
Proceedings of LAW IX - The 9th Linguistic Annotation Workshop, pages 144–147,
Denver, Colorado, June 5, 2015. c©2015 Association for Computational Linguistics

Parsing Learner Text: to Shoehorn or not to Shoehorn

Aoife Cahill
Educational Testing Service

660 Rosedale Rd
Princeton, NJ 08541, USA
acahill@ets.org

1 Introduction

The texts written by language learners can be con-
sidered a type of non-canonical text. Language
learners tend to make errors when writing in a sec-
ond language and in this regard, can be seen to vi-
olate the canonical rules of a language. The kinds
of errors that learners may make include: spelling,
grammatical, vocabulary, collocation. The extent
and degree to which learners make errors will de-
pend on their proficiency level and this is a fac-
tor that should be taken into account when thinking
about non-native writing. Highly proficient speak-
ers will make very few errors, and given just a small
sample of text it may not even be possible to iden-
tify that they are language learners. However, at
the same time, the kinds of errors that even highly-
proficient language learners make are often very dif-
ferent from the kinds of errors that a native speaker
will make. A non-native speaker is likely to have the
most trouble with collocations and lexical choice,
whereas a native speaker will be less likely to have
difficulty here (Leacock et al., 2014).

Our discussions here will focus on the syntactic
analysis of English learner data. In particular, we are
primarily considering learners at a low to mid-level
proficiency. The kinds of mechanical and grammati-
cal errors that these learners make are likely to cause
the most difficulty for syntactic analyzers. Syntac-
tic analysis is a key component of attempting to un-
derstand the meaning of a text. Therefore, syntactic
analysis of learner text is an important step in many
applications. The kinds of applications that need to
analyze learner text include automated systems that

detect and correct grammatical errors, systems that
automatically grade texts, native language identifi-
cation systems, feedback systems, etc.

2 Parsing Learner Text

Geertzen et al. (2013) parse a corpus of 1,000 learner
sentences with the Stanford parser and examine the
kinds of errors made by the parser. They find that
in general the parser is able to recover syntactic de-
pendency relations with high accuracy. In addition,
there is only a small amount of variation across pro-
ficiency levels. They found that the parser can com-
pensate well for morphological mistakes, but has
more difficulty with more complex errors.

Although in this work we are only considering
English data, it is worth pointing out some recent
related work on German. Ott and Ziai (2010) ap-
ply an out-of-the-box German dependency parser to
learner text and analyze the impact on down-stream
semantic interpretation. They find that core func-
tions such as subject and object can generally be re-
liably detected, but that when there are key elements
(e.g. main verbs) missing from the sentence that the
parses are less reliable. They also found that less-
severe grammatical errors such as agreement did not
tend to cause problems for the parser. Krivanek and
Meurers (2011) compare a hand-crafted parser to a
statistical parser on German data and find that the
parsers are better at detecting complementary de-
pendencies.

The highest-performing NLP tools have all been
trained to perform well on well-edited text (often in
the newspaper domain). There are two main prob-
lems when applying these tools to learner text which

144



may contain many errors. The first is that the state-
of-the-art tools are robust to noise and will almost
always find some analysis. Depending on the kinds
of grammatical errors in the learner text, this analy-
sis can be seriously flawed. The second issue is that
often, due to the errors, a traditional linguistic anal-
ysis of learner text is not possible or appropriate.

One way of looking at the problem of training sta-
tistical NLP tools for learner texts is that learner text
is of a different domain to the domain for which the
NLP tools were designed. Many unsupervised ap-
proaches to domain adaptation have been proposed
in the literature, which may be applicable in this sce-
nario. Self-training (McClosky et al., 2006) is one
very common and straightforward technique for im-
proving NLP tool performance on text from a new
domain. Cahill et al. (2014) showed that it was
possible to improve the performance of a baseline
constituency parser on learner text by applying self-
training.

Another approach to adapting NLP tools to
learner text is to train them directly on annotated
data. The SALLE project (Syntactically Annotat-
ing Learner Language of English) at Indiana Uni-
versity is working towards developing a set of guide-
lines for annotating syntactic properties (in the form
of dependencies) of texts written by learners of En-
glish (Ragheb and Dickinson, 2012; Ragheb and
Dickinson, 2014). Their goal is to provide accu-
rate syntactic dependency analyses for learner text
given the morphological realizations of tokens, and
they do not attempt to connect directly to the in-
tended meanings. They plan to release a manually
annotated dataset, and are also planning to work on
bootstrapping approaches to semi-automatically an-
notate data.

3 Parsing and Grammaticality

Heilman et al. (2014) argue that grammaticality
judgments for sentences should be made on an or-
dinal scale rather than the binary scale that is often
used when talking about grammaticality. They pro-
pose a four-point scale where 1 is incomprehensible
and 4 is native-sounding.1 Viewing grammaticality
in this way, it is likely that the performance of a syn-
tactic parser will be more or less impacted by the

1Non-word spelling errors are ignored in that scheme.

severity of the grammatical error.
In order to briefly test whether different error

types impact syntactic parsing to different degrees,
we carry out a preliminary experiment with some
artificially generated errors. We consider 6 errors
that are typical of those made by language learn-
ers. These six error types were selected because they
can easily be simulated, we do not make any claims
about the relative “severity” of these errors here. In
general, these errors would not lead to severe dif-
ficulties in interpretation for most people, however
there are some cases where these errors could lead
to ambiguity in interpretation. At the same time,
we would predict that some of these errors would
cause problems for state of the art parsers (e.g. miss-
ing determiner/preposition). We expect tolerance for
grammatical errors to differ considerably between
parsers and native speakers. The six errors we con-
sider are:

1. missing determiner

2. missing preposition

3. missing pronoun

4. noun number error (plural instead of singular)

5. verb form error (present tense conjugation)

6. incorrect position of adverb

We use the parsed version of WSJ section 23
as our gold standard test corpus and use the Gen-
ERRate tool (Foster and Andersen, 2009) to artifi-
cially introduce these 6 errors into this well-formed
text. The GenERRate tool allows the user to de-
fine operations that are applied to well-formed text
in order to yield ill-formed text. For example, the
operation to introduce a “missing determiner” error
is delete DT. GenERRate also allows the user to
specify the proportion of each error type in the out-
put text. In our experiments, we choose a proportion
of 0.03. This means for this error for example, that
3% of the determiners in the original corpus would
be deleted.2

For each error, we process section 23 to get a ver-
sion of the text containing that error. We then parse

2Future work would include experimentation with varying
this rate.

145



Labeled Bracketing
Precision Recall F-Score

original 90.23 89.82 90.03
Verb form 89.73 89.24 89.48
Noun number 89.52 89.39 89.45
missing PRP 82.10 79.94 81.01
missing DT 75.49 74.65 75.07
Adverb 71.63 71.41 71.52
missing IN 73.68 68.49 70.99

Table 1: The effect on parser performance on ungram-
matical text as measured by labeled constituents.

the original text as well as each modified version
of section 23 with ZPar (Zhang and Clark, 2011).
We evaluate the output of the parser using SParse-
val (Roark et al., 2006). This is necessary because
the tokens in the gold standard are no longer nec-
essarily in the parser output and standard evaluation
software such as evalb cannot be applied. The la-
beled bracket constituency results are given in Table
1. The results show a large difference in parser per-
formance across the 6 error types.

Confusing singular and plural nouns, or confusing
the form of the verb lead to only very minor changes
in overall constituency structure compared to pars-
ing the original text by Zpar. This is in some ways
not that unexpected, since these kinds of errors (at
least in the manner they were artificially introduced)
only affect the part-of-speech tag of the word. Miss-
ing determiners and prepositions lead to large drops
in performance. This is expected, since without
these key function words, the parser will have dif-
ficulty building up NP and PP constituents. Inter-
estingly, the missing pronoun errors do not lead to
as dramatic a drop in performance. This may be be-
cause pronouns alone form complete NP constituents
and their absence will have less of an impact on the
construction of the surrounding constituents.

Another important factor to consider is the eval-
uation metric. Evaluation metrics and annotation
schemes can often mask true differences and ac-
centuate other differences by over-counting. Re-
hbein and van Genabith (2007) compare three dif-
ferent parser evaluation metrics and show that a
dependency-based evaluation is best suited to mea-
suring the linguistic information encoded in parse

trees. Unfortunately, SParseval does not take the
alignment into account when computing depen-
dency scores and so we are unable to report those
scores for our experiments at this time.3

4 Discussion

Annotating learner text with syntactic analysis, ei-
ther manually or automatically is problematic for a
number of reasons. As shown above, the automatic
annotation of texts that contain grammatical errors
can have a large impact on parser performance, de-
pending on the kind of error. In the examples above,
only one error per sentence was ever introduced.4 In
reality, learner errors interact and can be difficult to
disentangle. At the same time, these errors were ar-
tificially introduced into relatively long and complex
English sentences that a language learner would not
necessarily be able to produce. In Geertzen et al.
(2013) the naturally occurring errors in their corpus
did not seem to cause the parser too much trouble.

Current research has two main approaches: (1)
training parsers to produce more accurate trees
based on the Penn Treebank style annotation guide-
lines (e.g. Cahill et al. (2014)) or (2) adapting the
underlying annotation schemes to better capture the
fact that there may be errors in the text (e.g. Ragheb
and Dickinson (2014)). The two approaches have
different strengths. The first will produce the kinds
of annotated trees that other NLP tools are used to
getting as input. Therefore these kinds of trees fit
nicely into an already existing NLP pipeline. The
second will produce the kinds of annotated trees that
will ultimately be more informative when it comes
to developing learner-specific applications. Both ap-
proaches also have different weaknesses. The Penn
Treebank style trees alone cannot provide any in-
sight into potential errors in the sentence, and de-
veloping the tools that generate these trees such that
they work well on learner text requires more work.
On the other hand, a new annotation scheme requires
a significant amount of manual effort in order to an-

3The dependency scores reported by SParseval will overly-
penalize errors involving a change in surface form, as in the
noun-number error.

4Although the algorithm GenERRate employs to insert er-
rors according to a defined frequency would in theory allow for
multiple errors per sentence, we did not see any instances of this
in our data.

146



notate enough data to be able to train a new statisti-
cal parser.5

Given the encouraging results of Geertzen et al.
(2013) and Cahill et al. (2014), the approach of shoe-
horning existing annotation schemes to fit learner
data is the most practical for large-scale applications
currently.

References

Aoife Cahill, Binod Gyawali, and James Bruno. 2014.
Self-training for parsing learner text. In Proceed-
ings of the First Joint Workshop on Statistical Pars-
ing of Morphologically Rich Languages and Syntactic
Analysis of Non-Canonical Languages, pages 66–73,
Dublin, Ireland, August. Dublin City University.

Jennifer Foster and Oistein Andersen. 2009. Generrate:
Generating errors for use in grammatical error detec-
tion. In Proceedings of the Fourth Workshop on Inno-
vative Use of NLP for Building Educational Applica-
tions, pages 82–90, Boulder, Colorado, June. Associa-
tion for Computational Linguistics.

Jeroen Geertzen, Theodora Alexopoulou, and Anna Ko-
rhonen. 2013. Automatic linguistic annotation of
large scale L2 databases: the EF-Cambridge Open
Language Database (EFCAMDAT). In Proceedings
of the 31st Second Language Research Forum.

Michael Heilman, Aoife Cahill, Nitin Madnani, Melissa
Lopez, Matthew Mulholland, and Joel Tetreault. 2014.
Predicting Grammaticality on an Ordinal Scale. In
Proceedings of the 52nd Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 2: Short
Papers), pages 174–180, Baltimore, Maryland, June.
Association for Computational Linguistics.

Rafiq Abdul Khader, Tracy Holloway King, and Miriam
Butt. 2004. Deep call grammars: The lfgot experi-
ment.

Julia Krivanek and Detmar Meurers. 2011. Compar-
ing rule-based and datadriven dependency parsing of
learner language. In Proceedings of the Int. Con-
ference on Dependency Linguistics (Depling 2011),
pages 310–317.

Claudia Leacock, Martin Chodorow, Michael Gamon,
and Joel Tetreault. 2014. Automated Grammatical Er-
ror Detection for Language Learners, Second Edition.
Synthesis Lectures on Human Language Technologies,
7(1):1–170.

5There has also been work on extending non-statistical
hand-crafted grammars to return structures that indicate the lo-
cation of grammatical errors (Menzel and Schröder, 1999; Van-
deventer Faltin, 2003; Khader et al., 2004).

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In Proceed-
ings of the Human Language Technology Conference
of the NAACL, Main Conference, pages 152–159, New
York City, USA, June. Association for Computational
Linguistics.

Wolfgang Menzel and Ingo Schröder. 1999. Error diag-
nosis for language learning systems. ReCALL, 11:20–
30.

Niels Ott and Ramon Ziai. 2010. Evaluating dependency
parsing performance on German learner language. In
Proceedings of the Ninth Workshop on Treebanks and
Linguistic Theories (TLT-9), pages 175–186.

Marwa Ragheb and Markus Dickinson. 2012. Defining
Syntax for Learner Language Annotation. In Proceed-
ings of COLING 2012: Posters, pages 965–974, Mum-
bai, India, December. The COLING 2012 Organizing
Committee.

Marwa Ragheb and Markus Dickinson. 2014. Devel-
oping a Corpus of Syntactically-Annotated Learner
Language for English. In Proceedings of the Thir-
teenth International Workshop on Treebanks and Lin-
guistic Theories (TLT13), pages 137–148, Tübingen,
Germany.

Ines Rehbein and Josef van Genabith. 2007. Eval-
uating Evaluation Measures. In Proceedings of the
16th Nordic Conference of Computational Linguistics
(NODALIDA-2007), Tartu, Estonia.

Brian Roark, Mary Harper, Eugene Charniak, Bonnie
Dorr, Mark Johnson, Jeremy G Kahn, Yang Liu, Mari
Ostendorf, John Hale, Anna Krasnyanskaya, Matthew
Lease, Izhak Shafran, Matthew Snover, Robin Stewart,
and Lisa Yung. 2006. Sparseval: Evaluation metrics
for parsing speech. In Proceedings of LREC.

Anne Vandeventer Faltin. 2003. Syntactic Error Diag-
nosis in the context of Computer Assisted Language
Learning. Ph.D. thesis, Université de Genève.

Yue Zhang and Stephen Clark. 2011. Syntactic Pro-
cessing Using the Generalized Perceptron and Beam
Search. Computational Linguistics, 37(1):105–151.

147


