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Abstract

Large-scale data resources needed for
progress toward natural language under-
standing are not yet widely available and
typically require considerable expense and
expertise to create. This paper addresses the
problem of developing scalable approaches
to annotating semantic frames and explores
the viability of crowdsourcing for the task
of frame disambiguation. We present a
novel supervised crowdsourcing paradigm
that incorporates insights from human com-
putation research designed to accommodate
the relative complexity of the task, such as
exemplars and real-time feedback. We show
that non-experts can be trained to perform
accurate frame disambiguation, and can even
identify errors in gold data used as the training
exemplars. Results demonstrate the efficacy
of this paradigm for semantic annotation
requiring an intermediate level of expertise.

1 The semantic bottleneck

Behind every great success in speech and language
lies a great corpus—or at least a very large one. Ad-
vances in speech recognition, machine translation
and syntactic parsing can be traced to the availabil-
ity of large-scale annotated resources (Wall Street
Journal, Europarl and Penn Treebank, respectively)
providing crucial supervised input to statistically
learned models.

Semantically annotated resources have been com-
paratively harder to come by: representing meaning
poses myriad philosophical, theoretical and practi-
cal challenges, particularly for general purpose re-

sources that can be applied to diverse domains. If
these challenges can be addressed, however, seman-
tic resources hold significant potential for fueling
progress beyond shallow syntax and toward deeper
language understanding.

This paper explores the feasibility of developing
scalable methodologies for semantic annotation, in-
spired by three strands of work.

First, frame semantics, and its instantiation in the
Berkeley FrameNet project (Fillmore and Baker,
2010), offers a principled approach to represent-
ing meaning. FrameNet is a lexicographic resource
that captures syntactic and semantic generalizations
that go beyond surface form and part of speech,
famously including the relationships among words
like buy, sell, purchase and price. These rich struc-
tural relations provide an attractive foundation for
work in deeper natural language understanding and
inference, as attested by the breadth of applications
at the Workshop in Honor of Chuck Fillmore at ACL
2014 (Petruck and de Melo, 2014). But FrameNet
was not designed to support scalable language tech-
nologies; indeed, it is perhaps a paradigm example
of a hand-curated knowledge resource, one that has
required significant expertise, training, time and ex-
pense to create and that remains under development.

Second, the task of automatic semantic role la-
beling (ASRL) (Gildea and Jurafsky, 2002) serves
as an applied counterpart to the ideas of frame se-
mantics. Recent progress has demonstrated the vi-
ability of training automated models using frame-
annotated data (Das et al., 2013; Das et al., 2010;
Johansson and Nugues, 2006). Results based on
FrameNet data have been limited by its incomplete
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lexical coverage (since the project is ongoing) as
well as the relatively limited amount of annotated
data. More impressive results have been based on
PropBank (Palmer et al., 2005), a semantic resource
whose frames are more lexically specific than those
of FrameNet. PropBank frames are generally more
tightly linked to surface syntax (and thus afford less
generalization across words), but are relatively sim-
pler to define and annotate, as reflected by its greater
coverage and amount of annotated data. It seems
natural to investigate whether a comparable amount
of FrameNet data would yield equally good perfor-
mance (along with the further benefits of frame-level
generalizations).

Third, a handful of studies from the relatively new
field of human computation suggest that some as-
pects of frame annotation may be amenable to non-
expert curation, such as made possible by crowd-
sourcing platforms like Amazon Mechanical Turk
(AMT) (Hong and Baker, 2011; Fossati et al., 2013).
These findings are not altogether surprising: frame
semantics purports to capture generalizations that
depend on everyday, non-specialist language use.
Frame annotation should therefore not require the
same level of training as, for example, syntactic
annotation. On the other hand, while competent
speakers of a language are assumed to make im-
plicit use of frame-like structures—i.e., understand-
ing who did what to whom and other kinds of re-
lationships implied by a specific expression—they
do not explicitly annotate semantic information as
a natural part of everyday language use. Thus, un-
like translation—which (some) humans do rather
naturally—frame annotation is unlikely to occur in
the wild, and will likely require more instruction
than a typical AMT task.

These three strands together suggest that frame
semantics is a promising option for meaning rep-
resentation; that larger-scale frame-annotated data
could drive ASRL models; and that the task of
frame annotation may be amenable to crowdsourc-
ing methods. We take these strands as a starting
point for exploring how richer human computation
frameworks can support scalable frame annotation,
focusing in this paper on one part of frame annota-
tion (the frame disambiguation task).

In the remainder of the paper, we first describe rel-
evant previous work in more detail (Section 2). We

then introduce a novel supervised crowdsourcing
framework that adapts previous work by introducing
multiple kinds of feedback and supervision (Section
3) and describe experiments using this framework
to crowdsource frame disambiguation (Section 4).
Finally, we discuss results and future avenues sug-
gested by this research (Section 5), in particular the
possibility that non-experts can be efficiently and ef-
fectively trained to perform tasks requiring an inter-
mediate level of expertise.

2 Background

In this section we briefly describe the target rep-
resentation of semantic frames, the FrameNet re-
source, the frame disambiguation annotation task,
and some relevant past human computation efforts.

2.1 Frame semantics

A semantic frame (or simply frame), as developed
by the late Charles J. Fillmore (Fillmore, 1976; Fill-
more, 1982), is a conceptual gestalt that represents
a generalization over similar scenes—typically cor-
responding to events, relations, states, or entities.
Frames are structured around a set of semantic roles,
also called frame elements (FEs), corresponding to
participants in the scene.

The key theoretical insight of frame semantics
is that the meanings of most words (and other con-
structions) can be understood in relation to the se-
mantic frames they evoke. The much-discussed
Commercial Transaction frame, for example, has
FEs for the Buyer, Seller, Goods and Money; and
it is associated with a set of words, or lexical units
(LUs), that profile (or highlight) different FEs or
sets of FEs (e.g., the verb buy is typically expressed
along with the Buyer and the Goods FEs, while the
noun price is mainly associated with the Money).

Frames vary considerably in complexity and level
of granularity. Moreover, individual lemmas (or
words) might be associated with multiple frames.
For example, the lemma like (as a preposition and
verb, respectively) is associated with two frames:

• Similarity: Skiing is LIKE windsurfing.
• Experiencer focus: I LIKE looking in windows.

The same lemma with the same part of speech can
also be ambiguous, as in the case of century:
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• Measure duration: CENTURIES of farming
have shaped our countryside.

• Calendric unit: By the 13th CENTURY. . . .

For simplicity, the examples above do not show
the FEs defined for each frame and how they re-
late to different parts of the text, but a fully frame-
annotated sentence would include that information.

2.2 FrameNet and frame disambiguation
FrameNet is a lexical resource for English based on
frame semantics, in development since 1997 (Fill-
more and Baker, 2010; Ruppenhofer et al., 2006).
It includes nearly 1,200 frame definitions; 200,000
manually annotated examples; and about 13,000
LUs linked to specific frames.

The frame annotation process traditionally em-
ployed by Berkeley FrameNet combines frame cre-
ation with lexicographic frame annotation, where
annotators select sentences from a corpus containing
a lemma illustrating a frame. A separate full-text
frame annotation process attempts to annotate all
frames evoked by a sentence.

For either style of frame annotation, one must de-
cide whether a lemma used in a given sentence is
an instance of a particular frame, or more generally
decide which of several candidate frames it evokes.
Since the FrameNet project is ongoing (i.e., many
frames have not yet been defined), the evoked frame
may not even be among the known candidate frames.
We call this task frame disambiguation (FD), cor-
responding roughly to word sense disambiguation.

FD is only the first step toward complete frame
semantic annotation. The second is frame element
annotation (FEA), the assignment of FEs to words
in the sentence. The output of FEA corresponds to
that of ASRL systems like those mentioned above;
these systems often make precisely the same divi-
sion of labor among FD and FEA phases (Das et al.,
2013).

2.3 Insights from human computation
Human computation, in particular the use of large
numbers of non-expert judgments to complement
or substitute for expert judgments, has been well-
established for many types of data collection, both
commercial and scientific. Several crowdsourcing
experiments have explored frame disambiguation
and related tasks.

2.3.1 Crowdsourcing for frame disambiguation
The most relevant precursor of the current work

is a series of experiments on crowdsourcing frame
annotation, in particular the frame disambiguation
task, using Amazon Mechanical Turk (AMT), re-
ported at LAW V (Hong and Baker, 2011).

The target sentences consisted of unannotated
sentences from the FrameNet database, plus a few
annotated sentences for measuring annotator accu-
racy. Several task designs were tried:

• frame choice: Workers choose from a list of
candidate frames, plus ”None of the above”.

• simplified frame names: as above, but with
FrameNet terms rewritten for non-experts.

• frame sorting, with randomly chosen gold
exemplars: Workers see a list of sentences
and “piles” corresponding to candidate frames,
each with a starter gold exemplar. They sort
sentences into the appropriate frame pile (and
freely recategorize sentences if desired).

Several experiments were run with the last design,
varying the qualifications of the workers and the pay
rate, over words with varying degrees of ambiguity.

The results showed that AMT workers could per-
form the FD task fairly well, that accuracy varied
across lemmas (and did not depend only on the num-
ber of candidate frames per lemma), and that in
a few cases, workers strongly (and correctly) dis-
agreed with gold data. These studies suggest that
crowdsourcing for FD is feasible at least on a small
scale (about 6 lemmas with a maximum of 5 candi-
date frames per lemma). The current study adopts
and extends many components of that framework to
support larger-scale validation of the approach.

2.3.2 Crowdsourcing for WSD
Despite the optimism expressed in Snow et al.

(2008) (which included a limited WSD task) and the
2010 Workshop on Creating Speech and Language
Data with Amazon’s Mechanical Turk (Callison-
Burch and Dredze, 2010), relatively few large-scale
studies have investigated crowdsourcing for WSD.
An important exception is Kapelner et al. (2012),
who paid workers to disambiguate 1,000 instances
of 89 ambiguous lemmas using the OntoNotes
senses (Pradhan et al., 2007), which are relatively
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coarse. They found that (1) rephrasing the sense def-
inition improved accuracy, (2) more frequent words
were resolved less accurately, and (3) annotators
who spent more time per item were less accurate.
They also found that all the workers were roughly
equal in ability, and those who answered more items
did not get more accurate, i.e. there was no measur-
able practice effect, contrary to the findings of Chen
and Dolan (2011), who paid more for better work
and tried to retain the more accurate workers.

2.4 Other crowdsourcing for semantics

Few precedents exist for crowdsourcing complex se-
mantic tasks. Bernstein et al. (2010) describe Soy-
lent, a word processor that uses workers on AMT to
help writers improve their text. They used a find-fix-
verify pattern to iteratively evaluate and refine the
quality of tasks like text paraphrasing and summa-
rizing. DuoLingo (von Ahn, 2013) turns translation
into an educational game, and translates web content
using its language learners.

Freebase is a large human curated collaborative
knowledge base (Bollacker et al., 2008) of struc-
tured data. The schema for Freebase includes types
and relationships that are human curated and val-
idated via large scale crowdsourcing (Kochhar et
al., 2010). A key methodological finding from this
work was to focus on reproducibility as a key crite-
ria when collecting semantic judgments from human
annotators (Paritosh, 2012).

3 Supervised crowdsourcing

The findings discussed above provided promising
ways of accommodating some challenges of the FD
task. Our goals in extending the FD crowdsourcing
framework were twofold: (1) adapt previous efforts
to accommodate larger-scale annotation; and (2)
incorporate multiple kinds of supervision, broadly
construed. We discuss each of these below.

3.1 Scaling up frame disambiguation

We adopted the basic frame-sorting paradigm of
Hong and Baker (2011), organizing tasks around
specific lemmas. In each task, a set of sentences
(each including the target lemma) was presented
along with a set of candidate frames (each known
to be associated with the target lemma).

Several challenges arose in expanding from these
small-scale experiments to less constrained condi-
tions: The 32 lemmas used for our pilot study typ-
ically had 3-4 candidate frames but in some cases
as many as 10, necessitating an interface that could
flexibly accommodate the need for detailed frame
definitions within a limited space—while trying to
avoid sensory overload that would likely detract
from performance. Figure 1 shows a screenshot of
the task user interface.

Another problem came from the need to adapt a
resource designed for experts for use in a non-expert
context. The prose used in FrameNet frame defi-
nitions varies considerably in the degree of techni-
cal jargon employed—perhaps as much as annota-
tors varied in their appreciation or effective use of
those definitions. Hong and Baker (2011) found im-
proved performance with replacing just the frame
name with a more easily interpretable title.

Given the impracticality of abridging the frame
definitions for each task, we chose to show them
unchanged, but to also provide more example uses
and related words for each frame to de-emphasize
the technical definitions. (We also explicitly warned
annotators about the technical jargon and directed
them to focus on example uses.)

Finally, we anticipated that a broader range of
lemmas would make the task more difficult in var-
ious ways. The potential for more candidate frames
per lemma raises the chance of ambiguity and simi-
larity among frames. It also seemed likely that there
might be cases that fit none of the presented candi-
date frames for a lemma, either because the appro-
priate frame had not yet been created or because the
lemma in question had not yet associated with that
frame. We thus included extra choices correspond-
ing to these failure modes (”None of the above” and
”I can’t decide”), as well as a way for workers to in-
dicate uncertainty or provide additional comments.

As a general principle we also tried to design the
simplest interface and instruction materials possi-
ble given the nature of the task and the other con-
straints above. The final guidelines, defining seman-
tic frames for non-experts and introducing them to
the task and UI, are 4 pages—longer than a typical
crowdsourcing task, but much shorter than materials
for expert annotation. These focus on mechanical
aspects of the UI and keep terminology and defini-
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Figure 1: Frame identification task interface for the lemma century. Candidate frames (here, Measure duration and
Calendric unit) are shown on the left, each featuring typical examples of usage with the target lemma. The frame
definition (not shown in figure) as well as other related words are also available. The examples to be classified are on
the right side of the screen.

tions to a minimum.

3.2 Incorporating supervision

In moving to the middle ground of task complexity,
we made two broad assumptions that informed how
supervision could be introduced.

First, we assumed that the task was complex
enough to need some training time, and that anno-
tators with practice and experience would perform
better. We thus required a crowdsourcing platform
that would allow us to main a relatively stable anno-
tator pool. In contrast to crowdsourcing platforms
based on an open marketplace—where anyone is
potentially eligible for any task, and no continuity
across tasks or workers is guaranteed—we made use
of a platform that tracks individual annotators’ his-
tory and allows some form of communication be-
tween task designers and annotators.

This interactive potential of our platform was cru-
cial to our iterative design process: at every stage we
were able to conduct small pilot studies that yielded
useful qualitative feedback. More broadly, the fact
that the same annotators would be working on multi-
ple tasks allowed us to expect and plan for improved
performance over exposure to the task—which in
turn made it more worthwhile (for both the design-

ers of the task and the annotators) to invest in some
amount of training.

Second, we assumed that some gold data would
be available for our task. (In our case, it was easy to
draw this from the available FrameNet data.) Gold
data allows us to follow both conventional wisdom
(that people learn best by example) and common
practice in (supervised) machine learning of pro-
viding explicit training examples of the task being
learned. (We have relaxed this assumption in subse-
quent experiments.)

We use gold data in both exemplar and real-time
feedback form. We lead by (and with) example, by
prominently featuring several sentences illustrating
each candidate frame. The task UI also allows a
mode in which annotators are given explicit positive
or negative feedback (in the form of happy or sad
faces) indicating whether their frame choice matches
the gold data; annotators are allowed to change their
frame selection as many times as they would like to.
Crucially, we discovered (as in previous work) that
gold data occasionally included mistakes, or was po-
tentially ambiguous or uncertain. We thus included
explicit means for annotators to indicate disagree-
ment with the apparent gold data (as shown in Figure
3.2), an option that turned out to be quite useful.
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Figure 2: Close-up of task UI used with feedback. Green
smiling and red frowning icons indicate correctness of an
annotator’s selection with respect to the correct (gold) an-
swer, but annotators are allowed to indicate disagreement
with the feedback.

4 Frame disambiguation experiment

To investigate how frame disambiguation can be ac-
complished at scale and with feedback, we used the
frame-sorting design and UI described above in sev-
eral annotation experiments. Below we describe
the basic experimental set-up and methodology, fol-
lowed by our evaluation metrics and results.

4.1 Methodology

We chose lemmas from existing gold examples from
FrameNet’s full-text annotations, further restricting
ourselves to examples from the American National
Corpus. We chose 32 target lemmas (occurring in a
total of 881 sentences) which satisfy the following
conditions:

• At least 15 occurrences in the corpus.
• More than 1 candidate frame for each lemma.

The actual number of candidate frames per
lemma ranged from 2 to 10 (average 3-4).

• At least 3 examples of the lemma’s use in each
candidate frame.

The first restriction above (15+ occurrences) was
made purely to create tasks of a reasonable size
for evaluation; tasks with significantly fewer occur-
rences have been run with no effect on results.

The second restriction was intended to fo-
cus the task on disambiguation among multiple
frames rather than simply validation of a single
frame (though other experiments included validation
cases). Note that of the current 10K lemmas in
FrameNet, 1900 (19%) are polysemous (i.e., asso-
ciated with more than one frame). These lemmas
are thus relatively more ambiguous than the average
lemma in FrameNet.

The final restriction, on the number of exemplars
available to be shown for the task, was made to facil-
itate the testing of the feedback condition. Note that
more general versions of the task could be run with
fewer (or even no) exemplars, or expert annotators
could supply those needed.

4.1.1 Experimental design
We used a 2x2 within-subjects factorial design.

The lemmas were randomly split into two equal
batches (n=16): No Feedback and Feedback. In
the Feedback condition, the annotators received real-
time positive or negative feedback in response to
their sorting actions, based on whether their action
matched the gold answer, while no such feedback
was provided for lemmas in the other condition.
Each annotator performed the task for each lemma,
and each lemma was presented with the same type
of feedback to all annotators. Each lemma was pre-
sented to at least 7 annotators. In both conditions,
the annotators were allowed to undo and change
their sorting, and every annotator action was logged.

The annotators were randomly allocated to two
equal-sized groups: Group 1 and Group 2. Anno-
tators from Group 1 were presented the Feedback
batch of exemplars before the No Feedback batch;
and annotators from Group 2 were presented No
Feedback before the Feedback batch. This gives us
fully counterbalanced, within-subjects data for com-
parison of performance across conditions.

4.2 Analysis

We focused our analyses on how accuracy—that is,
correctness with respect to gold data—varied based
on two factors:

Feedback. This is the main dimension we var-
ied across experimental conditions. We compare
the difference in performance acrosss Feedback and
No Feedback conditions. We further distinguish the
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Feedback condition into two subcategories: Since
the task UI allowed annotators to change their selec-
tion (potentially in response to gold feedback), we
were able to record each frame choice and thus track
how well annotators in the Feedback condition per-
formed on their first choice for a given item (which
we call the Pre Feedback condition), as well as what
they eventually settled upon (which we call the Post
Feedback condition).

Number of annotators. We also compared accu-
racy across different numbers of annotators, ranging
from 1 to 7 annotators.

We measured accuracy of the chosen frame
against the gold-annotated frame. Our resolution
policy was to require a threshold of 75% inter-rater
agreement as the minimum for which a resolved an-
swer would be considered usable.

4.3 Results
Figure 3 shows the mean accuracy for the three pos-
sible feedback conditions, and Figure 4 shows preci-
sion results for different numbers of annotators per
lemma (n=1 to 7).

Figure 3: Mean annotator accuracy across three experi-
mental conditions: (1) No Feedback, for annotators who
received no feedback. (2) Pre-Feedback, the accuracy
of annotators’ first response prior to receiving feedback
based on gold data. (3) Post-Feedback, the accuracy
of annotators’ final response after receiving feedback,
and after any number of revisions. Note that the Post-
Feedback accuracy is significantly less than 1.0, showing
that annotators have developed strong enough opinions to
disagree while learning via the same gold data.

Figures 5 and 6 show individual annotator re-

sponses for two lemmas, like and century. These
were both typical in exhibiting a fairly clean division
of responses between the candidate frames: i.e., the
usages were straightforward to disambiguate. The
latter example also includes a panel displaying in-
dividual responses, including annotator’s disagree-
ment with feedback and frame selection history.

Figure 5: Results for the lemma like. The nodes in the top
row correspond to candidate frames (Experiencer focus
and Similarity) and three problem conditions(”I can’t De-
cide”, ”None of the above”, and an unmarked ”Other”).
The nodes in the bottom row correspond to classified
sentences; lines between nodes in the top and bottom
rows represent annotator choices, with thicker lines cor-
responding to more annotators making that choice. This
situation was typical: most sentences had a strong major-
ity for one of the two expected frames, with a few outliers
expressing indecision or otherwise disagreeing with the
crowd. The red line highlights the results for the single
sentence shown below.

We discuss our findings below: Findings 1-3 con-
cerning the effect of feedback, and Finding 4 con-
cerning the effect of number of annotators.

Finding 1. Feedback improves annotator ac-
curacy. Unsurprisingly, we found that feedback
improved accuracy: the mean annotator accuracy
in the No Feedback condition was 0.78, Pre Feed-
back condition was 0.81, and Post Feedback con-
dition was 0.92. All differences are significant (p
< 0.0001). Figure 3 shows the differences between
means across the three conditions. In addition, feed-
back decreased variance in annotator behavior sig-
nificantly, i.e., the annotators had converged to more
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Figure 4: Accuracy of resolutions by number of annotators, in the No Feedback (left) and Feedback (right) conditions.
Box and whisker plots show median (marked by a heavy bar) and variance (indicated by box size) of accuracy across all
lemmas. The resolutions are computed by combining independent answers from multiple annotators using a plurality
threshold of 0.75.

Figure 6: Results for a task with lemma century. The
responses for individual annotators (names masked) are
displayed below, showing that many explicitly disagreed
with the gold feedback (some providing additional justifi-
cation). Note that the history of choices made is shown in
one case, also suggesting some uncertainty. This exam-
ple was one of several that further investigation revealed
to be an error in the gold data.

reliable performance. Figure 4 shows two box and
whiskers plots of resolution accuracy by number of
annotators. There is much wider variance in annota-
tor behavior in the No Feedback condition, as indi-
cated by longer boxes and whiskers.

Finding 2. Feedback works even with imper-

fect gold data, and can be reliably used to cor-
rect it. Our crowdsourced resolutions were signif-
icantly better than the gold data that was used to
train the annotators. In all conditions, annotators
were allowed to change their responses; thus, those
in the feedback conditions could in theory have per-
formed at 100% accuracy by adhering strictly to the
feedback. We were surprised to find, however, that
the average accuracy even with feedback was less
than perfect—an indication that annotators some-
times chose not to adhere to gold data. We were
aware that there might be some errors in the gold
data, and allowed and encouraged the annotators to
disagree with the feedback.

To investigate cases in which the annotators re-
liably disagreed with the gold, we asked experts to
manually validate gold data for sentences with a re-
solved answer from the crowd, which was 385 sen-
tences (87.10%). (Recall that we required agreement
of 0.75 to be considered resolved.)

Table 1 shows the proportions of validated accu-
racy of resolved judgments. We found that in most
cases (93.77%), the crowd (correctly) agreed with
gold. But in some cases (4.94%), the crowd dis-
agreed with gold that turned out to be incorrect. In
other words, the crowd was nearly always vindi-
cated when they strongly agreed that the gold was
incorrect—and they were overall correct 98.70% of
the time.
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number percent
Correct resolution, valid gold 361 93.77
Correct resolution, invalid gold 19 4.94
Incorrect resolution, valid gold 2 0.52
Incorrect resolution, invalid gold 3 0.78

Table 1: Accuracy of resolved judgments (total 385)
based on validated gold data. The top two lines reflect all
cases in which the crowd was correct, either in agreement
or disagreement with gold data. The bottom two lines re-
flect very rare cases of incorrect crowd resolutions.

This finding suggests that a richer framework can
support crowdsourced semantic annotations even
with imperfect data; even better, reliable crowd-
sourced signals might be an effective avenue to the
discovery and correction of imperfect gold data.

Finding 3. Even first responses improve with
feedback. Figure 3 shows that the Pre Feedback
condition was significantly better than the No Feed-
back condition: that is, there seemed to be a boost to
performance even on annotator’s first guesses (be-
fore receiving any feedback). This result suggests
that feedback may have had effects that spread be-
yond the current item, such that subsequent items
were learned faster. One possible explanation for
this apparent learning based on prior feedback is that
there may be increased attention due to the expec-
tation of feedback, such that the annotator homed
in more quickly on the correct concept. These hy-
potheses need further examination.

Finding 4. More annotators produce better
results. Unsurprisingly, more is better: resolution
accuracy increases with the number of annotators
in all conditions. The mean resolution accuracy is
higher in the Feedback condition, which is as ex-
pected since per-annotator accuracy is higher in that
condition. In fact, performance was fairly high (in
both conditions) with as few as three annotators,
but variance in resolution accuracy was significantly
lower in the Feedback condition, further establishing
the effectiveness of feedback. This difference is im-
portant, since both mean and variance affect crowd-
sourcing cost in terms of redundancy required.

5 Discussion and future directions

Our challenge was to devise effective and scalable
ways of training annotators to perform the relatively

complex task of frame disambiguation. In this paper
we have leveraged insights about human learning,
in particular the value of exemplars and feedback
(early, often and even imperfect), to create a novel
crowdsourcing approach suitable for more complex
tasks. A key feature of this approach is that it em-
phasizes examples over explicit instructions, tapping
into the cognitive capacity to learn deeply from a
limited amount of data. It further exploits supervi-
sion, particularly in the form of real-time feedback.

We demonstrated that real-time feedback can sub-
stantially increase mean annotator accuracy and dra-
matically increase inter-annotator agreement. Our
experiments also showed the surprising result that
even feedback based on imperfect gold data is effec-
tive for training annotators—and that they can learn
to produce resolutions of higher accuracy than the
gold data they trained on. This suggests that we can
train annotators with tarnished gold, and as part of
that process even improve the gold data.

Besides being valuable in its own right as a ver-
sion of word sense disambiguation, this task is also
a small step on the road to full frame semantic anno-
tation. We are currently piloting the task for the next
step toward full frame annotation (frame element an-
notation), applying the same principles of feedback
and supervision.

More generally, the supervised crowdsourcing
paradigm developed here explores a useful middle
ground of expertise, one we believe to be suitable
for many semantic annotation tasks too complex for
standard transient crowdsourcing. An effective way
of producing such data on a large scale using faster,
less expensive methods has great potential for eas-
ing the semantic bottleneck and facilitating progress
toward richer natural language understanding.
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