
Proceedings of NAACL-HLT 2015, pages 109–115,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

DeepNL: a Deep Learning NLP pipeline

Giuseppe Attardi

Dipartimento di Informatica

Università di Pisa

Pisa, Italy

attardi@di.unipi.it

Abstract

We present the architecture of a deep learn-

ing pipeline for natural language pro-

cessing. Based on this architecture we built

a set of tools both for creating distributional

vector representations and for performing

specific NLP tasks. Three methods are

available for creating embeddings: feed-

forward neural network, sentiment specific

embeddings and embeddings based on

counts and Hellinger PCA. Two methods

are provided for training a network to per-

form sequence tagging, a window approach

and a convolutional approach. The window

approach is used for implementing a POS

tagger and a NER tagger, the convolutional

network is used for Semantic Role Label-

ing. The library is implemented in Python

with core numerical processing written in

C++ using parallel linear algebra library for

efficiency and scalability.

1 Introduction

Distributional Semantic Models (DSM) that rep-

resent words as vectors of weights over a high

dimensional feature space (Hinton et al., 1986),

have proved very effective in representing se-

mantic or syntactic aspects of lexicon. Incorpo-

rating such representations has allowed improv-

ing many natural language tasks. They also re-

duce the burden of feature selection since these

models can be learned through unsupervised

techniques from text.

Deep learning algorithms for NLP tasks ex-

ploit distributional representation of words. In

tagging applications such as POS tagging, NER

tagging and Semantic Role Labeling (SRL), this

has proved quite effective in reaching state of art

accuracy and reducing reliance on manually en-

gineered feature selection (Collobert et al, 2011).

Word embeddings have been exploited also

in constituency parsing (Collobert, 2011) and

dependency parsing (Chen and Manning, 2014).

A further benefit of a deep learning approach

is to allow performing multiple tasks jointly, and

therefore reducing error propagation as well as

improving efficiency.

This paper presents DeepNL, an NLP pipe-

line based on a common Deep Learning architec-

ture: it consists of tools for creating embeddings,

and tools that exploit word embeddings as fea-

tures. The current release includes a POS tagger,

a NER, an SRL tagger and a dependency parser.

Two methods are supported for creating em-

beddings: an approach that uses neural network

and one using Hellinger PCA (Lebret and Col-

lobert 2014).

2 NLP Toolkits

A short survey of NLP toolkits is presented by

Krithika and Akondi (2014).

NLTK is among the most well-known and

comprehensive NLP toolkits: it is written in Py-

thon and provides a number of basic processing

facilities (tokenization, splitting, statistical anal-

ysis of corpora, etc.) as well as machine learning

algorithms for classification and clustering. Cur-

rently it does not provide any tool based on word

embeddings, however it can be interfaced to

SENNA
1
 or it can be used in conjunction with

Gensim
2
 which provides several algorithms for

performing unsupervised semantic modeling

from plain text, including word embeddings,

random indexing, LDA (Latent Dirichlet Alloca-

tion).

The Stanford NLP Toolkit (Manning et al.,

2014) is written in Java and provides tools for

tokenization, sentence splitting, POS tagging,

NER, parsing, sentiment analysis and temporal

expression tagging. As a recent inclusion, it pro-

1 http://ronan.collobert.com/senna/
2 http://radimrehurek.com/gensim/

109

vides a dependency parser based on neural net-

work and word embeddings (Chen et al., 2014).

OpenNLP
3
 is a machine learning library writ-

ten in Java that supports the most common NLP

tasks, such as tokenization, sentence segmenta-

tion, POS tagging, named entity extraction,

chunking, parsing, and coreference resolution.

Typically each tool built with these libraries

uses a different approach or an most suitable al-

gorithm for the task: for example Sanford NLP

uses Conditional Random Fields for NER while

the POS tagger uses MaxEntropy and both re-

quire a set of rich features that need to be manu-

ally engineered.

DeepNL differs from these toolkits since it is

based on a common deep learning architecture:

all tools exploit the same core neural network

and use mostly just word embeddings as fea-

tures. For example the POS tagger and the NER

tagger have an identical structure, and they differ

only in the way they read/write documents and

in the configuration of the discrete features used:

the POS tagger uses word suffixes while the

NER uses gazetteer dictionaries. Embeddings are

used as features, providing a continuous rather

than discrete representation of text.

The ability of creating suitable embeddings

for various tasks is critical for the proper work-

ing of the tools in DeepNL; hence the toolkit

integrates algorithms for creating word embed-

dings from text, either in unsupervised or super-

vised fashion.

3 Building Word Embeddings

Word embeddings provide a low dimensional

vector space representation for words, where

values in each dimension may represent syntac-

tic or semantic properties.

DeepNL provides two methods for building

embeddings, one is based on the use of a neural

language model, as proposed by (Turian and

Bengio; Collobert et al., 2011; Mikolov et al.,

2010) and one based on spectral method as pro-

posed by Lebret and Collobert (2013).

The neural language method can be hard to

train and the process is often quite time consum-

ing, since several iterations are required over the

whole training set. Some researchers provide

precomputed embeddings for English
4
. The Pol-

3 http://opennlp.apache.org/
4 http://ronan.collobert.com/senna/

http://metaoptimize.com/projects/wordreprs/

http://www.fit.vutbr.cz/˜imikolov/rnnlm/

http://ai.stanford.edu/˜ehhuang/

yglot project (Al-Rafou et al., 2013) makes

available embeddings for several languages,

built from the plain text of Wikipedia in the re-

spective language, and the Python code for com-

puting them
5
, that supports GPU computations

by means of Theano
6
.

Mikolov et al. (2013) developed an alterna-

tive solution for computing word embeddings,

which significantly reduces the computational

costs. They propose two log-linear models,

called bag of words and skip-gram model. The

bag-of-word approach is similar to a feed-

forward neural network language model and

learns to classify the current word in a given

context, except that instead of concatenating the

vectors of the words in the context window of

each token, it just averages them, eliminating a

network layer and reducing the data dimensions.

The skip-gram model tries instead to estimate

context words based on the current word. Further

speed up in the computation is obtained by ex-

ploiting a mini-batch Asynchronous Stochastic

Gradient Descent algorithm, splitting the training

corpus into partitions and assigning them to mul-

tiple threads. An optimistic approach is also ex-

ploited to avoid synchronization costs: updates

to the current weight matrix are performed con-

currently, without any locking, assuming that

updates to the same rows of the matrix will be

infrequent and will not harm convergence.

The authors published single-machine multi-

threaded C++ code for computing the word vec-

tors
7
. A reimplementation of the algorithm in

Python is included in the Genism library

(Řehůřek and Petr Sojka, 2010). In order to ob-

tain comparable speed to the C++ version, they

use Cython for interfacing a coding in C of the

core function for training the network on a single

sentence, which in turn exploits the BLAS li-

brary for algebraic computations.

The DeepNL implementation is written in

Cython
8
 and uses C++ code which exploits the

Eigen
9
 library for efficient parallel linear algebra

computations. Data is exchanged between

Numpy arrays in Python and Eigen matrices by

means of Eigen Map types. On the Cython side,

a pointer to the location where the data of a

Numpy array is stored is obtained with a call

like:

5 https://bitbucket.org/aboSamoor/word2embeddings
6 http://deeplearning.net/software/theano/
7 https://code.google.com/p/word2vec
8 http://docs.cython.org/
9 http://eigen.tuxfamily.org/

110

<FLOAT_t*>np.PyArray_DATA(self.nn.hid

den_weights)

and passed to a C++ method. On the C++ side

this is turned into an Eigen matrix, with no com-

putational costs due to conversion or allocation,

with the code:

Map<Matrix> hidden_weights(

hidden_weights, numHidden, numInput)

which interprets the pointer to a double as a ma-

trix with numHidden rows and numInput col-

umns. Since Eigen by default uses column-major

order while Numpy uses row-major order, the

class Matrix above is declared as:

typedef Eigen::Matrix<double, Eig-

en::Dynamic, Eigen::Dynamic, Eig-

en::RowMajor> Matrix;

3.1 Word Embeddings through Hellinger

PCA

Lebret and Collobert (2013) have shown that

embeddings can be efficiently computed from

word co-occurence counts, applying Principal

Component Analysis (PCA) to reduce dimen-

sionality while optimizing the Hellinger similari-

ty distance.

Levy and Goldberg (2014) have shown simi-

larly that the skip-gram model by Mikolov et

al.(2013) can be interpreted as implicitly factor-

izing a word-context matrix, whose values are

the pointwise mutual information (PMI) of the

respective word and context pairs, shifted by a

global constant.

DeepNL provides an implementation of the

Hellinger PCA algorithm using Cython and the

LAPACK library SSYEVR from Scipy
10

.

Cooccurrence frequencies are computed by

counting the number of times each context word

w  D occurs after a sequence of T words:

𝑝(𝑤|𝑇) =
𝑝(𝑤, 𝑇)

𝑝(𝑇)
=

𝑛(𝑤, 𝑇)

∑ 𝑛(𝑤, 𝑇)𝑛

where n(w, T) is the number of times word w

occurs after a sequence of T words. The set D of

context word is normally chosen as the the sub-

set of the top most frequent words in the vocabu-

lary V.

The word co-occurrence matrix C of size

|V||D| is built. The coefficients of C are

square rooted and then its transpose is multiplied

by it to obtain a symmetric square matrix of size

10 https://docs.scipy.org/doc/scipy-

0.15.1/reference/generated/scipy.linalg.lapack.ssyevr.html

|V||V|, to which PCA is applied to obtain the

desired dimensionality reduction.

3.2 Sentiment Specific Word Embeddings

For the task of sentiment analysis, semantic

similarity is not appropriate, since antonyms end

up at close distance in the embeddings space.

One needs to learn a vector representation where

words of opposite polarity are further apart.

Tang et al. (2014) propose an approach for

learning sentiment specific word embeddings, by

incorporating supervised knowledge of polarity

in the loss function of the learning algorithm.

The original hinge loss function in the algorithm

by Collobert et al. (2011) is:

LCW(x, x
c
) = max(0, 1  f(x) + f(x

c
))

where x is an ngram and x
c
 is the same ngram

corrupted by changing the target word with a

randomly chosen one, f(·) is the feature function

computed by the neural network with parameters

θ. The sentiment specific network outputs a vec-

tor of 2 dimensions, one for modeling the gener-

ic syntactic/semantic aspects of words and the

second for modeling polarity.

A second loss function is introduced as objec-

tive for minimization:

LSS(x, x
c
) = max(0, 1  s(x) f(x)1 +

 s(x) f(x
c
)1)

where s is an indicator function reflecting the

sentiment polarity of a sentence,

𝛿𝑠(𝑥) = {
1 𝑖𝑓 𝑓𝑔(𝑥) = [1,0]

0 𝑖𝑓 𝑓𝑔(𝑥) = [0,1]

where f
g
(x) is the gold distribution for ngram x.

The overall hinge loss is a linear combination of

the two:

L(x, x
c
) = LCW(x, x

c
) + (1 – ) LSS(x, x

c
)

The gradient for the output layer is given by the

formula:

(

𝜕ℒ
𝜕𝑓𝜃(𝑥)

𝜕ℒ
𝛿𝑓𝜃(𝑥𝑐)

)

0

= {
(

−1

1
) 𝑖𝑓 ℒ𝐶𝑊(𝑥, 𝑥𝑐) > 0

(
0

0
) otherwise

(

𝜕ℒ
𝜕𝑓𝜃(𝑥)

𝜕ℒ
𝛿𝑓𝜃(𝑥𝑐)

)

1

= {
(

1

−1
) 𝑖𝑓 ℒ𝑆𝑆(𝑥, 𝑥𝑐) > 0

(
0

0
) otherwise

DeepNL provides an algorithm for training po-

larized embeddings, performing gradient descent

111

using an adaptive learning rate according to the

AdaGrad method (Duchi et al, 2011). The algo-

rithm requires a training set consisting of sen-

tences annotated with their polarity, for example

a corpus of tweets. The algorithm builds embed-

dings for both unigrams and ngrams at the same

time, by performing variations on a training sen-

tence replacing not just a single word, but a se-

quence of words with either another word or an-

other ngram.

4 Deep Learning Architecture

DeepNL adopts a multi layer neural network

architecture, as proposed in (Collobert et al.,

2011):

1. Lookup layer. It maps word feature indi-

ces to a feature vector, as described be-

low.

2. Linear layer. Fully connected network

layer, represented by matrix M1 and in-

put bias b1.

3. Activation layer (e.g. hardtanh)

4. Linear layer. Fully connected network

layer, represented by matrix M2 and in-

put bias b2

5. Softmax layer. Computes the softmax of

the output values, producing a probabil-

ity distribution of the outputs.

Overall, the network computes the following

function:

f(x) = softmax(M2 a(M1 x + b1) + b2)

where M1  Rhd
, b1  Rd

, M2  Roh
, b2  Ro

,

are the parameters, with d the dimension of the

input, h the number of hidden units, o the num-

ber of output classes, a() is the activation func-

tion.

4.1 Lookup layer

The first layer of the network transforms the in-

put into a feature vector representation. Individ-

ual words are represented by a tuple of K dis-

crete features, w  D1
Dk

, where Dk
 is the

dictionary for the k-th feature.

Each feature has its own lookup table

𝐿𝑇𝑊𝑘(∙) , with a matrix of parameters to be

learned 𝑊𝑘 ∈ ℝ𝑑𝑘×|𝒟𝑘| , where Dk
 is the dic-

tionary for the k-th feature and d
k
 is a user speci-

fied vector size. The lookup table layer 𝐿𝑇𝑊𝑘(∙)

associates a vector of weights to each discrete

feature f  Dk
:

𝐿𝑇𝑊𝑘(𝑓) = 〈𝑊𝑘〉𝑓
1

where 〈𝑊𝑘〉𝑓
1 ∈ ℝ𝑑𝑘 is the fth column of W and dk

is the word vector size (a hyper-parameter to be cho-

sen by the user).

The feature vector for word w becomes the

concatenation of the vectors for all features:

𝐿𝑇𝑊1(𝑤1)𝐿𝑇𝑊2(𝑤2) ⋯ 𝐿𝑇𝑊𝐾(𝑤𝑘)

This vector of features for word w, is passed as

input to the network. W
k
, M1, b1, M2 and b2 are

the parameters to be learned by backpropagation.

4.2 Feature Extractors

The library has a modular architecture that al-

lows customizing a network for specific tasks, in

particular its first layer, by supplying extractors

for various types of features.

An extractor is defined as a class that inherits

from an abstract class with the following inter-

face:

class Extractor(object):

 def extract(self, tokens)

 def lookup(self, feature)

 def save(self, file)

 def load(self, file)

Method extract, applied to a list of tokens, ex-

tracts features from each token and returns a list

of IDs for those features. The argument is a list

of tokens rather than a single token, since fea-

tures might depend on consecutive tokens. For

instance a gazetteer extractor needs to look at a

sequence of tokens to determine whether they

are mentioned in its dictionary.

Method lookup returns the vector of weights

for a given feature. Methods save/load allow

saving and reloading the Extractor data to/from

disk.

Extractors currently include an Embeddings

extractor, implementing the word lookup feature,

a Caps, Prefix and Postfix extractors for deal-

ing with capitalization and prefix/postfix fea-

tures, a Gazetteer extractor for dealing with the

gazetteers typically used in a NER, and a cus-

tomizable AttributeFeature extractor that ex-

tracts features from the state of a Shift/Reduce

dependency parser, i.e. from the tokens in the

stack or buffer as described for example in Nivre

(2007).

112

5 Sequence Taggers

For sequence tagging, two approaches were pro-

posed in Collobert at al. (2011), a window ap-

proach and a sentence approach. The window

approach assumes that the tag of a word depends

mainly on the neighboring words, and is suitable

for tasks like POS and NE tagging. The sentence

approach assumes that the whole sentence must

be taken into account by adding a convolution

layer after the first lookup layer and is more

suitable for tasks like SRL.

We can train a neural network to maximize

the log-likelihood over the training data. Denot-

ing by  the trainable parameters, including the

network and the transition scores, we want to

maximize the following log-likelihood with re-

spect to :

∑ log 𝑝(𝑡|𝑥, 𝜃)

(𝑥,𝑡)∈𝑇

where x are all training sentences and t their cor-

responding tag sequence.

The score s(x, t, ) of a sequence of tags t for

a sentence x, with parameters , is given by the

sum of the transition scores and the tag scores:

𝑠(𝑥, 𝑡, 𝜃) = ∑(𝑇(𝑡𝑖−1, 𝑡𝑖) + 𝑓𝜃(𝑥𝑖 , 𝑡𝑖))

𝑛

𝑖=1

where T(i, j) is the score for the transition from

tag i to tag j, and f(ti, xi) is the output of the

network at word xi for tag ti. The probability of a

sequence y for sentence x can be expressed as:

𝑝(𝑦|𝑥, 𝜃) =
𝑒𝑠(𝑥,𝑦,𝜃)

∑ 𝑒𝑠(𝑥,𝑡,𝜃)
𝑡

If we define:

logadd
𝑖

𝑥𝑖 = log ∑ 𝑒𝑥𝑖

𝑖

the log of the conditional probability of the cor-

rect sequence y is given by:

log 𝑝(𝑦|𝑥, 𝜃) = 𝑠(𝑥, 𝑦, 𝜃) − logadd
𝑡

𝑠(𝑥, 𝑡, 𝜃)

The probability can be computed iteratively by

defining:

𝜕𝑖(𝑎) = logadd
𝑡𝑖=𝑎

𝑠(𝑥1
𝑖 , 𝑡1

𝑖 , 𝜃)

= logadd
𝑏

(𝜕𝑖−1(𝑏) + 𝑇(𝑏, 𝑎)) + 𝑓𝜃(𝑎, 𝑖) ∀𝑎

and finally

logadd
𝑡

𝑠(𝑥, 𝑡, 𝜃) = logadd
𝑎

𝛿|𝑥|(𝑎)

In order to avoid numeric overflows, the func-

tion logadd must be computed carefully, i.e. by

subtracting the maximum value to the coeffi-

cients before performing exponentiation and

then re-adding the maximum.

The computation of the gradients can be per-

formed at once for the whole sequence exploit-

ing matrix operations whose computation can be

optimized and parallelized using suitable linear

algebra libraries. We implemented two versions

of the network trainer, one in Python using

NumPy
11

 and one in C++ using Eigen
12

.

Here for example is the Python code for

computing the  in the above equation:

delta = scores

delta[0] += transitions[-1]

tr = transitions[:-1].T

for i in xrange(1, len(delta)):

 # sum by rows

 logadd = logsumexp(delta[i-1]+tr,

1)

 delta[token] += logadd

The array scores[i, j] contains the output of

the neural network for the i-th element of the

sequence and for tag j, delta[i, j] represents

the sum of all scores ending at the i-th token

with tag j; transitions[i, j] contains the

current estimate of the probability of a transition

from tag i to tag j.

6 Experiments

We tested the DeepNL sequence tagger on the

CoNLL 2003 challenge
13

, a NER benchmark

based on Reuters data. The tagger was trained

with three types of features: the word embed-

dings from SENNA, a “caps” feature telling

whether a word is in lowercase, uppercase, title

case, or had at least one non-initial capital letter,

and a gazetteer feature, based on the list provid-

ed by the organizers. The window size was set to

5, 300 hidden variables were used and training

was iterated for 40 epochs. In the following table

we report the scores compared with the system

by Ando et al. (2005) which uses a semi-

supervised approach and with the results by the

released version of SENNA
14

:

11 http://www.numpy.org/
12 http://eigen.tuxfamily.org/
13 http://www.cnts.ua.ac.be/conll2003/ner/
14 http://ml.nec-labs.com/senna/

113

System F1

Ando et al. 2005 89.31

SENNA 89.51

DeepNL 89.38

Table 1. Performance on the NER task, using the

CoNLL 2003 benchmark.

The slight difference with SENNA might be ex-

plained by the use of different gazetteers.

The same sequence tagger can be used for

POS tagging. In this case the discrete features

used are the same capitalization feature as for the

NER and a suffix feature, which denotes whether

a token ends with one of the 455 most frequent

suffixes of length one or two characters in the

training corpus.

Table 2 presents the results achieved by the

POS tagger trained on the Penn Treebank, com-

pared with the results of the reference system by

Tuotanova et al. (2003), which uses rich fea-

tures, and with the original SENNA implementa-

tion.

System Precision

Toutanova et al. 2003 97.24

SENNA 97.28

DeepNL 97.12

Table 2. Performance on the POS task, using the Penn

Treebank, sections 0-18 for training, sections 22-24

for testing.

Both these experiments confirm that word em-

beddings can replace the use of complex manu-

ally engineered features for typical natural lan-

guage processing tasks.

7 Dependency Parsing

We have adapted to the use of embeddings our

original transition based dependency parser

DeSR (Attardi et al., 2009), that was already

based on a neural network. The parser uses the

neural network to decide which action to per-

form at each step in the analysis of a sentence.

Looking at a short context of past analyzed to-

kens and next input tokens, it must decide

whether the two current focus tokens can be

connected by a dependency relation. In this case

it performs a reduction, creating the dependency,

otherwise it advances on the input. The original

implementation used a large set of discrete fea-

tures to represent the current context.

The deep learning version of the parser ex-

ploits word embedding as features and also cre-

ates a dense vector representation for the remain-

ing discrete features. A specific extractor (At-

tributeExtractor) was built for this purpose.

8 Conclusions

We have presented the architecture of DeepNL,

a library for building NLP applications based on

a deep learning architecture. The implementation

is written in Python/Cython and uses C++ linear

algebra libraries for efficiency and scalability,

exploiting multithreading or GPUs where avail-

able.

The implementation of DeepNL is available

on GitHub
15

.

The availability of a library that allows creat-

ing embeddings and training a deep learning ar-

chitecture using them might contribute to the

development of further tools for linguistic analy-

sis.

For example we are planning to build a clas-

sifier for performing identification of affirma-

tive, negative or speculative contexts in sentenc-

es.

We are also considering additional ways of

creating embeddings, for example to generate

context sensitive embeddings that could provide

word representations that disambiguate among

word senses.

Acknowledgements

Partial support for this work was provided by

project RIS (POR RIS of the Regione Toscana,

CUP n° 6408.30122011.026000160).

References

R. Al-Rfou, B. Perozzi, and S. Skiena. 2013. Poly-

glot: Distributed Word Representations for Multi-

lingual NLP. arXiv preprint arXiv:1307.1662.

R. K. Ando, T. Zhang, and P. Bartlett. 2005. A

framework for learning predictive structures from

multiple tasks and unlabeled data. Journal of Ma-

chine Learning Research, 6:1817–1853.

G. Attardi, F. Dell'Orletta, M. Simi, J. Turian. 2009.

Accurate Dependency Parsing with a Stacked Mul-

tilayer Perceptron. In Proc. of Workshop Evalita

2009, ISBN 978-88-903581-1-1.

Danqi Chen and Christopher D. Manning. 2014. Fast

and Accurate Dependency Parser using Neural

Networks. In: Proc. of EMNLP 2014.

R. Collobert et al. 2011. Natural Language Processing

(Almost) from Scratch. Journal of Machine Learn-

ing Research, 12, 2461–2505.

15 https://github.com/attardi/deepnl

114

R. Collobert and J. Weston. 2008. A unified architec-

ture for natural language processing: Deep neural

networks with multitask learning. In ICML, 2008.

R. Collobert. 2011. Deep Learning for Efficient Dis-

criminative Parsing. In AISTATS, 2011.

P. S. Dhillon, D. Foster, and L. Ungar. 2011. Mul-

tiview learning of word embeddings via CCA. In

Advances in Neural Information Processing Sys-

tems (NIPS), volume 24.

John Duchi, Elad Hazan, and Yoram Singer. 2011.

Adaptive subgradient methods for online learning

and stochastic optimization. The Journal of Ma-

chine Learning Research.

S. Hartmann, G. Szarvas, and I. Gurevych. 2011.

Mining Multiword Terms from Wikipedia, in M.T.

Pazienza & A. Stellato (Eds.): Semi-Automatic

Ontology Development: Processes and Resources,

pp. 226-258, Hershey, PA, USA: IGI Global.

G.E. Hinton, J.L. McClelland, D.E. Rumelhart. Dis-

tributed representations. 1986. In: Parallel distrib-

uted processing: Explorations in the microstructure

of cognition. Volume 1: Foundations, MIT Press,

1986.

L.B. Krithika and Kalyana Vasanth Akondi. 2014.

Survey on Various Natural Language Processing

Toolkits. World Applied Sciences Journal 32 (3):

399-402.

Rémi Lebret and Ronan Collobert. 2013. Word Em-

beddings through Hellinger PCA. Proc. of EACL

2013.

Omer Levy and Yoav Goldberg. 2014. Neural Word

Embeddings as Implicit Matrix Factorization. In

Advances in Neural Information Processing Sys-

tems (NIPS), 2014.

Christopher D. Manning and Hinrich Schütze. 1999.

Foundations of Statistical Natural Language Pro-

cessing. The MIT Press. Cambridge, Massachu-

setts.

Manning, Christopher D., Surdeanu, Mihai, Bauer,

John, Finkel, Jenny, Bethard, Steven J., and

McClosky, David. 2014. The Stanford CoreNLP

Natural Language Processing Toolkit. In Proceed-

ings of 52nd Annual Meeting of the Association for

Computational Linguistics: System Demonstra-

tions, pp. 55-60.
T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and

Sanjeev Khudanpur. 2010. Recurrent neural net-

work based language model.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-

frey Dean. 2013. Efficient Estimation of Word

Representations in Vector Space. In Proceedings

of Workshop at ICLR, 2013.

J. Nivre. 2007. Incremental non-projective dependen-

cy parsing, Proceedings of Human LanguageTech-

nologies: The Annual Conference of the North

American Chapter of the Association for Computa-

tional Linguistics (NAACL HLT), Rochester, NY,

pp. 396–403.

Radim Řehůřek and Petr Sojka. 2010. Software

Framework for Topic Modelling with Large Cor-

pora. In Proceedings of the LREC 2010 Workshop

on New Challenges for NLP Frameworks, ELRA,

Valletta, Malta, pp. 45–50.

K. Toutanova, D. Klein, C. D. Manning, and Y. Sing-

er. 2003. Feature-rich part-of-speech tagging with

a cyclic dependency network. In Conference of the

North American Chapter of the Association for

Computational Linguistics & Human Language

Technologies (NAACL-HLT).

115

