tasks, e.g. Information Retrieval, Machine
Translation Evaluation, Text Summarization, Ques-
tion and Answering, and others. Besides this, an-
alyzing social media data like tweets of the social
network Twitter is a field of growing interest for dif-
ferent purposes. The study of these typical NLP tasks
on Twitter data can be very interesting as social me-
dia data carries lot of surprises and unpredictable
information.

The Paraphrase Identification is a classic NLP task
which is a classification problem. Given a pair of
sentences, the system is required to assess if the two

sentences carry the same meaning, to classify them
paraphrase, or not paraphrase otherwise. Likewise,
Semantic Similarity is another NLP task in which
the system needs to examine the similarity degree
(in a pre-defined semantic scale) of a given pair of
texts, varying in different levels such as word, phrase,
sentence, or paragraph.

There are different approaches, both supervised
and unsupervised, have been proposed for these two
tasks, ranging from simple level like word/n-gram
overlapping, string matching, to more complicated
ones like semantic word similarity, word alignment,
syntactic structure, etc.1,2 However, it is challenging
or even inapplicable to deploy all these approaches
to social media data, like Twitter data, due to many
differences the social media data carries, such as mis-
spelling, word out of vocabulary, slang, acronyms,
style, structure, etc. In this paper, we study and find
a set of simple features specifically chosen and suit-
able for social media data which is relatively easy
to obtain, but able to achieve very competitive per-
formance on both tasks for Twitter data. We also
analyze the significance of each feature quantitatively
and qualitatively in the overall performance. As a
result, we can prove our hypothesis that the combina-
tion of simple features like word/n-gram overlapping,
word alignment, and semantic word similarity can
result in very good performance for both tasks on
social media data.

The paper is organized as follows: Section 2

1http://aclweb.org/aclwiki/index.php?
title=Paraphrase_Identification_(State_of_the_art)

2http://aclweb.org/aclwiki/index.php?
title=Similarity_(State_of_the_art)
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presents the Related Work, Section 3 describes the
tasks and set of features, Section 4 shows the Experi-
ments, Section 5 reports the Evaluations, Section 6
discusses the Error Analysis, and finally Section 7 is
the Conclusions and Future Work.

2 Related Work

The ability to identify paraphrase, in which a sen-
tences express the same meaning of another one but
with different words, has proven useful for a wide
variety of natural language processing applications
(Madnani and Dorr, 2010). The ACL Wiki gives an
excellent summary of the state-of-the-art paraphrase
identification techniques; this shows how much ef-
fort researchers did to automatically detecting para-
phrases.3 The different approaches can be catego-
rized into supervised methods, i.e. (Madnani et al.,
2012), (Socher et al., 2011) and (Wan et al., 2006),
that, at the moment, are the most promising and un-
supervised methods, i.e. (Fernando and Stevenson,
2008), (Hassan and Adviser-Mihalcea, 2011) and (Is-
lam and Inkpen, 2009). Previous works use the Mi-
crosoft Research Paraphrase Corpus (MSRP) dataset
(Dolan et al., 2004) that is obtained by extracting
sentences from news sources on the web; however,
this scenario is very different from social data. A
few recent studies have highlighted the potentiality
and importance of developing paraphrase (Zanzotto
et al., 2011) and (Xu et al., 2013) and semantic simi-
larity techniques (Guo and Diab, 2012) specifically
for Tweets. They also indicated that the very infor-
mal language, especially the high degree of lexical
variation, used in social media has posed serious chal-
lenges. Twitter data and, more in general, social me-
dia data have been used as dataset in a growing topic
of research. Twitter, at the moment the most used
microblogging tool, has seen a lot of growth since
it launched in October, 2006. In (Java et al., 2007)
preliminary analysis they find user clusters based on
user intention to topics by clique percolation methods.
This research is expanded and improved in several
ways in (Krishnamurthy et al., 2008), they applied
geographical characterization to cluster users and
also found relation between the number of following
and followers of a user. These and other similar re-

3http://aclweb.org/aclwiki/index.php?
title=Paraphrase_Identification_%28State_of_the_art%29

searches have helped to obtain a more precise idea
about some effect that action in this microblogging
platform can have; (Kwak et al., 2010) use previ-
ous works as a base to rank users adding the effect
of retweets on information propagation. With the
data obtained from the population of blogs and social
networks, opinion mining and sentiment analysis be-
came, in the last years, a field of interest for many re-
searches. In the literature (Pak and Paroubek, 2010),
they describe a method for an automatic collection of
a corpus that can be used to train a sentiment classi-
fier. In a further research (Kouloumpis et al., 2011), it
shows that part-of-speech features may not be useful
for sentiment analysis in the microblogging domain,
instead using hash-tags to collect training data did
prove useful, as did using data collected based on
positive and negative emoticons.

3 Paraphrase and Semantic Similarity in
Twitter

In this section, we introduce the two tasks Paraphrase
Identification and Semantic Similarity in Twitter,
then we describe the set of simple features which
enables us to achieve competitive performance in
both tasks.

3.1 Task Description

This is a shared-task proposed as the Task#1 "Para-
phrase and Semantic Similarity in Twitter" at Se-
mEval 2015 (Xu et al., 2015).4 In this task, the first
common ground for development and comparison
of Paraphrase Identification (PI) and Semantic Simi-
larity (SS) systems for the Twitter data is provided.
Given a pair of sentences from Twitter trends, sys-
tems are required to produce a binary yes/no judg-
ment and an optionally graded similarity score in the
scale [0-1] to measure their semantic equivalence.
This task is used to promote this line of research
in the new challenging setting of social media data,
and help to advance other NLP techniques for noisy
user-generated text in the long run. Figure 1 shows
examples of paraphrase and non-paraphrase pairs in
Twitter.

4http://alt.qcri.org/semeval2015/task1/
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Figure 1: Examples of PI in Twitter.

3.2 Data Preprocessing

In order to optimize the system performance, we care-
fully analyze the dataset and notice that Tweets’ topic
is a part that is always present in both sentences; this
redundant similarity in the pairs does not give any in-
formation about paraphrase as two sentences always
have the same topic, yet they may be paraphrase or
not. Hence, we remove the topic from the sentences,
and we did the same in the pairs with Part-of-Speech
(POS) and named entity tags. As being suggested
by the guideline of the task, we also remove all the
pairs with uncertain judgment, such as "debatable"
since they cannot confirm the paraphrase/not para-
phrase relation between two sentences. After this
data processing, we obtain two smaller datasets with
very short texts, sometime reduced to a single word
and with very poor syntactic structure. We split the
original dataset into two subsets, in which one is
composed by sentence pairs and the other one is com-
posed by pairs with POS and named entity tags.

As Twitter data and other micro-blog data are
usually informal text which is quite short in length
and written in a variety of noise of presentation, e.g
"coooooool" v.s "cool", "talkin" v.s "talking", "u" v.s
"you", "thinkin" v.s "thinking", "abt" v.s "about", etc.
We apply the lexical normalization method (Han et
al., 2013) to normalize noisy lexical from the input
data. We also notice the simple structure of given
datasets, especially, after undergoing the preprocess-
ing, we decide to focus on exploiting the lexical and
string similarity information, rather than syntactic
information.

3.3 Feature Set

In order to build the system, we investigate and ex-
tract a set of simple features especially tailored for
social media data which can be used for both tasks,
for building either a binary classifier for detecting
paraphrase or regression model to compute the simi-
larity scores on Twitter data. Moreover, these features

can be used independently or together with others to
measure the semantic similarity and recognize the
paraphrase of given sentence pair as well as to eval-
uate the significance of each feature to the accuracy
of system’s predictions. On top of this, the system
is expandable and scalable for adopting more useful
features aiming for improving the accuracy.

Lexical and String Similarity. We use the system
described in the literature (Das and Smith, 2009) to
compute the lexical and string similarity between two
sentences by using a logistic regression model with
eighteen features based on n-grams. This system uses
precision, recall and F1-score of 1-gram, 2-gram and
3-gram of tokens and stems from sentence pair to
build a binary classification model for identifying
paraphrase. We extract the eighteen features from
this system to use in our classification model.

Machine Translation Evaluation Metrics.
Other than similarity features, we also use evaluation
metrics in machine translation as suggested in
(Madnani et al., 2012) for paraphrase recognition
on Microsoft Research paraphrase corpus (MSRP)
(Dolan et al., 2004). In machine translation, the
evaluation metric scores the hypotheses by aligning
them to one or more reference translations. We
take into consideration to use all the eight metrics
proposed, but we find that adding some of them
without a careful process of training on the dataset
may decrease the performance of the system. Thus,
we only use two metrics in our system, the METEOR
and BLEU. We actually also take into consideration
the metric TERp (Snover et al., 2009), but it does
not make any improvement on system performance,
hence, we exclude it.

METEOR (Metric for Evaluation of Translation
with Explicit ORdering). We use the latest ver-
sion of METEOR (Denkowski and Lavie, 2014)
that find alignments between sentences based on
exact, stem, synonym and paraphrase matches
between words and phrases. We used the sys-
tem as distributed on its website using only the
"norm" option that tokenizes and normalizes
punctuation and lowercase as suggested by doc-
umentation.5 We compute the word alignment
scores on sentences and on sentences with part-
of-speech and named entity tags, as our idea is

5http://www.cs.cmu.edu/ alavie/METEOR/index.html
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Classifier/Features

Word/
n-grams
Overlap
(1)

(1)
+METEOR

(1)
+METEOR
+TERp

(1)
+METEOR
+BLEU

(1)
+METEOR
+BLEU
+EditDistance

Baseline-1 72.4 - - - -
EditDistance 73.3 - - - -
Decision Stump 73.7 74.4 74.4 74.4 74.4
OneR 73.7 74.4 74.4 74.4 74.4
Logistic 73.6 74.9 74.9 74.9 75.0
J48 72.6 74.7 74.2 74.6 74.7
BaysianLogisticRegression 72.0 74.9 74.8 74.9 75.0
VotedPerceptron 73.7 75.6 75.5 75.8 76.2
MultiLayerPerceptron 73.9 75.6 75.3 75.4 76.1

Table 1: Paraphrase Identification Accuracy (%) obtained using different classifiers with different features on Develop-
ment data.

that if two sentences are similar, their tagged
version also should be similar.

BLEU (Bilingual Evaluation Understudy). We
use another metric for machine translation
BLEU (Papineni et al., 2002) that is one of the
most commonly used and because of that has an
high reliability. It is computed as the amount of
n-gram overlap, for different values of n=1,2,3,
and 4, between the system output and the refer-
ence translation, in our case between sentence
pairs. The score is tempered by a penalty for
translations that might be too short. BLEU relies
on exact matching and has no concept of syn-
onymy or paraphrasing. As the length of tweets
is relatively short, it is only 140-character mes-
sage, we do not expect to have large n-gram
overlaps, except 1-gram and 2-gram. Our analy-
sis actually shows that 3-gram, 4-gram and the
average score may cause more noise.

Edit Distance. We use the edit distance between
sentences as a feature. For that we used the Excite-
ment Open Platform (EOP) (Magnini et al., 2014).6

To obtain the edit distance, we use EDITS Entail-
ment Decision Algorithm (EDITS EDA) taking the
edit distance instead of entailment or not entailment
decision. We configure the system to use lemmas and
synonyms as identical words to compute sentence

6http://hltfbk.github.io/Excitement-Open-Platform/

distance, the system normalizes the score on the num-
ber of token of the shortest sentence. We choose this
configuration because it returns the best performance
evaluated on training and development data.

Sentiment Analysis. We speculate to improve
paraphrase detection by adding a feature based on po-
larity given by a sentiment analysis system. We eval-
uate this feature on all three datasets (training, develp-
ment, and testing). We use the Sentiment Pipeline of
Stanford CoreNLP (Manning et al., 2014) to obtain
this feature. We configure the pipeline for tokenizing,
splitting sentence, POS tagging, lemmatization , pars-
ing, named entity recognition (NER) and, of course,
sentiment analysis. Despite the deep analysis, most
of sentences are classified as either "positive", "nega-
tive" or "neutral"; classes "very positive" and "very
negative" are rare. We decide to use this as a polarity-
matching feature (i.e. when both sentences in the
pair are classified the same class), so we analyze the
distribution of paraphrase and polarity matching on
the three datasets, which results are shown in Table
2, Table 3 and Table 4. Contrary to our intuition,
this feature seems not to be strongly correlated with
paraphrasing, in particular, pairs with polarity match-
ing have 2.08% more of probability to be paraphrase
in the training dataset, a bit more (3.65%) in the de-
velopment dataset, but even less (1.76%) in the test
dataset. We also compute the information gain of
the feature in the training dataset using WEKA (Hall
et al., 2009) InfoGainAttributeEval with the default
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ranker and we obtain a low result, only 0.00107, so
we decide to exclude this approach. We still think
that sentiment analysis could be an useful feature for
paraphrase detection, and there would be a way to use
it properly. To prove that, we try another different ap-
proach, instead of using a binary feature, we use three
possible values: 0 if the polarity is opposite ("posi-
tive" and "negative"), 0.5 if one or both sentences in
the pair are classified as "neutral" and 1 if they have
the same polarity (both "positive" or "negative"). We
compute the information gain of the feature in the
training dataset and obtain a more promising score
of 0.01272; this seems to confirm our idea on the
sentiment analysis. Probably a wider range of val-
ues (more than just a 3 sub-classes) would possibly
obtain better results. We aim to use a continuous
value that describes polarity distance to improve our
system performance.

Paraphrase Not Paraphrase

Without
Sent. An.

3996 / 11530
34.66 %

7534 / 11530
65.34 %

Match
1856 / 5052

36.74 %
3196 / 5052

63.26 %

Mismatch
2140 / 6478

33.03 %
4338 / 6478

66.97 %

Table 2: Distribution of the paraphrase in training dataset
without sentiment analysis and with polarity matching and
mismatching.

Paraphrase Not Paraphrase

Without
Sent. An.

1470 / 4142
35.49 %

2672 / 4142
64.51 %

Match
750 / 1916
39.14 %

1166 / 1916
60.86 %

Mismatch
720 / 2226
32.35 %

1506 / 2226
67.65 %

Table 3: Distribution of the paraphrase in development
dataset without sentiment analysis and with polarity
matching and mismatching.

Paraphrase Not Paraphrase

Without
Sent. An.

175 / 838
20.88 %

663 / 838
79.12 %

Match
84 / 371
22.64 %

287 / 371
77.36 %

Mismatch
91 / 467
19.49 %

376 / 467
80.51 %

Table 4: Distribution of the paraphrase in test dataset
without sentiment analysis and with polarity matching and
mismatching.

3.4 Classification Algorithms

We build different models for both tasks using several
widely-used classification algorithms (i.e. Decision
Stump, OneR, Logistic, J48, BaysianLogisticRegres-
sion, VotedPerceptron, and MultiLayerPerceptron)
to optimize 1) the Accuracy and F1-score for Para-
phrase Identification and 2) the Pearson correlation
of Semantic Similarity scores between system and
human annotation. We use WEKA (Hall et al., 2009)
to obtain robust and efficient implementation of the
classifiers. We try several classification algorithms in
WEKA, among others, we find that the VotedPercep-
tron classifier (exponent 0.8) returns the best result
for the evaluation on training and development data.
VotedPerceptron (Freund and Schapire, 1999) is a
simple algorithm for linear classification which takes
advantage of data that are linearly separable with
large margins.

Classifier F1-score

Baseline-1 0.502
EOP EditDistance 0.609
Decision Stump 0.736
OneR 0.733
Logistic 0.724
J48 0.721
BaysianLogisticRegression 0.723
VotedPerceptron 0.746
MultiLayerPerceptron 0.741

Table 5: Paraphrase Identification F1-score obtained using
different classifiers on the best set of features (word/n-
gram overlap + METEOR + BLEU + EditDistance).
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METEOR(1) BLEU(2) EditDist(3) WMF(4) (1),(2)&(3) (1),(2)&(4) (2),(3)&(4) All
0.4624 0.4022 0.4800 0.3304 0.531 0.471 0.515 0.526

Table 7: Semantic Similarity Results with different features on Test data.

Setup Train&Dev Test
Total (pairs) 18,000 972

Para 35% 32%
Non-Para 65% 68%
Selected different trends different times

Annotated by 5 AM Turkers experts

Table 6: Distribution of Datasets.

4 Experiments

In this section, we describe the dataset, the task base-
lines and experiments carried on these two tasks.

4.1 Dataset

The dataset (Xu et al., 2014) consists of three parts,
the training and development datasets (18,000 sen-
tence pairs), the test dataset (972 sentence pairs) for
evaluation. Table 6 presents the setup and distribution
of all datasets used for the experiments.

Each row of data contains six tab-separated
columns presenting the Trending_Topic_Name,
Sent_1, Sent_2, Label, Sent_1_tag and Sent_2_tag.
The Sent_1 and Sent_2 are two sentences which may
not be necessarily full tweets. The Label column is
in a format such like "(1, 4)", which means among
5 votes from Amazon Mechanical turkers only 1 is
positive and 4 are negative. The mapping suggestions
to binary labels are as follows:

- paraphrases: (3, 2) (4, 1) (5, 0)
- non-paraphrases: (1, 4) (0, 5)
- debatable: (2, 3) which may be discarded.
The Sent1_tag and Sent2_tag are the two sentences

with part-of-speech and named entity tags. How-
ever, there is no labels of semantic similarity scores
provided in development and training data, but only
evaluation data.

4.2 Baselines

According to the task evaluation, we use all three
baselines provided for this task which are placed at
different advance levels.

Baseline-1 is a logistic regression model using
simple lexical features, which is originally used in
the literature (Das and Smith, 2009). It uses precision,
recall and F1-score of 1-gram, 2-gram and 3-gram of
tokens and stems from sentence pair to build a binary
classification model for identifying paraphrase. This
is the strongest baseline as it has the state-of-the-art
level performance in the paraphrase identification
literature.

Baseline-2 is the Weighted Matrix Factorization
(WMF) model (Guo and Diab, 2012) which is a di-
mension reduction model to extract nuanced and ro-
bust latent vectors for short texts/sentences. To over-
come the sparsity problem in short texts/sentences
(e.g. 10 words on average), the missing words, a
feature that LSA/LDA typically overlooks, is explic-
itly modeled. We use the pipeline to compute the
similarity score between texts.7

Baseline-3 is a Random system which uses the
random module in Python to generate a random score,
in the scale [0 - 1], for each sentence pair, then it sets
the threshold 0.5 for classifying paraphrase and not
paraphrase.8

4.3 Paraphrase Identification

In order to optimize the Accuracy and F1-score for
the classification, we build several models with differ-
ent sets of features on the training data and evaluate
these models on the development data to find the
best feature set. The combination of word/n-gram,
word alignment by METEOR, BLEU and EditDis-
tance scores proves to be the most prominent set of
simple features which can achieve very good perfor-
mance. For classification algorithm, the VotedPercep-
tron returns the best result among other algorithms
implemented in WEKA. In Table 1, we report the
Accuracy results obtained by using different classi-
fiers with different features. Our chosen classification
algorithm and feature set outperform the strongest
baseline and EOP EditDistance (standalone setting).

7http://www.cs.columbia.edu/%7Eweiwei/code.html
8https://docs.python.org/2/library/random.html
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Table 5 shows F1-score obtained with different classi-
fiers on our best set of features discovered in Table 1,
and our system again results better than the strongest
baseline and EOP EditDistance. Interestingly, the
WMF feature which is expected to have some impact
on computing the semantic similarity score does not
incorporate well with other features.

4.4 Semantic Similarity

Due to no training data is given for computing the
semantic similarity, a different approach is needed.
Firstly, we consider to use external data from the sim-
ilar task, which is Task #2 "Semantic Textual Simi-
larity (STS)" (English STS) for training a semantic
similarity model. However, after some preliminary
experiments and analysis, we realize that this does
not benefit our task on Twitter data due to the very
big difference between formal text and informal text
being used. We will need more study on how to use
formal text to benefit informal text in the same task.
Hence, we decide to build an unsupervised model
for semantic similarity on Twitter data instead. We
first adopt the result of Basline-2 (WMF) as a feature
for semantic similarity. We build different unsuper-
vised models which average the values of different
sets of features learned for Paraphrase Identification
task. Table 7 shows the Pearson correlation between
the average of feature values and the gold similarity
scores on the test data.

5 Evaluations

In this section, we discuss about the evaluation on
both tasks. Table 8 shows the performance of our best
models constructed by best sets of features in compar-
ison with all the three baselines and the top three best
systems reported in the shared-task.9 For Paraphrase
Identification task, our system outperforms all three
baselines and achieves a very competitive result to
the best systems. The difference between our system
and the best three systems is a very small variance
by a slim margin around 1%. In Semantic Similarity,
though we only build simple model which averages
the values of word alignment METEOR, BLEU and
Edit Distance scores, our system still obtains better
results than all three baselines and close to the top

9http://alt.qcri.org/semeval2015/task1/data/uploads/semeval-
pit-2015-results.pdf

three results. These results on both tasks may place
us at the 4th rank in comparison to the official ranking
of the shared-task.

PI SS
System Prec Rec F1 Pearson
Baseline-1 .679 .520 .589 .511
Baseline-2 .450 .663 .536 .350
Baseline-3 .192 .434 .266 .017
ASOBEK(1st PI) .680 .669 .674 -
MITRE(2nd PI, 1st SS) .569 .806 .667 .619
ECNU(3rd PI) .767 .583 .662 -
RTM-DCU(2nd SS) - - - .570
HLTC-UST(3rd SS) - - - .563
OurSystem .685 .634 .659 .531

Table 8: Paraphrase Identification (PI) and Semantic Simi-
larity (SS) Evaluation Results on Test data.

6 Error Analysis

In this section, we conduct an analysis of the mis-
classifications that our system makes on test data.
We extract and show some randomly selected exam-
ples in which our system classifies incorrectly, both
false positive or false negative; and then we analyze
the possible causes for the misclassification. This
inspection yields not only the top sources of error for
our approach but also uncovers sources of unclear
annotations in dataset.

True True False False
Positive Negative Positive Negative

111 612 51 64

Table 9: Error Analysis on Paraphrase Identification.

6.1 False Positive
[1357] omg Family Guy is killing me right now -
OMG we were quoting family guy
[1357] family guy is trending in the US - Family guy
is so racist or maybe they just point out the racism in
America
[4135] hahaha that sounds like me - That sounds
totally reasonable to me
[5211] The world of jenks is such a real show - Jenks
from the World of Jenks is such a good person
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[128] Anyone trying to see After Earth sometime
soon - Me and my son went to see After Earth last
night

Though all these sentence pairs share many word
similarity/matching and alignments, they are anno-
tated as non-paraphrase. For example, the sentence
pair [4135] has very high word matching and align-
ment after removing the common topic "sounds", but
the important words "like" and "reasonable" which
differ the meaning between two sentences, are not
really semantically captured and distinguished by our
system. As our system does not use any semantic
feature, this kind of semantic difference is difficult to
distinguish. Hence, it leads to false positive case.

6.2 False Negative
[4220] Hell yeah Star Wars is on - Star Wars and
lord of the rings on tv
[785] Chris Davis is putting the team on his back -
Chris Davis doing what he does
[400] Rafa Benitez deserves a hell of a thank you -
Any praise for Benitez from my Chelsea followers lol
[2832] Classy gesture by the Mets for Mariano - real
class shown by The Mets Mo Rivera is a legend
[4062] Shonda is a freaking genius - THAT LADY IS
AMAZING I LOVE SHONDA

This case is opposite to the previous case, even
though these sentence pairs do not share many word
similarity and alignment, they are annotated as para-
phrase. We can possibly propose some hypothesis as
follows:

Extra information Though the pairs [4220] and
[400] may not be paraphrase according to the para-
phrase definition in the literature (Bhagat and Hovy,
2013), they are annotated as paraphrase in the gold-
standard labels. In this case, we notice that as one sen-
tence contains more extra information than the other
one, it leads to low word similarity and alignment,
which makes our system make wrong classification.

Specific knowledge-base In this case, the pairs
[785] and [2832] require a specific knowledge-base,
which is about baseball, to recognize the paraphrase;
hence, even for human without any related knowl-
edge, it might be difficult detect the paraphrase.

Common sense Though both sentences of the pair
[4062] do not share any word similarity/alignment,

they have a positive polarity that may allow iden-
tifying the paraphrase. This case may be easy for
human to identify the paraphrase, yet it is difficult
for machine to capture the same perception.

Table 9 shows that we can improve our system
performance by exploiting more semantic features to
make correct classification. Though we try to adopt
the WMF which is supposed to provide more seman-
tic information, it does not show any contribution in
the overall performance. Moreover, according to our
analysis for the false negative, it is rather difficult to
cover these cases.

7 Conclusions and Future Work

In this paper, we study and present a set of simple
features which is especially tailored to obtain very
competitive performance in Paraphrase Identification
and Semantic Similarity tasks on Twitter data. From
the evaluation results, we can confirm our hypothesis
in which the combination of word/n-grams overlap,
METEOR word alignment, BLEU and Edit Distance
scores can be an alternative approach to explore se-
mantic information on Twitter data at a low cost.
However, for future work, we expect to study more
useful features (e.g the POS information, semantic
word similarity) to improve the system performance
on both identifying paraphrase and computing se-
mantic similarity scores. From our error analysis,
we consider to have more study on exploiting the se-
mantic information for the task Semantic Similarity;
and investigating on domain adaptation techniques
for broad-topic data to benefit the task Paraphrase
Identification in Twitter. Finally, we speculate the
sentiment feature which seems to be promising in
paraphrase identification task. More investigation
and analysis will be needed for exploiting and inte-
grating it with other features for better performance.
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Abstract

Machine Translation system accuracies are of-
ten brought down due to inaccurate Language
Detection (LD) of input phrases. The Lan-
guage detection accuracy is further affected
when the inputs are short and contain ungram-
matical phrases, especially in a multilingual
mobile game setting. Chat messages in mo-
bile games are often short as they are type-
d on mobile devices and contain slang as a
common communication preference. Previous
work has shown that LD systems have a drop
in accuracy when the inputs are short mes-
sages instead of long ones. This paper targets
LD for short chat messages in mobile games.
We propose a novel LD system which inte-
grates text-based and user-based methods to
achieve significantly better performance over
current state-of-the-art LD systems.

1 Introduction

With the growth of social media, a huge amoun-
t of social media texts have become ubiquitous,
e.g., Twitter messages, Facebook updates, game chat
messages, etc. Due to their importance, Natural
Language Processing (NLP) applications have been
applied to social media texts, e.g., Liu et al. (2011)
and Ritter et al. (2011) recognized named entities
in Twitter messages, and Foster et al. (2011) in-
vestigated Part-Of-Speech tagging and parsing of
Twitter messages. As the phenomenon is prevelant
across the globe, social media texts are usually mul-
tilingual, while most of the NLP applications are
language-specific. We usually have to know the lan-
guage of a given message, in order to process the

message using appropriate NLP applications. Ac-
curacy of Language Detection (LD) is thus highly
critical for subsequent NLP applications.

LD on long messages is widely considered a
solved problem as its accuracy is often found to be
high with latest methods (Ahmed et al., 2004; Hugh-
es et al., 2006; Grothe et al., 2008). However, more
and more researchers have recently noted that LD
on short messages is very difficult. E.g, Baldwin
and Lui (2010) found LD became increasingly dif-
ficult as we reduced the length of documents, and
increased the number of languages. Carter et al.
(2013) found LD of microblogs was challenging for
state-of-the-art LD methods. Moreover, LD studies
mostly focus on Twitter messages, as Twitter pro-
vides an API for researchers to crawl public Twitter
messages, while no research is done on game chat
messages, which in itself contains language that has
quite a bit more slang than Twitter messages.

In this paper, we propose a novel LD system for
chat messages in a mobile game which has a built-
in chat translation system. The translation system
helps players speaking different languages chat with
each other. The LD system is used to detect lan-
guage of chat messages such that the chat transla-
tion system could know which language a message
should be translated from. Chat messages in mobile
games are different from other social media texts,
because it is inconvenient to type on mobile devices
leading to an increased misspelling rate, and game
chats tend to be much shorter than Twitter messages
(see Section 3). Our work is further more challeng-
ing, as we are detecting 27 languages.

Our contributions are as follows: (a) as far as we
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know, this work is the first LD work on game chat
messages, so our work may pave the way to NLP re-
search on game chat messages which are a new kind
of social media texts; (b) our work is also the first ap-
proach to apply user language profiles to the LD of
game chat messages; (c) we have shown that LD of
game chats is very difficult and also propose a nov-
el LD system integrating both text-based and user-
based methods to achieve significantly better perfor-
mance over the current state-of-the-art LD systems.

2 Related Work

Language Detection (LD), or Language Identifica-
tion (LI), has been extensively studied in previous
work. One famous method is character n-gram-
based approach (Cavnar and Trenkle, 1994) which
was based on calculating and comparing profiles of
n-gram frequencies via “Out Of Place” (OOP) dis-
tance, a ranking-based distance. The approach first
computed a profile for each language in a multilin-
gual training set. Given a test document, the ap-
proach computed a profile that was then compared
to each language profile obtained from the training
set. The document was detected as a language which
had the smallest distance to the document’s profile.
This approach achieved a 99.8% accuracy on Usenet
newsgroup articles. One of the disadvantages of
(Cavnar and Trenkle, 1994) is that it requires the in-
put to be tokenized. Another similar approach was
done by Dunning (1994) who used byte n-grams in-
stead of character n-grams, avoiding the tokeniza-
tion problem. This approach achieved 99.9% accu-
racy on documents longer than 500 bytes.

Recently, many researchers have noticed the dif-
ficulty in LD for short documents/messages. For ex-
ample, Baldwin and Lui (2010) presented a detailed
investigation of what approaches were the best in
varied conditions, and found that LD became more
and more difficult when we increased the number of
languages, reduced the size of training data and re-
duced the length of documents. Vatanen et al. (2010)
investigated a LD task where the test samples had
only 5-21 characters. The authors compared two
approaches: one was a naive Bayes classifier based
on character n-gram models, and the other was the
OOP method of Cavnar and Trenkle (1994). To im-
prove LD on short and ill-written texts, Tromp and

Pechenizkiy (2011) proposed a graph-based n-gram
approach (LIGA) which performed better than the
character n-gram approach of Cavnar and Trenkle
(1994) on Twitter messages. Based on LIGA, Vogel
and Tresner-Kirsch (2012) further proposed some
linguitistically-motivated changes to LIGA, achiev-
ing an accuracy of 99.8% on Twitter messages in
6 European languages, while the accuracy of LIG-
A was 97.9% on the same test set. Bergsma et al.
(2012) focused on LD on short, informal texts in
resource-poor languages, annotating and releasing a
large collection of Twitter messages in 9 languages
using 3 scripts: Cyrillic, Arabic and Devanagari.
The authors also presented two LD systems which
achieved very high accuracy on Twitter messages.

All the previous work focused on LD using text
features. In contrast, our work utilizes user language
profile as well, i.e., language distribution of mes-
sages sent by a user, to further improve LD on very
short messages. The most relevant work was done
by Carter et al. (2013). In order to improve LD of
Twitter messages, the authors used post-dependent
features (i.e., features from only texts) together with
several post-independent features: the language pro-
file of a blogger, the content of an attached hy-
perlink, the language profile of a tag, and the lan-
guage of the original post. However, we could not
directly apply their approach to our context, chat
messages in games which are different from Twit-
ter messages, e.g., chat messages have no hyperlink,
no tag, etc. Furthermore, game chats are often much
shorter than Twitter messages, so LD of game chats
is much more challenging (Section 3).

Another relevant line of research is on LD for
search engine queries in the context of Cross Lan-
guage Information Retrieval (CLIR), as the queries
are usually relatively short like game chats. Cey-
lan and Kim (2009) first generated a LD data set of
search engine queries extracted from click-through
logs of Yahoo! Search Engine, and then trained de-
cision tree classifiers for LD. Moreover, the authors
also experimented with a non-text feature, the lan-
guage information of the country from which a us-
er makes a search query. Gottron and Lipka (2010)
used news headlines as short, query-style texts on
which several typical LD approaches had been eval-
uated. In their experiments, the naive Bayes classi-
fier with character n-gram features performed best
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among others. Nevertheless, search engine queries
are different from our focus, game chats, in the sense
that search queries are usually well-written word-
s/phrases, while game chats could be ill-written,
short phrases/sentences.

3 Chat Messages of Mobile Games

To better understand the differences between game
chat messages and Twitter messages, we have
crawled 2,308,264 Twitter messages using a Java
implementation1 of Twitter’s stream API2. On aver-
age, each message has 73.51 characters. On the oth-
er hand, we have obtained 745,635,448 game chat
messages from a chat log database of a Massively
Multiplayer Online Role Playing mobile Game (M-
MORPG). Each game chat message has 34.43 char-
acters on average.

From these statistics, we could see that game chat
messages are about two times shorter than Twitter
messages, despite the different language distribu-
tions of the two message sets.

4 Methods

In this section, we will first describe how we make
a multilingual data set for LD based on a chat log
database of a mobile game. We then present a nov-
el approach to LD for game chat messages. Gener-
ally, our approach has two steps: the first step us-
es an alphabet-based LD method, and the second
step uses a linear model (Fan et al., 2008) to in-
tegrate 3 methods together: a byte n-gram-based
method (Lui and Baldwin, 2012), a dictionary-based
method, and a method based on user language pro-
files. The alphabet-based LD method will be intro-
duced, followed by the 3 methods. We then present
our approach by explaining how we integrate the 4
methods together.

4.1 Game Chat Data Collection

In this subsection, we will describe how we make a
multilingual data set of game chat messages, based
on a chat log database of a mobile game. All the data
are encoded in UTF-8.

1http://twitter4j.org/en/code-examples.
html#streaming

2https://dev.twitter.com/streaming/
overview

Generally, a chat log database of a mobile game
is accessible. The database contains many fields for
a message. Among the fields, related ones to our
work are the string of a message, a unique identifier
for each user (user id) for the message sender, and
the language of the last keyboard used to enter the
message. What we want to make is a data set con-
taining many chat messages, for each of which we
need its true language and user id.

An important question to answer at this stage is
whether we could rely on the keyboard language to
find the true language for a message. The answer is
no. There are two main reasons for this. The first
one is that users might use a keyboard to input a
message in a language which is different from the
language of the keyboard, e.g., a French user might
use English keyboard to input a French message to
avoid the delay caused by changing keyboards. The
other reason is that users tend to use special key-
boards on mobile devices, e.g., a user could input an
English message with an English keyboard and then
an Emoji3 with an Emoji keyboard, in which case
the log database only records the last keyboard, i.e.,
the Emoji keyboard.

Motivated by Ceylan and Kim (2009) who gener-
ated a LD data set of search engine queries extracted
from click-through logs of Yahoo! Search Engine,
we could also use the chat log database to make a
LD data set. More specifically, we first sample our
chat log database to get a raw data set containing
messages written using different keyboards accord-
ing to the keyboard language field. For each mes-
sage in the raw data set, the LD API of the Microsoft
Translator4 is used to detect the language of the mes-
sage. If the detected language matches the keyboard
language field, we consider the message as a valid
message in the final LD data set.

4.2 ALPHA: Alphabet-Based LD
The most straight-forward way to do LD is to count
the number of characters of each language, given a
message, then picking the language with the highest
number of characters. We call this method alphabet-
based language detection whose algorithm is shown
in Algorithm 1. We use a third-party library which

3http://en.wikipedia.org/wiki/Emoji
4http://msdn.microsoft.com/en-us/

library/ff512411.aspx
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could return all the characters used by a given lan-
guage.

Algorithm 1 Alphabet-Based Language Detection
INPUT: a raw message M whose length is N
RETURN: the detected language for M
1: initialize a map char2langList which maps a character to a list of

languages;
2: initialize a map lang2count which maps a language to the count of

characters of the language in M;
3: for i← 0 to N-1 do
4: for each lang in char2langList[M[i]] do
5: lang2count[lang]← lang2count[lang] + 1;
6: return the language in lang2count with the highest count;

This method is effective when distinguishing lan-
guages written in different scripts, e.g., Chinese and
English. However, it is not good at distinguishing
languages using similar scripts, e.g., languages us-
ing the Latin script. Thus, to achieve a good per-
formance, this method should be used together with
other methods, e.g., we could use this method to
detect languages using almost separate scripts, e.g.,
Thai, Chinese, Japanese, Korean, etc. and then use
other methods to detect other languages. Please note
that here “almost separate scripts” depends on the
target language set we want to detect, e.g., if the set
contains Russian and Ukrainian both of which use
the Cyrillic script, we’d better not use the alphabet-
based LD method to detect Russian or Ukraini-
an, while if the set only contains Russian without
Ukrainian, we could detect Russian with the method.

Another issue with this method is the situation
that multiple languages have the same highest coun-
t. Our solution is to set a priority list of languages
according to the language frequencies in the game
and language-specific knowledge, and we choose
the first language in the list with the highest count
of characters as the detected language.

4.3 LANGID: Byte N-Gram-Based LD

Our LD system uses a byte n-gram-based LD ap-
proach (Lui and Baldwin, 2012). This approach es-
sentially uses a naive Bayes classifier with byte n-
gram features.

Lui and Baldwin (2012) have released an off-the-
shelf LD tool written in Python as an implementa-
tion of the approach. We have rewritten the tool in
C++ to get a higher processing speed. A pre-trained
model is released with the tool, and was trained on a

large amount of multilingual texts from various do-
mains (Lui and Baldwin, 2011) in 97 languages. The
tool also provides a way to limit the number of lan-
guages to a subset of the 97 languages, to achieve a
higher accuracy and speed. Given an input, the tool
has an API to normalize confidence scores for each
language to probability values.

4.4 DICT: Dictionary-Based LD

Assuming words in an input message are space-
delimited, we could count the number of words in
each language, then picking the language with the
highest number of words as the detected language.
We call this method dictionary-based language de-
tection whose algorithm is shown in Algorithm 2.

Algorithm 2 Dictionary-Based Language Detection
INPUT: a raw message M
RETURN: the detected language for M
1: tokenize M into a sequence of words WORDS whose length is N,

ignoring punctuation;
2: initialize a map word2langList which maps a word to a list of lan-

guages;
3: initialize a map lang2count which maps a language to the count of

words of the language in WORDS;
4: for i← 0 to N-1 do
5: for each lang in word2langList[WORDS[i]] do
6: lang2count[lang]← lang2count[lang] + 1;
7: return the language in lang2count with the highest count;

The advantage of this method is that it works
well on short messages, even if the input message
is only one word, while its disadvantage is from it-
s assumption, i.e., the words of the input message
should be space-delimited, which limits the applica-
bility of this method. For example, without knowing
an input message is Chinese, the input message can-
not be tokenized into words properly, while knowing
the language of the input message is just the job of
LD. Furthermore, as we are dealing with game chat
messages, users could use informal words, e.g., “u”
instead of “you”, “gtg” instead of “got to go”, etc.
which also pose difficulties for the dictionaries used
in this method. To overcome this problem, e.g., we
could use methods like (Liu et al., 2012) to extend
our dictionaries to include informal words and slang
terms. Another issue with the method is that multi-
ple languages could have the same word, e.g., for a
message containing only one word which occurs in
two languages, we could also set a language priority
list to solve this problem as in Section 4.2.
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4.5 PROFILE: User Language Profile

As can be seen from Section 3, game chat messages
are often very short. LD methods relying on only
text-based features would perform poorly on game
chats. In this subsection, we will introduce a novel
method to LD of game chat messages: user language
profiles. A language profile for a user is a vector of
real numbers each of which represents the probabil-
ity of sending a message in a particular language.
The size of the vector is the same for all the users,
i.e., the number of languages supported by the game,
though most users only speak one or two languages.
In order to build the language profiles, ideally, we
should have many human annotators to annotate all
the chat messages sent in the game, but it is imprac-
tical. We thus have to choose an automatic LD sys-
tem to detect the language of each message sent by
a user. As a result, we obtain a vector of the count of
messages written in each language. We then normal-
ize the counts into probabilities, getting a vector of
probabilities as the language profile for the user. The
LANGID system (Section 4.3) is used here to build
language profiles. Of course, the LD system might
make errors, especially on short messages. How-
ever, the experimental results (Section 5.3) confirm
this way of building language profiles is effective.

For a new user, the probabilities in the language
profile are all 0, meaning we do not know what lan-
guage the new user will use. If we use PROFILE in-
dividually, the first language in its language priority
list is chosen.

4.6 COMB: Combined System

In this subsection, we will show how we integrate
all the methods mentioned in this section together to
make a high-performance LD system for chat mes-
sages sent in mobile games.

Work Flow: According to the characteristics of
the methods mentioned in this section, our system
has two phases: Phase 1 uses the ALPHA LD (Sec-
tion 4.2) to detect languages using “separate” script-
s; Phase 2 uses a linear model to combine the byte
n-gram-based method (Section 4.3), the dictionary-
based method (Section 4.4) and the user language
profile (Section 4.5) together to detect the rest of lan-
guages in the target language set. The work flow of
the combined LD system is presented in Figure 1.

languages 
using separate 

scripts?

return LibLinear 
result

Yes

No

(MESSAGE, USER_ID)

return 
ALPHA 
result

LANGID

ALPHA

DICT

PROFILE

LibLinear combination 
of LANGID, DICT and 

PROFILE

Figure 1: Work flow of the combined LD system.

LibLinear: A linear model is used to combine
the three methods which are respectively presented
in Section 4.3, 4.4, and 4.5. More precisely, we use
the linear support vector machines in LibLinear (Fan
et al., 2008) as the linear model. LibLinear is an
open source library which is very efficient for large-
scale linear classification. We have also tried the
SVM model with linear kernel in LibSVM (Chang
and Lin, 2011) instead of LibLinear, but LibSVM is
much slower than LibLinear with similar accuracies.
We thus choose LibLinear finally.

E.g., if the game language set is {Chinese, En-
glish, French, Thai}, in Phase 1, the ALPHA method
detects the 4 languages. If the result is in {Chinese,
Thai}, we stop and return the result. Otherwise, En-
glish and French are detected in Phase 2. The input
feature vector of LibLinear is a concatenation of the
normalized output vectors from LANGID, DICT, and
PROFILE. Each of the output vectors has 2 real num-
bers indicating the probability of being English or
French. The output vector of DICT may be shorter
than that of the other two, when DICT is not appli-
cable to some languages, e.g., a lack of dictionaries,
or words which are not space-delimited.

5 Experiments

5.1 Evaluation Corpora
As far as we know, most previous LD work on short
messages (Tromp and Pechenizkiy, 2011; Vogel and
Tresner-Kirsch, 2012) focused on Twitter messages,
and no previous work explored LD for game chat
messages. We thus create a LD data set contain-
ing multilingual chat messages sent in mobile games
with the method described in Section 4.1.

We first create a data set containing chat messages
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Languages Data set statistics (#lines / #characters)
TRAIN LEN1 LEN2 LEN3 LEN4 FULL

Arabic 17153 / 444779 634 / 2834 984 / 8845 1000 / 13164 1000 / 16667 1000 / 25796
Catalan 8585 / 207730 452 / 2096 838 / 6968 918 / 11196 980 / 16143 1000 / 24190
Chinese 10705 / 110612 695 / 1379 992 / 3784 1000 / 5334 1000 / 6526 1000 / 10620
Czech 7612 / 259388 645 / 3059 965 / 8544 998 / 13336 1000 / 17347 1000 / 33426
Danish 11031 / 554513 367 / 1690 804 / 6992 969 / 12619 996 / 17397 1000 / 50660
Dutch 1201 / 52307 457 / 2206 891 / 8027 985 / 13576 997 / 18768 1000 / 44200

English 68035 / 3134196 473 / 2171 876 / 7736 985 / 13471 998 / 18692 1000 / 46310
Finnish 4003 / 151253 631 / 3286 949 / 9713 981 / 15171 996 / 20196 1000 / 36283
French 27555 / 1197251 416 / 1875 853 / 7024 982 / 12233 998 / 17021 1000 / 43362
German 10978 / 448484 509 / 2441 950 / 8681 997 / 14052 999 / 19214 1000 / 41333
Greek 18234 / 801094 517 / 2845 956 / 9498 999 / 14454 1000 / 18665 1000 / 43668

Hebrew 18553 / 512033 492 / 2115 911 / 7614 996 / 12363 1000 / 15945 1000 / 28842
Hungarian 6876 / 236017 634 / 3285 965 / 9503 997 / 14357 1000 / 18590 1000 / 32241
Indonesian 10285 / 380596 664 / 3309 987 / 9548 1000 / 14902 1000 / 19735 1000 / 35899

Italian 5528 / 256781 539 / 2790 958 / 9066 996 / 14509 998 / 19801 1000 / 46734
Japanese 12531 / 249595 718 / 1414 923 / 3563 976 / 5407 988 / 6938 1000 / 19193
Korean 16546 / 285583 615 / 1180 948 / 3518 986 / 5446 999 / 7152 1000 / 17464
Malay 8899 / 277092 643 / 3075 968 / 9039 993 / 14171 999 / 19154 1000 / 30792

Norwegian 7308 / 316033 419 / 1947 812 / 7031 964 / 12601 997 / 17406 1000 / 43412
Polish 382 / 16481 312 / 1563 483 / 4650 495 / 7587 496 / 10303 500 / 21699

Portuguese 10493 / 414901 549 / 2827 944 / 8794 994 / 14449 1000 / 19554 1000 / 39585
Romanian 9823 / 301461 543 / 2502 929 / 7969 990 / 12894 1000 / 17072 1000 / 30832
Russian 14060 / 592906 484 / 2589 833 / 7866 977 / 14091 998 / 19734 1000 / 41726
Slovak 7482 / 320377 551 / 2757 929 / 8313 994 / 13625 1000 / 18670 1000 / 41426
Spanish 4785 / 237427 477 / 2503 915 / 8322 992 / 13829 998 / 18995 1000 / 49421
Swedish 9044 / 410050 462 / 2243 888 / 7875 987 / 13247 1000 / 17760 1000 / 44829
Turkish 614 / 29611 615 / 3372 976 / 10771 1000 / 17285 1000 / 23733 1000 / 49008

Table 1: Statistics of the LD data sets created from game chat messages.

in 27 languages supported by the game, then split-
ting the messages for each language into a training
set (named TRAIN) and a test set (named FULL).
As our focus is on short messages, we also generate
four other test sets based on FULL. We have truncat-
ed each message in FULL to retain the first n token-
s5, thus generating 4 new test sets named as LENn
where n ∈ {1, 2, 3, 4}. In LENn, only unique
messages are retained based on only texts, e.g., if
we have (text=“thx tom”, userid=“123”, lang=“en”)
and (text=“thx boss”, userid=“456”, lang=“en”) in
FULL, we only keep one message (text=“thx”,
userid=“123”, lang=“en”) generated from the two
messages in the data set LEN1. The statistics of the
resulted data sets are shown in Table 1.

Following Carter et al. (2013), we also use accura-
cy, i.e., the percentage of messages whose language
is detected correctly, to evaluate the effect of LD.

5.2 Systems

We compare our proposed LD system (COMB of
Section 4.6) against three baseline methods:
(1) LANGID: uses the byte n-gram-based LD

5if words are not space-delimited in a language, the first 2×
n characters are kept

method described in Section 4.3 with the 27 lan-
guages of Table 1; we have tried to train a new model
with the data TRAIN in Table 1, but the new mod-
el works worse than the pre-trained model, which
may be due to the fact that the amount of TRAIN is
much smaller than that used to train the pre-trained
model; the pre-trained model is thus used in our ex-
periments; this system has already been shown su-
perior to many methods, e.g., TextCat which is an
implementation of (Cavnar and Trenkle, 1994) and
CLD which is the embedded LD system used in
Google’s Chromium Browser, so we do not compare
our COMB to these methods in this paper;
(2) DICT: uses the dictionary-based LD method de-
scribed in Section 4.4 to detect 10 languages6, as we
only have dictionaries for the 10 languages;
(3) PROFILE: the user language profile method de-
scribed in Section 4.5; the user language profiles of
the 27 languages have been built using LANGID;

The COMB system uses the alphabet-based LD
method (Section 4.2) to detect the 27 languages in
Phase 1. If the result is in {Arabic, Hebrew, Greek,
Russian, Chinese, Japanese, Korean}, we stop and

6the priority language list is {English, French, Spanish, Ger-
man, Portuguese, Russian, Dutch, Polish, Italian, Turkish}
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return the result. Otherwise, in Phase 2, COMB uses
LibLinear (Section 4.6) to combine LANGID, DIC-
T and PROFILE together to detect the 20 languages,
which are the 27 languages of Table 1 minus the 7
languages detected by Phase 1. The LibLinear mod-
el is trained on the data TRAIN of Table 1.

5.3 Experimental Results
The experimental results on data set LEN1 are
shown in Table 2, from which we can see that for
extremely short messages containing only 1 token,
LANGID performs poorly with an average accura-
cy of 34.88%. DICT works better than LANGID on
the 10 languages supported by DICT, which shows
that dictionary-based methods are very useful in LD
for short messages, though detecting 10 languages
is much easier than detecting 27 languages. More-
over, PROFILE achieves very amazing accuracies on
1-token messages, which confirms the critical im-
portance of user language profiles in LD of very
short messages. At last, COMB successfully com-
bines the three systems above and the alphabet-
based LD method, achieving a relatively high accu-
racy of 73.69% on 1-token messages, which outper-
forms PROFILE by 11.48% accuracy. Note that the
AVERAGE is macro-average.

Table 3, 4 and 5 respectively present the result-
s on data set LEN2, LEN3 and LEN4. LANGID’s
accuracy increases as the message length increases,
as expected. Because more text is available. PRO-
FILE maintains a stable accuracy at about 63.5% on
all the 3 data sets, since it only depends on the user
who sends the message, and is independent on texts.
COMB again performs best among the 4 systems.

The experimental results on data set FULL are
shown in Table 6. LANGID works much better
on full-length messages than on shorter messages.
PROFILE still keeps a stable accuracy at 63.57%.
COMB performs best with an average accuracy of
84.61% on the 27 languages.

As a summary, the average accuracy of LANGID

varies from 34.88% to 74.53% on the 5 test sets of
messages of different lengths, which shows that the
traditional LD methods relying on text-based fea-
tures perform poorly on short messages. PROFILE

works consistently well on the test sets with an accu-
racy at about 63%. Our proposed system COMB can
effectively integrate LANGID, DICT, and PROFILE

Languages LANGID DICT PROFILE COMB

Arabic 96.85 N.A. 86.75 97.16
Catalan 1.55 N.A. 9.29 42.04
Chinese 94.96 N.A. 80.29 98.56
Czech 14.57 N.A. 47.75 62.33
Danish 14.44 N.A. 74.66 86.92
Dutch 8.10 25.60 53.17 70.46

English 89.43 100.00 99.79 94.08
Finnish 22.50 N.A. 42.16 57.05
French 13.22 29.09 93.51 82.69
German 24.36 35.76 91.55 93.52
Greek 90.33 N.A. 66.34 90.91

Hebrew 85.57 N.A. 84.76 92.48
Hungarian 20.03 N.A. 52.21 58.36
Indonesian 6.02 N.A. 23.04 82.23

Italian 9.09 32.28 89.98 92.58
Japanese 65.60 N.A. 40.53 65.18
Korean 85.04 N.A. 68.46 88.94
Malay 0.16 N.A. 0.00 14.62

Norwegian 2.39 N.A. 33.65 61.58
Polish 23.72 41.99 32.69 56.09

Portuguese 5.28 42.81 88.89 96.36
Romanian 7.37 N.A. 30.57 62.62
Russian 79.75 82.44 98.55 86.16
Slovak 8.53 N.A. 40.47 73.50
Spanish 22.64 42.14 93.71 43.40
Swedish 18.40 N.A. 67.53 87.45
Turkish 31.87 42.11 89.43 52.36
Average 34.88 N.A. 62.21 73.69

Table 2: Accuracies (%) of LD methods on LEN1.

Languages LANGID DICT PROFILE COMB

Arabic 99.80 N.A. 86.69 99.80
Catalan 1.79 N.A. 7.52 43.56
Chinese 95.46 N.A. 81.15 99.40
Czech 24.97 N.A. 50.88 70.98
Danish 33.96 N.A. 74.50 90.80
Dutch 25.48 31.43 54.10 70.15

English 77.40 100.00 99.66 92.58
Finnish 44.47 N.A. 43.84 62.91
French 37.16 33.06 94.37 85.23
German 43.47 46.32 91.89 92.53
Greek 98.43 N.A. 71.23 98.64

Hebrew 96.71 N.A. 86.17 99.67
Hungarian 37.20 N.A. 56.37 65.08
Indonesian 22.90 N.A. 21.99 85.31

Italian 32.25 46.03 91.86 94.05
Japanese 84.40 N.A. 41.93 83.42
Korean 91.56 N.A. 71.52 93.99
Malay 3.31 N.A. 0.00 14.88

Norwegian 16.87 N.A. 35.34 64.29
Polish 37.06 54.66 33.75 54.24

Portuguese 17.37 51.80 91.00 96.82
Romanian 12.59 N.A. 34.02 70.61
Russian 96.64 94.72 98.80 97.84
Slovak 14.10 N.A. 41.66 76.43
Spanish 50.38 52.02 94.54 46.89
Swedish 38.96 N.A. 68.69 91.55
Turkish 52.46 63.22 89.45 62.50
Average 47.67 N.A. 63.44 77.93

Table 3: Accuracies (%) of LD methods on LEN2.
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Languages LANGID DICT PROFILE COMB

Arabic 99.90 N.A. 86.90 99.90
Catalan 8.17 N.A. 7.08 42.48
Chinese 96.60 N.A. 81.10 99.50
Czech 36.27 N.A. 50.60 72.34
Danish 48.30 N.A. 75.44 92.98
Dutch 40.61 46.60 54.31 74.31

English 70.76 100.00 99.70 91.17
Finnish 55.76 N.A. 43.02 66.26
French 51.12 40.02 94.91 88.19
German 59.18 63.59 91.98 94.08
Greek 99.50 N.A. 71.27 99.70

Hebrew 99.60 N.A. 86.25 99.90
Hungarian 44.93 N.A. 56.17 65.20
Indonesian 33.90 N.A. 22.30 87.70

Italian 54.12 64.96 92.07 95.18
Japanese 88.32 N.A. 42.62 88.32
Korean 93.71 N.A. 71.40 96.04
Malay 6.55 N.A. 0.00 13.90

Norwegian 34.02 N.A. 36.41 65.66
Polish 52.93 66.26 33.74 58.38

Portuguese 33.80 67.40 90.74 96.68
Romanian 23.13 N.A. 34.44 71.92
Russian 99.59 98.67 98.77 99.59
Slovak 23.74 N.A. 42.25 77.87
Spanish 62.20 69.66 94.96 61.09
Swedish 53.90 N.A. 68.69 93.52
Turkish 71.10 76.70 89.50 76.90
Average 57.10 N.A. 63.58 80.32

Table 4: Accuracies (%) of LD methods on LEN3.

Languages LANGID DICT PROFILE COMB

Arabic 99.90 N.A. 86.90 99.90
Catalan 15.31 N.A. 6.63 44.39
Chinese 97.00 N.A. 81.10 99.60
Czech 42.30 N.A. 50.60 72.30
Danish 54.12 N.A. 75.90 93.78
Dutch 53.66 59.48 54.56 76.83

English 75.75 100.00 99.70 92.89
Finnish 59.64 N.A. 42.37 66.57
French 65.93 51.80 94.99 92.18
German 69.07 73.67 91.99 95.20
Greek 99.50 N.A. 71.30 99.70

Hebrew 99.60 N.A. 86.30 99.90
Hungarian 50.40 N.A. 56.00 65.90
Indonesian 44.20 N.A. 22.30 88.80

Italian 69.14 77.25 92.08 95.49
Japanese 91.30 N.A. 43.22 91.70
Korean 95.60 N.A. 71.47 97.60
Malay 11.21 N.A. 0.00 13.31

Norwegian 48.95 N.A. 36.51 67.10
Polish 56.65 73.19 33.67 62.10

Portuguese 46.60 78.30 90.80 97.00
Romanian 29.20 N.A. 34.60 72.00
Russian 100.00 99.80 98.80 100.00
Slovak 30.10 N.A. 42.10 78.40
Spanish 73.15 81.76 94.89 72.65
Swedish 63.40 N.A. 68.90 94.20
Turkish 82.40 84.00 89.50 85.50
Average 63.85 N.A. 63.60 82.04

Table 5: Accuracies (%) of LD methods on LEN4.

Languages LANGID DICT PROFILE COMB

Arabic 99.90 N.A. 86.90 99.90
Catalan 22.50 N.A. 6.50 44.80
Chinese 97.10 N.A. 81.10 99.80
Czech 51.20 N.A. 50.60 72.40
Danish 61.80 N.A. 75.90 95.00
Dutch 80.70 86.70 54.50 80.80

English 90.60 100.00 99.70 96.80
Finnish 62.30 N.A. 42.20 66.80
French 88.60 83.80 95.00 96.10
German 85.00 90.10 92.00 96.30
Greek 99.60 N.A. 71.30 99.80

Hebrew 99.70 N.A. 86.30 100.00
Hungarian 54.80 N.A. 56.00 66.30
Indonesian 52.80 N.A. 22.30 89.80

Italian 91.10 95.10 92.10 96.10
Japanese 95.80 N.A. 43.10 97.70
Korean 97.90 N.A. 71.50 100.00
Malay 16.50 N.A. 0.00 12.10

Norwegian 67.50 N.A. 36.50 70.10
Polish 70.60 81.40 33.40 70.20

Portuguese 71.20 94.30 90.80 97.30
Romanian 42.60 N.A. 34.60 72.70
Russian 100.00 100.00 98.80 100.00
Slovak 47.40 N.A. 42.10 78.80
Spanish 94.40 99.00 94.90 95.00
Swedish 76.90 N.A. 68.90 94.50
Turkish 93.90 94.20 89.50 95.30
Average 74.53 N.A. 63.57 84.61

Table 6: Accuracies (%) of LD methods on FULL.

together, consistently outperforming all the base-
lines on test sets of messages of different lengths.
COMB achieves a relatively consistent and high ac-
curacy on messages of varied lengths from 73.69%
to 84.61%. These results confirm the potential of the
proposed system.

We also found both LANGID and COMB perform
poorly on Malay and Catalan, which may be due to
the fact that Malay is very similar to Indonesian, and
that Catalan is similar to French and Spanish.

6 Conclusion

This paper presents a novel LD system for chat mes-
sages in mobile games. The system can effectively
integrate both text-based and user-based LD meth-
ods. In our experiments, we achieve highly statis-
tically significant (p < 0.0001 in T-test) improve-
ments (10.08%-18.19% in absolute accuracy) over
strong baselines on 27-language test sets which con-
tain messages of various lengths.

Future work can investigate how to preprocess or
normalize game chat messages to further improve
LD. Moreover, adding more dictionaries may also
be a future direction to improve the accuracy of the
proposed LD system.
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Abstract

One way in which marketers gain insights
about consumers is by identifying the occa-
sions in which consumers use their products
and which are invoked by their products. Iden-
tifying occasions helps in consumer segmen-
tation, answering why consumers purchase a
product, and where and when they use it.
Additionally, the types of occasions a con-
sumer participates in and the social settings
surrounding those occasions provide insights
into the consumer’s personality and sociocul-
tural self. Insights such as these are required
for understanding consumer behavior, which
marketers need to better design and sell their
products. In this paper, we describe a method-
ology for extracting and categorizing occa-
sions from product reviews, product descrip-
tions, and forum posts. We examine using a
maximum entropy markov model (MEMM)
and a linear chain conditional random field
(CRF) for extraction and find the CRF re-
sults in a 72.4% F1-measure. Extracted occa-
sions are categorized as one of six high-level
types (Celebratory, Special, Seasonal, Tem-
poral, Weather-Related, and Other) using a
support vector machine with an 88.5% macro-
averaged F1-measure.

1 Introduction

Social media provides an outlet for consumers to
discuss, praise, chastise, and recommend products
and services. These consumer generated reviews
and commentaries provide marketers insight into the
who, what, when, where, why, and how (i.e. the
six W’s) surrounding the procurement and usage of

their products. One way in which marketers answer
the six W’s is by identifying the occasions, particu-
lar times or events, in which their products are used
or with which consumers associate their products.
These occasions may be routine, e.g. “work” or
“at the office”, seasonal/weather related, e.g. “rainy
day” or “winter”, special, e.g. “birthday” or “Christ-
mas”, or time related, e.g. “on the run” or “early
morning.” More than just answering the six W’s,
occasions also provide a marketer insight into the
personality, social status, social circle, and behavior
of consumers.

Marketers traditionally rely upon surveys and
ethnographic studies in order to gain insights about
consumers. The results of these surveys and studies
are: (1) consumer segments; (2) when and where the
respondents are likely to purchase or use a product;
(3) whether they are likely to use the product alone
or with others; (4) whether or not the respondents
like the product; and (5) are the respondents likely to
purchase the product again. These surveys and stud-
ies are costly and limited to a much smaller sample
size than is obtainable via online reviews and social
media. However, current computational approaches
to gaining consumer insights typically are limited to
the volume and trend of positive and negative com-
ments, reviews, tweets, etc. (Pang et al., 2002; Dini
and Mazzini, 2002; Smith et al., 2012; Socher et al.,
2013).

Research from the fields of consumer and social
psychology, dialogue processing, and affective must
be incorporated into computational systems in order
for them to replace surveys as a marketer’s source
of consumer insights. Drawing on these fields of re-
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search facilitates an understanding of the attitudes,
behaviors, and personal and sociocultural qualities
of consumers. Critical to the success of such a com-
putational system is the automated extraction of the
occasions in which consumers use a product or with
which they associate a product. These occasions and
their implicatures provide answers to the six W’s and
are a basis for understanding a consumer’s personal
and sociocultural self.

In this paper, we present a methodology for au-
tomatically extracting and categorizing occasions
in product reviews, product descriptions and forum
posts. The extraction of occasions is cast as a se-
quence labeling problem using the standard BIO en-
coding. Extracted occasions are categorized as one
of six high-level types, Celebratory, Special, Sea-
sonal, Temporal, Weather-Related, and Other, based
on common occasions marketers seek to capture in
surveys.

2 Related Work

The most related area of research to the extraction
of occasions is event extraction. Event extraction
deals not only with the extraction of events, but also
with the extraction of the entities participating in the
events, and other attributes of the event, such as the
time (Moschitti et al., 2013), location (Speriosu et
al., 2010), and modality (Bracewell et al., 2014).
Despite the advances in the extraction of events, the
definition of an “event” is ill-defined and changes
based on the problem being solved. The Automated
Content Extraction (ACE) program defines events
using a limited set of types (ACE, 2005). TimeML
defines events as “situations that happen or occur”
and mainly focuses on the duration properties of the
event (Pustejovsky et al., 2003). Instead of precisely
defining what an event is, Monahan and Brunson
(2014) identify the qualities representative of events.

Research in real-time event detection has bene-
fited from the wide spread acceptance and adoption
of social media. Sites like Twitter and Facebook act
like social sensors facilitating the real time detection
of disasters (Sakaki et al., 2010; Vieweg et al., 2010)
and local events (Boettcher and Lee, 2012; Lee and
Sumiya, 2010). Relying on the real-time nature of
Twitter and the volume of tweets around unusual or
significant events, Sakaki et al. (2010) construct a

real-time earthquake detection system using twitter
users as sensors. Lee and Sumiya (2010) use Twit-
ter to determine unusual local events happening in
a given geographic area based on the regularity of
tweets against the normal behavior of twitter users
in the area.

The dialogue that takes place over social media
makes it possible to find and extract life and social
events for such purposes as detecting online bul-
lies (Dinakar et al., 2011) and suicide prevention
(Jashinsky et al., 2014). Li et al. (2014) target
specific replies on Twitter containing manifestations
of speech acts, namely congratulations/condolences,
to extract major life events, e.g. marriage, using a
distant-supervised approach. In addition to the de-
tection of events, work has been done on identifying
the social implicatures of dialogue which is in re-
sponse to a set of events (e.g. Wikipedia page edit)
or which may lead to a series events (e.g change in
leadership) (Bracewell et al., 2011; Bracewell et al.,
2012; Tomlinson et al., 2012).

Broader related research on mining consumer in-
sights is found in the fields of consumer psychol-
ogy and affective computing. Consumer psychol-
ogy studies how thoughts, feelings, and perceptions
influence the way individuals buy, use, and relate to
products, services, and brands. Drawing from other
areas in psychology, e.g. social psychology, con-
sumer psychologists formalize the cognitive system
of consumers using a categorical representation of
products, services, brands and other marketing en-
tities (Loken et al., 2008). Supported by Rosch’s
(1973) work on prototype theory, Loken and Ward
(1990) find a link between the prototypicality of a
product and consumers’ affect toward it.

A critical component to understanding con-
sumers’ affect toward a product is identifying the
brands, products, and attributes (or aspects) of
the product consumers are mentioning. Wiegand
and Klakow (2014) examine separating types from
brands, e.g. “soda” vs “coke”, using a ranking-
based approach which alleviates the need for labeled
data. Putthividhya and Hu (2011) use a named en-
tity recognition system to extract product attributes
from listing titles on eBay. They focus on extract-
ing brand, style, size, and color within the clothing
and shoes categories. Stoica et al. (2007) describe a
WordNet-based approach to constructing hierarchi-
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cal facets relating to aspects associated with a do-
main or product. Yu et al. (2011) present a domain-
assisted approach to constructing aspect hierarchies.

Aspect-based sentiment analysis (Pontiki et al.,
2014) merges affect and information extraction
seeking to determine the sentiment toward aspects
of products, e.g. the consumer sentiment toward the
screen of a TV or the food at a restaurant. Ap-
proaches to aspect term identification range from
standard BIO encoding (Chernyshevich, 2014; Toh
and Wang, 2014) to rule-based approaches (Poria et
al., 2014). Techniques for aspect polarity detection
include machine learning based techniques that in-
tegrate multiple sentiment lexicons (Wagner et al.,
2014) to grammar based approaches (Brun et al.,
2014).

More general than aspect-based sentiment anal-
ysis is sentic computing (Cambria and Hussain,
2012). Sentic computing synthesizes common-sense
computing, linguistics, and psychology to infer both
affective and semantic information about concepts.
Cambria et al. (2014) show how SenticNet, a se-
mantic and affective resource, can detect topics and
determine polarity in patient opinions.

Another area of research relevant to consumer in-
sights is around the identification of needs and wants
on social media. Kanayama and Nasukawa (2008)
examine the needs and wants of consumers using
syntactic patterns to analyze the demand for prod-
ucts. Ramanand et al. (2010) examine the identi-
fication of wishes in reviews and surveys in which
consumers make suggestions for improvements and
show their intentions to purchase/use a product.

3 Modeling Occasions for Consumer
Insights

Occasions are particular times or events and range
from the everyday, such as waking up and going to
bed, to the special, such as birthdays and weddings.
While every occasion is of importance, those sur-
rounding products are of the most use to marketers
for gaining insights into consumer behavior. Thus,
in this paper we focus only on occasions which are
related to a product. More specifically we restrict
the definition of an occasion to:

Times or happenings in which a product is
used or with which a product is associated.

Occasions matching this definition are in bold font
in the following examples:

1. “They are GREAT to take along to a party if
you’re serving crackers and cheese.”

2. “I bought these for my vacation and they did
not disappoint.”

3. “Boy, do these take me back to those misspent
days of my foolish youth.”

In the first example the occasion is a party relating to
where the reviewer used the product. From this ex-
ample we can infer that the occasion of use is social,
i.e. involved more than just the reviewer, and most
probably is informal. Furthermore, we learn that the
reviewer believes the product is well suited for party
occasions. Given further context about the kind of
party, e.g. kids or work, would lead to further in-
sights about the individual, such as if they have chil-
dren, their age, their occupation, and their marital
status. In the second review the occasion (“vaca-
tion”) is the reason for the reviewer to purchase the
product and the answer to when the reviewer used
it. Moreover, from the review we can infer that the
use of the product was a positive experience for the
reviewer. The third review is an example of how a
product can be associated with an occasion, which in
this case is a memory of the reviewer’s youth. Mar-
keters use these type of occasions to connect with
consumers at a subconscious and emotional level.

While occasions are closely related to events, not
all fit nicely within the ACE and TimeML defini-
tions. For example, take the following:

1. “These boots really kept me warm during the
winter.”

2. “Every time I smell a freshly baked apple pie it
brings me back to my childhood. ”

In the first example the product is a pair of boots
and the occasion of use is the winter. Within an
event framework winter would not be identified as
an event, but as a temporal attribute possibly of a
“keep warm”. In the second example the occasion
is “brings me back to my childhood” and is associ-
ated with the product (“apple pie”) by the reviewer.
The event in the sentence is a “baking” event with
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Occasion Type Definition
Celebratory Occasions meant to celebrate an event, person, or group of people (e.g. parties and award ceremonies)

Special Occasions which have significant importance to an individual or group of individuals (e.g. holidays and
life events)

Seasonal Occasions related to the seasons of the year. (e.g. winter)
Weather-Related Occasions strongly associated with the weather and/or temperature. (e.g. hot days and rainy nights)

Temporal Occasions tied to a specific time (e.g. 9 to 5, late night, and last year)
Other Occasions which do not fit in the other categories (e.g. a shopping spree, at the beach)

Figure 1: The six high-level occasion types used to categorize occasion mentions.

the apple pie being the item baked. The occasion
is tangential to the event and most likely would not
be associated with it by an event extraction system.
However, this type of occasion provides evidence of
a strong connection between the product and a spe-
cific time or event that is nostalgic for the consumer
and is invaluable for marketers when crafting their
marketing strategy.

Often occasions are associated with special
events, such as ceremonies and celebrations. How-
ever, as with event types, there are a number of dif-
ferent types of occasions. We define six high-level
types, listed in Figure 1, which are based on com-
mon occasions marketers use to segment consumers.

Celebratory occasions, which include parties and
festivals, are social occasions and inform to the
group with which the consumer belongs. An exam-
ple of a celebratory occasion is:

“I wore it a couple weeks ago to a party and
felt festive yet as comfy as if I was wearing
loungewear.”

Some celebrations are due to special occasions.
Special occasions are those which have significant
meaning to the consumer, such as holidays and re-
ligious observances. The following review excerpt
contains mentions of two special occasions:

“I recommend these for your engagement
party or rehearsal dinner.”

Temporal and seasonal occasions relate to the
time in which a product is used or associated. An
example of a seasonal occasion is :

“A quintessential style to take you between
seasons.”

The following excerpt from a product description
contains two suggested temporal occasions of use:

“Just the right size for your day-to-day life,
but elegant enough for evening.”

Weather-related occasions relate to the weather,
e.g. rain and snow, or temperature, e.g. hot and 98
degress. Two examples of weather-related occasions
are seen in:

“The tea is great hot for chilly nights and iced
for hot days.”

Finally, we define an other type for occasions that do
not neatly fit in one of the previous five categories.
An example of an occasion that is marked as other
is:

“Taking a look at the latest summer fashion
makes me want to lie on the beach.”

While there are a multitude of additional occasions
types that are definable, we limit the categories to
the six presented above in this paper.

4 Data Collection and Annotation

We collect 26,208 sentences from 1,000 product
reviews, 500 product descriptions, and 800 forum
posts discussing fashion and food related products
for annotation. An iterative annotation process is
used wherein during each iteration automated ma-
chine annotation is performed followed by manual
correction. During the initial iteration automated
machine annotations are produced using a gazetteer
and successive iterations use a machine learning
model. Manual correction of the machine annota-
tions involves: (1) removing incorrect occasions; (2)
adding missed occasions; and (3) fixing boundaries
of partially correct occasions. Due to project con-
straints all manual correction is performed by one
annotator. In the future, we hope to employ multiple
annotators.
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The initial iteration of the annotation process
is performed on 7,000 randomly selected sen-
tences. The gazetteer used during the initial itera-
tion is semi-automatically constructed using Word-
Net (Miller, 1995). The full hyponym tree and all
derivationally related forms for social event, time
period, and the first noun sense of activity are ex-
tracted to construct the gazetteer.

Examples of occasions identified using the
gazetteer are as follows:

1. “Darling cocktail party or date night dress .”

2. “We only stayed at the party an hour because
my shoes were killing my feet.”

In the examples listed above, occasions in bold font
are correctly identified by the gazetteer and left as-
is, underlined occasions are incorrectly identified by
the gazetteer and removed, and occasions in italic
font are not in the gazetteer and added during man-
ual correction. After manual correction (involving
the previously three mentioned steps) of the initial
7,000 sentences, 4,500 are randomly selected and
held out as test data, and 500 are held out as a de-
velopment set for occasion extraction. The remain-
ing 2,000 sentences are used as training data for the
machine learning model in the second iteration.

The second and successive iterations work on
batches of 500 sentences. At each iteration a ma-
chine learning model is trained and then used to ex-
tract occasions in the new batch of sentences. Dur-
ing each iteration we switch the model we train be-
tween the two described in Section 5. We alternate
models to ensure we do not bias toward one model
and because each model is likely to find something
the other did not. The machine identified annota-
tions are manually corrected and added to the set of
training data for the next iteration. This process is
repeated until all sentences are annotated.

2,393 occasions are annotated across the 26,208
sentences making up the corpus. This an average
of 1 occasion every 11 sentences. There is approx-
imately 1 occasion per product review and forum
post and 1 occasion every 3 product descriptions.

The next step in the annotation process is to as-
sign a type to each of the 2,393 annotated occasions.
We use WordNet to assign an initial type and manu-
ally correct the assigned labels. We construct a map-

ping between WordNet senses and occasion types by
starting with a set of twelve seeds, listed in Figure 2.
The full hyponym tree and all derivationally related
forms of each seed sense are extracted and mapped
to the seed’s associated occasion type.

WordNet Sense Occasion Type
party#N#4 Celebratory
celebration#N#1 Celebratory
season#N#2 Seasonal
temperature#N#1 Weather-Related
day#N#1 Temporal
day#N#2 Special
valentine#N#1 Special
gift#N#1 Special
anniversary#N#1 Special
birthday#N#1 Special
special#A#3 Special
New Year#N#1 Special

Figure 2: Seed senses for mapping from WordNet senses
to occasions types. Where the sense is described in
lemma#POS#sense number form.

WordNet lemmas found in a given occasion anno-
tation are examined in right-to-left order. All senses
for a lemma are considered in order of sense number.
Assignment is performed greedily with the type of
the first sense found in the mapping being assigned
to the occasion. The Other type is assigned if no
mapping is found.

Type Count
Celebratory 107
Seasonal 525
Special 336
Temporal 263
Weather-Related 48
Other 1,114

Table 1: The number of occasions annotated for the six
high-level types.

After automatic type assignment is complete the
types are manually corrected. Most types are easily
determined by an annotator. However, the celebra-
tory and special types do have an overlap, e.g. birth-
day party. Annotators are told to assign the category
of special instead of celebratory when the celebra-
tion is associated with a life event (e.g. birthday and
engagement parties). The breakdown of the number
occasions of each type is shown in Table 1.
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5 Computational Methodology and
Experimental Results

We divide the extraction and categorization of occa-
sions into two different tasks. We found in prelim-
inary experiments that this division produces better
results than jointly performing the two tasks. The
rest of this section details the models and results for
each task.

5.1 Automatically Extracting Occasions

We model the extraction of occasions using the stan-
dard BIO encoding. Words in a sentence are labeled
as B-Occasion, I-Occasion, or Other depending on
if the word begins an occasion phrase, is within an
occasion phrase, or is outside of an occasion phrase
respectively. We experiment using a maximum en-
tropy markov model (MEMM) (McCallum et al.,
2000) and a linear chain conditional random field
(CRF) (Lafferty et al., 2001) to perform extraction.
We use an in-house implementation of MEMMs,
which uses the LibLinear library (Fan et al., 2008),
and CRFsuite (Okazaki, 2007) for the CRF imple-
mentation. Parameters are tuned using a grid search
to maximize the F1-measure over the 500 sentence
development set. The optimal parameters for the
MEMM are C = 3 and the optimal parameters for
the CRF are C1 = 0 and C2 = 2.

The feature templates used for the extraction of
occasions are listed in Figure 3. The features con-
sist of surface, syntactic, and semantic information
about the word and its context. Syntactic informa-
tion is in the form of part-of-speech information and
semantic information is in the form of WordNet su-
per sense, i.e. lexicographer filenames (note that
all possible super senses are for a word, i.e. no
sense disambiguation is performed). These features,
with the exception of the WordNet-based feature,
are commonly used in other sequence labeling tasks,
such as shallow parsing and named entity recogni-
tion. We eliminate all features that occur only once
in our training set.

5.1.1 Results
Performance is measured using the CoNLL preci-

sion, recall, and F1-measure and the percentage in-
stance error in which an occasion is correct if and
only if it exactly matches a gold standard annota-

Current word wi & ti

Current word & POS wi, pi & ti

Previous word & POS wi−1, pi−1 & ti

Word two back & POS wi−2, pi−2 & ti

Next word & POS wi+1, pi+1 & ti

Word two ahead & POS wi+2, pi+2 & ti

Bigram word wi−2, wi−1 & ti

wi−1, wi & ti

wi, wi+1 & ti

wi+1, wi+2 & ti

Bigram word & POS wi−2, pi−2, wi−1, pi−1 & ti

wi−1, pi−1, wi, pi & ti

wi, pi, wi+1, pi+1 & ti

wi+1, pi+1, wi+2, pi+2 & ti

Trigram word wi−2, wi−1, wi & ti

wi, wi+1, wi+2 & ti

Current POS pi & ti

Previous POS pi−1 & ti

POS two back pi−2 & ti

Next POS pi+1 & ti

POS two ahead pi+2 & ti

Bigram POS pi−2, pi−1 & ti

pi−1, pi & ti

pi, pi+1 & ti

pi+1, pi+2 & ti

Current word is punct. isPunctuation(wi) & ti

Current word is digit isDigit(wi) & ti

Current word is letter isLetter(wi) & ti

Current word is upper isUppercase(wi) & ti

Current word is lower isLowercase(wi) & ti

WordNet super sense ssij∀sense(wi) & ti

Figure 3: Feature templates used for extracting occasions.
w1, · · · , wn are the words in the sentence and wi the cur-
rent word. p1, · · · , pn is the part-of-speech sequence for
the sentence and pi is the part-of-speech for the current
word wi. sense(wi) returns all possible senses for the
current word, wi, and ssij is the super sense associated
with sense j. ti is the tag assigned to the i’th word.

tion. Results for the MEMM and CRF are listed in
Table2. As is in seen in the table, the CRF model
outperforms the MEMM with an increase in preci-
sion of 4.5%, recall of 20.6%, and F1-measure of
16.5%. Additionally, the CRF has an approximately
57% decrease in instance error rate.

Model P R F1 Err
MEMM 79.2% 43.2% 55.9% 4.9%
CRF 83.7% 63.8% 72.4% 2.8%

Table 2: CoNLL Precision, Recall, F1-measure, and per-
centage instance Error results for extracting occasions.

Table 3 lists the precision, recall, and F1-measure
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by length of the occasion in words. The performance
of the MEMM degrades as the length of the occa-
sion increases whereas the performance of the CRF
is consistent across the varying lengths. One ex-
planation of why the CRF performs better than the
MEMM is the label-bias problem. Label-bias is a
known weakness of MEMMs, which CRFs address,
in which contextual information is lost around low-
entropy transitions due to the use of a per-state (vs
single) exponential model (Lafferty et al., 2001).

Model Length P R F1

MEMM

1 79.8% 55.6% 65.6%
2 84.6% 41.8% 55.9%
3 75.0% 25.5% 38.1%
4 76.9% 35.7% 48.8%

5+ 40.0% 66.7% 11.4%

CRF

1 83.9% 52.8% 64.8%
2 80.8% 74.6% 77.6%
3 89.2% 70.2% 78.6%
4 85.7% 85.7% 85.7%

5+ 80.8% 70.0% 75.0%

Table 3: CoNLL Precision, Recall and F1-measure by
length of occasion in words.

Examples where the CRF and MEMM extract an
occasion correctly are:

1. “Just what you need for a hot summer day!”

2. “We ( my son and I ) purchased this gift set for
my wife on Valentines day.”

3. “It’s the perfect size to take me from a day at
work to a night out for drinks with friends.”

In the first example, the occasion (“hot summer
day”) is noun phrase representing the reviewer’s be-
lief of a good time to use the product. In the sec-
ond example the occasion is a holiday (“Valentines
day”). The final example contains two occasion
mentions that represent a time range, in the form of
from time1 to time2.

5.2 Automatically Categorizing Occasions
Once an occasion is extracted it is categorized as
one of the previously defined six types. We exam-
ine the effectiveness of categorizing occasions given
only the occasion and no context. This task is an ex-
ample of a short-text classification problem (Sriram
et al., 2010). To solve this task we use a multi-class

support vector machine as implemented in the Lib-
Linear library (Fan et al., 2008). We use the default
values for the C and ε parameters.

Three features are used for determining the type
of an occasion. The first is the standard bag of words
with words normalized to lowercase. The second
feature is the WordNet super senses of all possible
senses found in the occasion. The super senses for
adjectives and adverbs in WordNet are not as well
defined as they are for nouns and verbs. Because
of this, we use the super sense for the associated
noun sense using the derivationally related form re-
lation for adjectives and the pertainym (adverb to ad-
jective) and derivationally related form (adjective to
noun) relations for adverbs. The final feature is the
SUMO concepts (Benzmüller and Pease, 2012) as-
sociated with all WordNet senses in the occasion.

5.2.1 Results
Table 4 lists the 10-fold cross-validation results

for determining the type of a given occasion. As is
seen in the table, F1-measures range from 71.9% for
weather-related to 96.7% for seasonal.

Type P R F1
Celebratory 92.6% 84.7% 88.5%
Seasonal 95.9% 97.5% 96.7%
Special 96.5% 93.8% 95.1%
Temporal 80.6% 88.6% 84.4%
Weather-Related 78.0% 66.7% 71.9%
Other 94.5% 93.8% 94.2%

Macro-avg 89.7% 87.5% 88.5%
Micro-avg 93.1% 93.1% 93.1%

Table 4: 10-fold cross-validation Precision, Recall,
and F1-measure for categorizing occasions as Celebra-
tory, Special, Seasonal, Temporal, Weather-Releated, or
Other.

Examples of errors in type assignment are shown
in Figure 4. The errors in the first two examples hap-
pen due to “spring” and “time” being highly associ-
ated with seasonal and temporal occasions respec-
tively. In the third example, the system assigns the
type other whereas the true type is special. While the
act of “shooting photos” is itself not special the type
of photos (“engagement”) in the example does make
it special. In the fourth example the occasion “up-
coming year” is assigned special by the system most
likely due to its similarity to the variations of the
“new year” special occasions in the corpus. The fi-
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Occasion Gold System
1.) “new spring
semester”

Temporal Seasonal

2.) “spend time with the
one you love”

Other Temporal

3.) “shooting your en-
gagement photos”

Special Other

4.) “upcoming year” Temporal Special
5.) “Halloween party” Special Celebratory

Figure 4: Examples of errors in the assignment of types
to occasions.

nal error is a common example of confusion dealing
with celebrations taking place as part of a special oc-
casion. The gold standard annotations label these as
special occasions whereas the system mostly identi-
fies them as celebratory.

6 Conclusion

In this paper we introduce a methodology for ex-
tracting and categorizing occasions in which a prod-
uct is used or with which a product is associated.
We focus primarily on product descriptions, product
reviews, and forum posts which are comments or re-
views about a product. Occasions are categorized
as one of six types: Celebratory, Special, Seasonal,
Temporal, Weather-Related, and Other. Extraction
and categorization are treated as separate tasks with
extraction casted as a BIO encoded sequence label-
ing problem and categorization as a short text clas-
sification problem.

We examine the use of a MEMM and CRF for
extracting occasions and find that the CRF model
outperforms the MEMM. Categorization is cast as
six-class classification problem with a support vec-
tor machine used to predict the best type. Catego-
rization results in a macro-averaged F1-measure of
88.5%.

In the future, we plan to identify the relation
between products/attributes and occasions and be-
tween two occasions. We envision product-occasion
relations to include usage and procurement and re-
lations between two occasions to include standard
event relations, such as causation. We also plan to
increase the amount of training data including mul-
tiple new product domains. With the addition of
new training data we will also expand upon the cur-
rent set of six occasions types. In particular, we

will examine the use of topic models, such as La-
tent Dirichlet Allocation, to split the “Other” cate-
gory into multiple topically relevant ones. We posit
that while there exists a set of core occasion cate-
gories the vast majority are domain-dependent.
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Abstract 

Determining explicit user characteristics 

based on interactions on Social Media is a 

crucial task in developing recommendation 

and social polling solutions. For this purpose, 

rule based and N-gram based techniques have 
been proposed to develop user profiles, but 

they are only fit for detecting user attributes 

that can be classified by a relatively simple 

logic or rely on the presence of a large amount 

of training data. In this paper, we propose a 

general purpose, end-to-end architecture for 

text analytics, and demonstrate its effective-

ness for analytics based on tweets with a rela-

tively small training set. By performing 

unsupervised feature learning and deep learn-

ing over labeled and unlabeled tweets, we are 

able to learn in a more generalizable way than 
N-gram techniques. Our proposed hidden 

layer sharing approach makes it possible to ef-

ficiently transfer knowledge between related 

NLP tasks. This approach is extensible, and 

can learn even more from metadata available 

about Social Media users. For the task of user 

age prediction over a relatively small corpus, 

we demonstrate 38.3% error reduction over 

single task baselines, a total of 44.7% error 

reduction with the incorporation of two re-

lated tasks, and achieve 90.1% accuracy when 

useful metadata is present.  

1 Introduction 

Two major Social Media Analytics use cases that 
are driving business value for businesses today are 

social recommendation systems and social polling 
applications. 

Social recommendation systems analyze 
attributes of Social Media users and historical 
trends to recommend personalized products and 
advertisements to users. The accuracy and robust-

ness of these systems has a direct impact on user 
satisfaction and ROI, making improvement of 
these systems a very worthwhile area of study.  

Social polling refers to effectively carrying out 
massive surveys over Social Media. Organizations 
find applications with these capabilities useful for 
brand management, campaign management, and 
understanding key social trends. State of the art 
social polling systems include a capability of mea-

suring trending topics and sentiment. These sys-
tems also include a capability to analyze the user 
characteristic level dependencies of these trends. 
For this use case, informative characteristics for 
businesses to analyze may include a user’s age 
range, gender, ethnicity, income range, location, 
hobbies, political leanings, and brand affinities. 
Additionally, both high precision and high recall 
for all features is paramount to the success of these 
systems. Low precision or low recall for user 

attributes skew trends seen over aggregate data, 
and defeat the purpose of using these solutions to 
discover statistically founded business insights.   

Social Media organizations, generally with 
strong inherent privacy restrictions, like Facebook 
have access to many user level characteristics that 
have been directly inputted to the website. Howev-
er, there is great interest in analyzing these same 
kinds of qualities on more public platforms like 

Twitter and Blogs, where comments are more rea-
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dily accessible to organizations interested in Social 
Media analytics. In this situation, text analytics 
techniques are commonly used to infer qualities 
about these users that are not explicitly provided to 
organizations analyzing this content.    

The difficulty of extracting a characteristic 
about a user based on tweets alone varies greatly 
by the type of characteristic. NLP rule based ap-
proaches (Krishnamurthy et al., 2009) have been 
commonly used as a means to perform micro-
segment analysis of Social Media users. These 
techniques have been very effective at creating 
extractors for user attributes like “fan of” relation-
ships, and gender determination with the presence 

of very little training data. For example, by know-
ing the key characters, actors, and plot details of a 
TV show, the logic is intuitive for making an indi-
vidual rule based extractor that monitors expressed 
interest by a Social Media user in that show. 
Moreover, a gender prediction system can be made 
pretty reliable simply by extracting profile first 
names, and matching to large lists of female and 
male names. However, rule based techniques are 
not good solutions for analyzing more subtle rela-

tionships in social posts like those needed for pre-
dicting a user’s age range, income range, or 
political leanings. Additionally, as social trends 
change and users age, it is very desirable for clas-
sifiers focused on these tasks to be adaptive and 
have the ability to efficiently relearn from scratch. 

As such, Machine Learning techniques make 
sense as a means for creating classifiers of more 
complex user characteristics. N-gram based tech-

niques have commonly been applied to social me-
dia analytics problems (Go et al., 2009), (Kökciyan 
et al., 2013), and (Speriosu et al., 2011). However, 
we have found that these techniques are not effec-
tive without a substantial amount of supervised 
training data or an extremely reliable semi-
supervised method of creating a stand-in corpus. 

In this paper, we propose an end-to-end archi-
tecture to address the key problems exhibited with 

common NLP techniques in analyzing subtly ex-
pressed social media user characteristics. We will 
demonstrate our architecture’s effectiveness at 
predicting user age based on a modest 1266 user 
training set compiled by a team of four researchers 
in a few hours of work for each person manually 
annotating data. Our end-to-end method improves 
on N-gram machine learning techniques by:  

1. Building unsupervised text representations 
that naturally pick up semantic and syntactic 
synonymy relationships. 

2. Effectively utilizing knowledge acquired 

from unlabelled data. 
3. Taking advantage of powerful deep neural 

networks to increase prediction accuracy. 
4. Leveraging a practical framework for trans-

ferring knowledge between related user cha-
racteristic classifiers for increased 
performance without increasing the number 
of free parameters.  

5. Establishing a methodology for efficient 
knowledge transfer from structured metadata 
related to a user.  

Although our main intent is to show the effec-
tiveness of our architecture for Social Media ana-
lytics use cases, there is little about our system that 
has virtues specific to the social media domain. 
Considering the collection of a user’s historical 

tweets as equivalent to a text document, our ap-
proach can serve as a general purpose text analyt-
ics architecture, especially for use cases with 
limited training data. In fact, tweets are generally 
regarded as more challenging to analyze than other 
text because of the noisy language and ambiguous 
content.  

The rest of the paper is organized as follows: 
In Section 2, we describe our data set and go over 

our experimental methodology. Section 3 gives an 
overview of the benefits we see by exploring unsu-
pervised text vector techniques. In Section 4 we 
explain the benefit of building deep learning mod-
els on top of unsupervised features. We proceed to 
explain popular multitask deep learning techniques 
and their failures for our problem statement in Sec-
tion 5. Section 6 is an overview of our hidden layer 
sharing approach, which we validate in Section 7. 

Section 8 explains how our model is extensible for 
the incorporation of structured metadata. Finally, 
Section 9 concludes the paper.  

2 Experimental Methodology  

Without access to any reliable user provided age 
information, we had to rely on human judgment to 
create gold standard annotations for the ages of 
users on Twitter. We randomly generated Twitter 
usernames and had a team of four people manually 
go to Twitter.com and look at their profile. The 
instructions were to look at the user’s Twitter pro-
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file including pictures and their tweets to judge 
their age range and discard any users for whom the 
age range was not clear. The annotators looked 
through the user’s recent tweets to validate their 
age and also annotated with gender and ethnicity 

where possible. Each user in our dataset was ana-
lyzed by two different annotators, and only those 
in which there was agreement for all characteristics 
were kept. Ultimately, we compiled a dataset of 
1808 annotated Twitter profiles, and retrieved his-
torical tweets from their accounts. Depending on 
individual usage patterns, we retrieved a very vari-
able number of tweets. The minimum was 5, the 
maximum was 7115, the average was 226.6, the 

median was 96, and the standard deviation was 
326.  
 
Age Range Training Count Test Count 

Generation Y 590 253 

Generation X 352 152 

Older 323 138 

Table 1: Total counts of the annotated Twitter users in 
our training set and test set by age range.  

 

       For our first attempt to create an age prediction 

system, we attempted to use rules. However, we 
quickly found that even things like usage of cur-
rently trending slang were not reliable in predicting 
age groups. Moreover, rule based systems did not 
seem to have the potential to achieve even modest 
recall. Clearly, age prediction could not be accu-
rately performed deterministically based on tweets, 
and a technique that used a complex evidence 

based model would be needed. 
      Our second attempt at age prediction then was 
to use popular machine learning text analytics 
models based on N-grams. We deployed these 
models using classifiers in the NLTK python pack-
age (Bird et al., 2009). We tried Naïve Bayes, and 
Maximum Entropy models for unigrams, bigrams, 

and trigrams. We found that it was optimal to re-
quire a minimum of 3 training corpus occurrences 
for an N-gram to be included in our feature space.  
 

 
Table 2: F1 scores by age range category for Naïve 
Bayes and Maximum Entropy unigram, bigram, and 

trigram models. 

 

Table 2 depicts the test set results from our 
Maximum Entropy and Naïve Bayes analysis. In-

creasing the our granularity to include bigrams and 
trigrams resulted in an better training set perfor-
mance for Maximum Entropy and Naïve Bayes, 
but those increases did not generalize to the test 
set. Maximum Entropy models saw degradation in 
accuracy with higher level N-grams. For Naïve 
Bayes, there was a slight improvement based on an 

increase in performance at predicting the oldest 
age range. Regardless, these results would not be 
suitable for a deployed system to make confident 
judgments. 

As we began exploring other techniques 
which we will describe in more detail in subse-
quent sections, we use Paragraph Vector as pro-
vided by the original developers (Mesnil et al., 

2015). Additionally, we used the theano-hf python 
package (Boulanger-Lewandowski et al., 2012) as 
the beginning building block for our deep learning 
based approaches.  

3 Unsupervised Text Vectors  

Neural Network Language Models (NNLMs) were 
first proposed by (Bengio et al., 2001), and have 
since become a major focus of research in building 
feature representations for text. (Mikolov et al., 
2013), (Pennington et al., 2014), and (Levy and 

Goldberg, 2014) demonstrate that high quality vec-
tors mapping N-gram phrases to latent vectors can 
be learned over large amounts of unlabelled data. 
These vectors have been shown to be able to natu-
rally express synonymy through vector similarity 
and relationships through vector arithmetic. From a 
practical perspective, this work can be very useful 
to systems with limited training data as unlabelled 
public data is readily available, while supervised 

labeled training data often is not.  
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Table 3: Accuracies and F1 scores by age prediction category for Paragraph Vector (PV), Maximum Entropy (ME), 

and Naïve Bayes (NB) models. 

 
In this paper we use Paragraph Vector, pro-

posed by (Le & Mikolov, 2014), to build unsuper-
vised language models. The key idea of this model 
is to predict nearby words with a fixed context 
window of surrounding words. Paragraph Vector 

extends to any segment of text with any length by 
allowing each unit of text (i.e. units in our experi-
ments are a group of historical tweets for a particu-
lar user) to be represented by its own vector that is 
learned by contributing to the prediction of nearby 
words along with the words in the context window. 
Paragraph Vector has been shown to be a state of 
the art technique for analyzing supervised docu-
ment level sentiment. However, we envision our 

end-to-end architecture as not being tied to a par-
ticular unsupervised feature learning technique. In 
fact, the drawback of Paragraph Vector is that all 
text units must be stored in memory, and an itera-
tive inference step is needed during runtime. Even-
tually it is not unlikely that advances and variation 
in Recurrent Neural Network Language Models, as 
discussed in (Mikolov et al., 2010) and (Sutskever 
et al., 2011), or Recursive Neural Networks, as in 

(Socher et al., 2013) and (Socher et al., 2011), will 
provide a more scalable alternative for mapping 
text segments of arbitrary length to vectors.  

In this section we will explore the perfor-
mance of the unsupervised text vector component 
of our end-to-end architecture. We will first dis-
cuss the comparison between the unmodified Para-
graph Vector method and popular N-gram machine 
learning models. Then we will discuss the effect of 

augmenting Paragraph Vector with unlabelled data.  

3.1 Comparison with N-gram Models 

In this experiment we implemented Naïve Bayes 
and Maximum Entropy N-gram models to serve as 

machine learning baselines over our age prediction 
dataset. We trained Paragraph Vector with a word 
context window of 8, 20 training epochs, and text 
vectors of length 300. After establishing text vec-
tors for the training set of user tweet collections, 
we trained a logistic regression classifier as (Le & 

Mikolov, 2014) do in their original sentiment anal-
ysis paper.  
       Table 3 displays the results of this analysis. 
When it comes to testing accuracies and age range 

specific F1 scores, Paragraph Vector seems to re-
sult in the most well rounded representation, but 
the Naïve Bayes trigram model actually achieves a 
slightly higher overall accuracy. However, one 
clearly evident differentiator between the tech-
niques can be seen in the breakdown of the results 
over the training set.  

       The trigram Maximum Entropy model expe-
riences a 35.4% drop-off in accuracy from the 
training set to the test set, Naïve Bayes experiences 
a 28.1% drop-off in accuracy, and Paragraph Vec-
tor only falls 1%. It seems as though particularly 
for the case of the tougher Generation X and Older 
ranges, the N-gram models overfit on this small 
training set in a way that does not generalize. The 

Paragraph Vector model, however, has built a no-
tion of text synonym that constricts its learning to 
knowledge that will generalize. Table 3 seems to 
indicate that despite similar performance, the Para-
graph Vector model has a far better idea of its own 
true accuracy than N-gram models and has the po-
tential at least to significantly improve whereas the 

N-gram models are much closer to their accuracy 
limitations given the small training dataset.  

3.2 Knowledge Transfer From Unlabelled 

Data  

In order to extend the Paragraph Vector model, we 
explored the possibility of expanding its know-
ledge coverage by incorporating unlabelled data. 
As we were concerned about the effect on perfor-
mance of both storing and conducting inference 
over text segment vectors at scale, we did not in-
clude any additional user profile vectors in our 

model. Instead, additional unlabelled tweets were 
added to the Paragraph Vector training and only 
the words were considered.  
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Table 4: Logistic regression Paragraph Vector results 

with the incorporation of additional text.  

 
Table 4 shows that as more tweets are in-

cluded, the Paragraph Vector model becomes bet-
ter. In fact, the addition of 10 million unlabelled 
tweets results in a 12.5% relative improvement in 
the accuracy of the original Paragraph Vector 

model. It should be noted that each of these cor-
puses was analyzed over 20 training epochs of Pa-
ragraph Vector. It is also important to note at this 
stage that we have found that the number of train-
ing epochs has a big impact on the quality of the 
text vectors produced by Paragraph Vector. The 
implication being that training on massive corpuses 

only makes sense if the time is allotted for a signif-
icant number of iterations.  

4 Learning Deep Neural Networks from 

Unsupervised Text Feature Vectors  

A logical first step in building powerful repre-
sentations on top of unsupervised text vectors is to 
analyze the performance differences between lo-
gistic regression and generic deep neural network 
architectures. 3.03 million total free parameters is a 
good number that we established as the desired 

size for our neural network architecture. In these 
experiments (and all that follow) we kept that size 
constant across different numbers of hidden layers 
and every hidden layer was set to be the same size 
within an individual single task network.  

We also restricted our analysis to Paragraph 
Vector with 10 million unlabelled tweets because it 
achieves the best performance with logistic regres-
sion. Our neural network leverages the Hessian 

Free Optimizer (Martens, 2010) and (Martens and 
Sutskever, 2011) in order to traverse pathological 
curvatures in the error function. We found this me-
thod to be considerably better than straightforward 
stochastic gradient descent in practice. Additional-
ly, our deep neural network was initialized with 
greedy layer wise pretraining (Hinton et al., 2006). 
We used sigmoid activation units, a preconditioner, 
and a cross entropy loss function.  

Our deep learning results are depicted in Table 
5. Our network increase in performance as we in-
crease the number of hidden layers until hitting a 
maximum total accuracy of 73.1% with three hid-

den layers. The three hidden layer network is the 
most efficient in its use of free parameters, and 
shines above the rest due to a considerable separa-
tion from the pack in predicting Generation X 
Twitter users – the toughest age range to predict.  
 

 
Table 5: Results for different numbers of equal sized 

hidden layers with a fixed total parameter size.  

5 Deep Multitask Learning Architectures 

Multitask learning across deep neural network ar-
chitectures is far from a new idea. The architecture 
portrayed in Figure 1, taken from (Socher and 
Manning, 2013), is seemingly of general consensus 
in the deep learning community (Bengio et al., 
2013). The main idea is that a shared input is sent 
to an arbitrary amount of Neural Network hidden 
layers that are shared between related tasks and 
then classified by an arbitrary number of task spe-

cific Neural Network hidden layers and a task spe-
cific output layer.  

 
Figure 1: Standard Deep Multitask Learning Architec-
ture Diagram 

 

In (Collobert & Weston, 2008) this general 
architecture is extended in an attempt to perform 

Semantic Role Labeling and an unsupervised lan-
guage model is used to initialize word vectors. 
However, it is important to note that they have 
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many more training examples in their experiments 
than we do. In a situation where there is a relative-
ly small number of training examples, we believe it 
makes more sense to treat unsupervised text map-
pings as an input feature space for training that is 

shared across tasks (as opposed to just an initia-
lized layer). Although feature spaces created by 
unsupervised learning could contain errors, with 
limited training examples algorithms cannot afford 
to perform sparse updates based on individual N-
grams. It is imperative in learning relationships 
that generalize well and do not overfit to associate 
discoveries about phrases with synonyms and 
phrases of similar meaning. As we have already 

shown, doing this with high quality unsupervised 
feature vectors constrains the space of learning and 
prevents supervised machine learning algorithms 
from reading too much into misleading co-
occurances present in smaller datasets. 

A very simple paradigm of multi-task learning 
can be achieved by concatenating the output for 
each task and learning a single neural network that 
simultaneously classifies all tasks. Interestingly, 
this paradigm resulted in a consistent slight per-

formance degradation in our experiments over sin-
gle tasks. It seems like adding the extra output 
indicators must be complicating the process of mi-
nimizing error despite more information, even con-
sidering the small training corpus. Additionally, 
this method is only possible for training data that is 
jointly labeled, which significantly limits it appli-
cability as a technique and seems inconsistent with 
the individual attention humans successfully exhi-

bit when learning new skills. This limitation moti-
vates the general architecture of Figure 1, which 
has no requirement for jointly labelled training da-
ta.  

However, in the general multi-task deep learn-
ing model depicted in Figure 1, it is not clear how 
to approach the order of training tasks. In an ex-
treme example, if you imagine first training one 

task for all epochs and then training another for all 
epochs, the first task would essentially serve as an 
initialization of the base network close to the input 
that will eventually get very much customized for 
the second task after enough iterations. We did not 
find this technique useful in our experiments. In 
fact, it seems like we may be relatively far from 
realizing the totality of the apparent promise of 

multi-task learning with an architecture in the form 
of Figure 1. In our experiments, we found that 
training a framework of that form by alternating 
between tasks every epoch (and even in mini-

batches) actually resulted in a degradation of per-
formance over single task learning. In fact, in 
(Collobert & Weston, 2008), where they loop 
through tasks in alternating order and update one 
random training example at a time, the authors find 
that Semantic Role Labeling is performed better 
over a large corpus just with Language Model in-
itialization than it is with the additional contribu-

tions of knowledge of Part of Speech Tagging, 
Chunking, and Named Entity Recognition. This 
result is quite unintuitive given how related these 
tasks are, and points to a similar phenomenon to 
what we saw in implementing this paradigm.   

6 Hidden Layer Sharing 

Our proposed approach to multitask learning is 
performed with the following procedure: 

1. Linguistic input is mapped to a shared unsu-
pervised layer that serves as the effective in-

put feature space for subsequent classifiers.  
2. Each task is trained as its own deep neural 

network – the size of which is specified as a 
parameter of the model.  

3. The output layer of each model is discarded 
and the top hidden layers for each model are 
concatenated. 

4. The concatenated hidden layers are treated as 
a new input feature space to subsequent deep 

neural networks trained for each task. In our 
experiments we found a one layer logistic 
regression network with no additional hidden 
layers to make optimal use of free parame-
ters, but this effect may change for different 
domains.  

Figure 2 depicts an example architecture for 
hidden layer sharing between two tasks. In contrast 
to Figure 1, Figure 2c only illustrates classification 

of a single output at a time. This serves to unders-
core a critical practical point about prioritization. 

In practice the number of free parameters is a 
constrained value for a production NLP system. 
We expect machine learning models to increase in 
performance with an increase in free parameters. 
On the other hand, there are practical limits  

44



 

 

Figure 2: An example of the process and final deployment architecture for our hidden layer sharing approach. Task 1 

is the main task to optimize. In this configuration, Task 1 is allotted three task specific hidden layers, Task 2 is allot-

ted one task specific hidden layer, and the network that processes the output from the combined hidden layers in A is 

allotted one hidden layer on top of the combined input. The logical flow of steps goes from A to B for training and C 

for deployment. Optionally, fine-tuning can be conducted with the architecture in C.  

 
imposed by the direct relationship between increas-
ing the number of free parameters, increasing a 
model’s memory footprint, and decreasing its run-
time throughput. That being said, given the modern 
hardware these systems are deployed on today, 
most models hit a point of diminishing returns 
where increasing parameters has less and less im-

pact on the model’s accuracy. As such, the practic-
al promise of multitask learning and knowledge 
transfer techniques today is to achieve a lift in pre-
dictive performance of models while staying con-
stant at the allowable limit for total free 
parameters. When viewed in this way, it is clear 
that when considered as the main task being opti-
mized, Task 1 would probably benefit from a dif-
ferent split of free parameters than Task 2 in 
Figure 2. All else being equal, although Task 2 is 

useful for improving Task 1, it is not as mission 
critical as the main task, so Task 1 likely should 
have more dedicated free parameters than Task 2 if 
you are classifying Task 1. The reverse would be 
true if you were classifying Task 2.  

In our experiments we see two major positive 
effects of the hidden layer sharing technique. First, 
training the models separately seems to allow for a 
more stable learning for each task that overcomes 

early local minimums hit by other common archi-
tecture types. Second, the ability to directly specify 
the number of free parameters allocated to each 
model in early layers results in an ability to tune 
models for optimal prioritization of related tasks.  

7 Measuring The Effectiveness of Hidden 

Layer Sharing 

As discussed in Section 6, a key aspect of our hid-
den layer sharing approach is the ability to directly 

adjust the prioritization of tasks. For the case of 
training age prediction alongside the gender pre-

diction task, we saw significant gains by limiting 
the amount of parameters in the model allocated to 
gender prediction. Training the model with a 50-50 
split in free parameters allocated between tasks 
resulted in 68.9% total accuracy (a net decrease in 
performance from single task results), however, a 

70-30 split in favor of the age prediction task 
brought total accuracy to 73.3%. A 90-10 split 
achieved the best two task result with 75.0% total 
accuracy. For the case of training age prediction 
alongside the ethnicity prediction task, we saw the 
opposite relationship. When the ethnicity learning 
task wasn’t given enough stake in the shared hid-

den layer at a 90-10 free parameter split, it hurt our 
predictive accuracy by bringing it down to 70.7%. 
However, at an even 50-50 split the ethnicity task 
free parameters helped age prediction learning 
enough to overcome our 3 hidden layer single task 
result by achieving 73.9% total accuracy.  

 
Table 6: Top results with a constrained free parameter 

size at different architecture points.  

 
Table 6 highlights our best result, which came 

from integrating a scaled down version of the three 

hidden layer model with enough free parameters 
left over to give ethnicity and gender each an equal 
10% of the total free parameter stake in the model. 
A logistic regression layer was built on top of the 
concatenated shared hidden layers to create a final 
output. 75.9% total accuracy constitutes a 3.8% 
relative improvement over deep learning models 
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due to knowledge transfer from two related tasks 
and a 34.6% relative accuracy improvement over 
the best performing baseline N-gram model. The 
hidden layer sharing approach was capable of inte-

grating both gender and ethnicity detection as re-
lated tasks to age detection for significant 
additional gains on top of the large gains resulting 
from building deep learning on top of unsupervised 
language model feature vectors. This is a pheno-
menon that was expected, but not achieved with 
concatenated output and joint learning driven 
shared hidden layer architectures.   

8 Extensibility of Architecture to Incorpo-

rate Available Metadata 

 
Table 7: Comparison of results in age range prediction 

between neural network architectures with a fixed pa-

rameter size that are given gender and ethnicity infor-

mation as structured metadata.  

 
Beyond being able to leverage knowledge from 
multiple related learned tasks, it is important for a 

social media analytics solution to be able to prop-
erly leverage structured metadata when available. 
To showcase the ease in which a model in our ar-
chitecture could do this, we ran an experiment as-
suming that gender and ethnicity are always given 
as metadata to our system. In this case we can see 
in Table 7 that both a single hidden layer model 
and multiple hidden layer models can benefit sig-

nificantly from additional structured input that is 
concatenated with the input unsupervised language 
model feature vectors. Our 3 hidden layer model 
from before is able to efficiently incorporate in this 
structured data for 23.2% relative improvement 
over the same single task model. This is a very en-
couraging result to achieve 90.1% total accuracy 

with such a small age related training set.  
The 14.2% gap between our hidden layer 

sharing result and what is possible with direct 
knowledge of the same tasks as metadata points 

out that if we had more training data on related 
tasks such as gender and ethnicity, it should be 
possible to achieve high accuracy results without 
the need for the metadata being directly given. Li-

mitations in accuracy increases resulting from 
knowledge transfer are at least in part due to the 
limited accuracy for the individual gender and eth-
nicity tasks in our current experiments, which are 
learned over the same small dataset used for age 
prediction. 

9 Conclusion and Future Work 

Prediction tasks like age prediction based solely on 
historical tweets from a user are not possible using 
rule based techniques and are not possible with 

limited training data for N-gram machine learning 
techniques. In this paper, we have shown that using 
modern machine learning techniques such as the 
addition of unlabelled training data, deep learning, 
and knowledge transfer between related tasks, it is 
possible to achieve 75.9% predictive accuracy with 
limited training data. In fact, we have shown that 

these models are very extensible and achieve 
86.6% accuracy for the common case where gend-
er is known. Moreover, we can achieve 90.1% pre-
dictive accuracy when other useful metadata like 
ethnicity is present. 

In this paper we have proposed a text analyt-
ics process flow and hidden layer sharing architec-

ture suitable for solving tough prediction problems 
on noisy social media text. However, our approach 
in this paper can be translated to other even see-
mingly unrelated domains as well, such as business 
to business lead prediction, which will be the focus 
of future publications. Our hidden layer sharing 
approach gives developers the power to specify 
how a deep neural network stores and prioritizes 

knowledge between related tasks, where popular 
techniques generally allow the neural network to 
figure this out.  

The success of this approach points out the 
need for improvement of shared hidden layer deep 
neural network approaches which in some cases 
have a difficult time prioritizing effectively and 

balancing learning across multiple complex error 
functions. Additionally, the huge improvements we 
see with direct knowledge of structured metadata 
are indicative of the potential that multitask archi-
tectures have for classification problems in the so-
cial media domain with limited training data. 
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