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Abstract

We tackle the question: how much supervision
is needed to achieve state-of-the-art perfor-
mance in part-of-speech (POS) tagging, if we
leverage lexical representations given by the
model of Brown et al. (1992)? It has become
a standard practice to use automatically in-
duced “Brown clusters” in place of POS tags.
We claim that the underlying sequence model
for these clusters is particularly well-suited for
capturing POS tags. We empirically demon-
strate this claim by drastically reducing super-
vision in POS tagging with these representa-
tions. Using either the bit-string form given
by the algorithm of Brown et al. (1992) or the
(less well-known) embedding form given by
the canonical correlation analysis algorithm
of Stratos et al. (2014), we can obtain 93%
tagging accuracy with just 400 labeled words
and achieve state-of-the-art accuracy (> 97%)
with less than 1 percent of the original training
data.

1 Introduction

While fully supervised POS tagging is largely con-
sidered a solved problem today, this is hardly the
case for unsupervised POS tagging. Despite much
previous work (Smith and Eisner, 2005; Johnson,
2007; Toutanova and Johnson, 2007; Haghighi and
Klein, 2006; Berg-Kirkpatrick et al., 2010), results
on this task are complicated by varying assumptions
and unclear evaluation metrics (Christodoulopoulos
et al., 2010). Perhaps most importantly, they are not
good enough to be practical. Even with indirect su-
pervision, for example the prototype-driven method
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of Haghighi and Klein (2006) which assumes a set
of word examples for each tag type, the best per-
position accuracy remains in the range of mid-70%.

Recent work has taken a middle ground between
fully supervised and unsupervised setups by exploit-
ing existing resources, for example by projecting
POS tags from a supervised language or using tag
dictionaries (Das and Petrov, 2011; Li et al., 2012;
Tackstrom et al., 2013).

In this work, we focus on minimizing the amount
of labeled data required to obtain a good POS tag-
ger. The key to our approach is the use of lexical
representations induced by the clustering model of
Brown et al. (1992). We argue that this model is
particularly appropriate for representing POS tags
given their nearly deterministic nature (Section 2).
This sheds light on why the representations derived
under this model reveal the underlying POS tag in-
formation of words.

We empirically demonstrate the validity of our
observation by using these representations to dras-
tically reduce the number of training examples re-
quired for good POS tagging performance on En-
glish, German, and Spanish newswire datasets. For
instance, on the 12-tag English dataset, we ob-
tain tagging accuracy of 93% with just 400 labeled
words. We obtain tagging accuracy of 97.03%
(about a half percent behind fully supervised mod-
els) with just 0.74% of the original training data.

Our aim is orthogonal to the discussion in Man-
ning (2011) who investigates what is needed to go
beyond the current state-of-the-art POS tagging per-
formance. Our focus is on reaching that perfor-
mance with as little supervision as possible.

Proceedings of NAACL-HLT 2015, pages 79-87,
Denver, Colorado, May 31 — June 5, 2015. (©2015 Association for Computational Linguistics



/\

A /\
/\/\AA

110

000 001 010 011 100 101

community industry Google Microsoft set kept

(a)

at

community
° °
° set
industry
° kept
Googl
oogle |
°
Microsoft
111
‘ at
f from
rom

(b)

Figure 1: Two representational schemes under the Brown model. (a) Bit-string representations: the path from the root
to a word is encoded as a bit-string. (b) CCA vector representations.

2 Motivation

2.1 POS tags are almost deterministic

Certain words are genuinely ambiguous (e.g., set
can be a verb or a noun): this was the motivation
of the use of statistical models in the early days of
computational linguistics (Church, 1988). However,
it is also true that many words are deterministically
mapped to correct POS tags (e.g., the is always a
determiner). A simple experiment highlights this
property. Let count(w,t) be the number of times
word w is tagged as t in the training data (likewise,
count(w) and count(t) are counts of word w and tag
t). Define a deterministic mapping f : w — ¢ from
words to tags as

|

In our datasets, this naive procedure in fact yields
reasonable tagging accuracies: 92.22% for coarse
tags and 88.50% for fine-grained tags (averaged
across three languages).

This observation suggests that the following re-
stricted class of HMMs might be sufficient for mod-
eling the characteristics of POS tags:

if count(w) > 0
otherwise

arg max, count(w, t)
arg max, count(t)

fw)

e 7(t) is the prior probability of tag type t.

e {(t'|t) is the probability of transitioning from tag
type ¢ to tag type t'.

e o(w|t) is the probability of emitting word type w
from tag type t.
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e (Restriction) For each word type w, we have
o(w|t) > 0 only for a unique tag type t and
o(w|t") = 0 for all other tag types t' # t.

In other words, we assume that tag types partition
word types while imposing a first-order sequence
structure on tag types.

2.2 Brown et al. (1992) model

This class of restricted HMMs is precisely the model
proposed by Brown et al. (1992)—henceforth the
Brown model. A popular use of this model is ag-
glomerative word clustering: the result is a hierar-
chy over word types, such as the one shown in Fig-
ure 1(a). In practice, each word type is represented
as a bit-string indicating the path from the root.
These bit-strings have been used as discrete (binary)
features in various natural language tasks such as
named-entity recognition (Miller et al., 2004) and
dependency parsing (Koo et al., 2008).

Recently, Stratos et al. (2014) showed that a
variant of canonical correlation analysis (CCA)
(Hotelling, 1936) can be used to provably re-
cover the clusters under the Brown model. Un-
der this method, each word is represented as an m-
dimensional vector where m is the number of hidden
states in the model: see Figure 1(b) for illustration.
This can be used as m real-valued features in dis-
crminative models. Note that real-valued represen-
tations can reflect ambiguity (e.g., set in the illus-
tration) which can be seen as a benefit over discrete
representations.



By the above observation, we conjecture that the
hidden states of the Brown model capture POS tags.
Then the bit-string and embedding representations
essentially “give away” the POS tag associated with
a word. In experiments, we show that this is indeed
the case and not far removed from the idealized il-
lustration in Figure 1.

3 Method

In this section, we describe our tagging framework
MINITAGGER, which is pleasantly simple but sur-
prisingly effective. It uses an off-the-shelf discrim-
inative classifier to map a word’s context to a POS
tag. Concretely, given a sentence x and a position ¢
in 2, we extract a feature vector ¢(x,i) € R? and
train a multi-class classifier to map ¢(x, ) to a POS
tag. To clarify, this is not the the HMM model de-
scribed in the previous section: the HMM model un-
derlies Brown bit-strings and CCA embeddings.

This framework has compelling benefits. First, it
allows for learning from partially labeled sentences
since each word is an independent sample. Sec-
ond, training and tagging can be very fast since they
do not involve dynamic programming required for
structured models. Third, arbitrary features can be
easily and effectively incorporated. Finally, there
are many well-oiled public implementations of dis-
criminative classifiers such as support-vector ma-
chines (SVMs), thus building an efficient and effec-
tive MINITAGGER takes only a minimal effort.

3.1 Feature templates

We use a baseline feature function base that maps
a sentence-position pair (x,7) to a a 0-1 vector
base(x, i) indicating

o Identities of x;_1, T;41, T, Ti—2, Tit2
e Prefixes and suffixes of z; up to length 4

e Whether z; is capitalized, numeric, or non-
alphanumeric

Let bit(z) be a binary vector indicating prefixes
of the Brown bit-string corresponding to z.! Let
cca(x) € R™ be an m-dimensional CCA embed-
ding corresponding to x.

"Past work has used various complex schemes on which pre-
fixes to use, e.g., see Koo et al. (2008). For simplicity, we use
every prefix in this work.
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o(x,1) Definition
BASE base(x, i)
BIT base(w,z)@blt(xi) .
@blt(l’ifl) D blt($i+1)
base(x,7) @ cca(z;)
CCA [[base(x,i)[| - [|cca(z;)]]
@ ceca(z;—1) @ cca(zit1)
lleca(z; 1)~ [leca(wiyq))]]

Table 1: Feature templates for MINITAGGER: @ is the
vector concatenation operation.

Table 1 shows the feature templates we use to
obtain a vector representation of (x,i). @ is the
vector concatenation operation. BASE is a base-
line template which uses only the spelling features
of the current word and the identities of neighbor-
ing words. BIT is the same as BASE but augmented
with Brown bit-strings. CCA is the same as BASE
but augmented with CCA embeddings with appro-
priate normalization.

3.2 Sampling methods
3.2.1 Active learning

We also deploy active learning to find the most
informative words for labeling in attempt to reduce
the amount of training data. While there is a rich
literature on this topic (see Settles (2010) for a sur-
vey), we focus on a simple form of margin sampling
in this work. Every time the model is allowed to
have an additional label, it actively selects the word
from a pool of unannotated words whose predicted
tag is the least confident.

To be precise, let s(x, i, y) be the score of label y
for sentence-position pair (z, 7). For example, a lin-
ear SVM may define s(x,i,y) = w;rgb(m, i) where
wy is the model parameter and ¢(x, ) is a feature
template in Table 1. To obtain M labeled examples,
we specify the initial seed size k¥ < M and the step
size & (for simplicity, assume £ divides M — k) and
proceed as follows:

1. Select the top k most frequent word types (a
random occurrence of each type) for labeling.

2. For (M — k)/¢ times:

(a) Train a model with the current set of la-
beled examples.



NOUN VERB ADP ADJ ADV NUM
community Microsoft kept is from romantic boldly 1
enterprise AT&T made was between mystical selfishly 2
law Unocal invented were for macho frequently 3
anthem Chrysler | squandered are [on heroic cynically 4
invader Hexcel lent had in straight-ahead wisely 6
pastime Tosco memorized becomes | towards piquant clumsily 7
heritage Geico witnessed ‘s betwen cushy effectively 8
curriculum  Starwave enjoyed has betweeen ghoulish carefully 5

Table 2: Nearest neighbors of some example words along with their associated universal tags (measuring the [» distance

between CCA word vectors).

(b) Label ¢ examples (x,i) with the small-
est “confidence” values s(x,i,y1) —
s(x, i, y2) where

y1 := argmax s(x,,y)
Y
yo := argmax s(x, i, y)
Y7y

During active learning, the model operates on unan-
notated data provided that we supply labels for se-
lected examples (we simulate this setting with la-
beled data). Note that the selection of examples is
inherently tied to the choice of features. Indeed, our
experiments show that it is crucial to use lexical rep-
resentations for active learning to work effectively.

Large values of k£ and & can be used to speed up
active learning (possibly at the cost of performance
loss). Since our focus is on maximizing performance
with minimal supervision, we use k = £ = 1. We
leave the speed-performance tradeoff of active learn-
ing for future work.

3.2.2 Random and frequent-word sampling

In addition to active learning, we consider the fol-
lowing methods for obtaining M labeled words.

e Random sampling: Select M words uniformly
at random (without replacement).

e Frequent-word sampling: Select random occur-
rences of the M most frequent word types.

Note that frequent-word sampling is optimal if there
really is a deterministic mapping from word types
to tag types. But since the assumption does not
hold perfectly, it has severe limitations in practice.
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We have found that frequent-word sampling outper-
forms random sampling for small values of M but
starts to lag behind as M increases.

4 Experiments

4.1 Setting

We experimented on 3 languages: English, German,
and Spanish. For all these languages, we used the
train/dev/test datasets of the universal treebank (Mc-
Donald et al., 2013)—both the reduced tagset ver-
sion, which we denote by EN12, GE12, and SP12,
and the original tagset version, which we denote
by EN45, GE16, and SP24. The number in the
dataset name refers to the number of tag types in
that dataset: e.g., EN45 is an English dataset with
45 possible tags.

For each language, we derived Brown represen-
tations (by which we mean both the bit-string and
embedding forms) from a corpus of unlabeled text.
For English, we used a corpus of about 772 million
words from various sources of (mostly newswire)
text. For German and Spanish, we used the n-gram
statistics in Google Ngram (Michel et al., 2011).
The number of words was about 64 billion for Ger-
man and 83 billion for Spanish.

We used the implementation of Liang (2005) to
derive bit-string word representations for English:
for German and Spanish, we used the agglomerative
clustering technique of Stratos et al. (2014) since
Liang’s implementation did not support operating
directly on n-grams. We used the CCA algorithm of
Stratos et al. (2014) to derive 50-dimensional word
embeddings. Table 2 displays nearest neighbors
(i.e., words whose associated CCA embeddings are



# labels Sampling Features || EN12 GE12 SP12 | EN45 GEl6 SP24
200 random BASE 7452 7291 7747 | 70.00 6039 67.01
frequent-word ~ BASE 79.42 7836 77.88 | 74.58 68.83 73.92

active BASE 66.67 71.00 6990 | 61.05 61.01 64.60

BIT 88.53 81.71 85.18 | 79.89 71.18 81.39

CCA 89.34 8130 87.63 | 81.68 76.60 86.54

400 random BASE 80.18 76.13 79.96 | 7526 69.08 76.66
frequent-word ~ BASE 85.44 82.69 7993 | 82.07 75.68 80.44

active BASE 76.06 77.56 80.69 | 77.24 67.93 79.29

BIT 93.00 87.53 89.94 | 88.38 77.82 86.53

CCA 9229 88.17 91.70 | 88.55 80.48 89.06

1000 random BASE 8539 8131 8592 | 81.72 73.61 8253
frequent-word ~ BASE 89.94 85.04 8893 | 87.53 7931 8593

active BASE 85.65 86.27 88.16 | 85.02 7854 84.91

BIT 95.21 91.18 9345 | 92.81 8391 091.73

CCA 95.03 9248 9437 | 92.22 8440 91.97

Table 3: Dev performance of MINITAGGER when only 200, 400, and 1000 labeled words are used.

the closest in [y distance) of some example words.
We see that these embeddings are remarkably good
at relating the POS tag information to Euclidean dis-
tance, confirming our hypothesis in Section 2.

We built a MINITAGGER using the liblinear pack-
age of Fan et al. (2008).>2 We primarily compared
our model with conditional random fields (CRFs)
(Lafferty et al., 2001). We used the implementation
of Okazaki (2007).

While we do not rigorously compare runtime per-
formances in this work, we note that the computa-
tional advantages of MINITAGGER are very useful in
practice. Training/tagging takes only a few seconds
with baseline features; with more complex features
such as word embeddings, it still takes much less
time than what is required by a CRF (which takes
hours with baseline features).

4.2 Effect of Brown representations

4.2.1 With limited supervision

We first look at the effect of using Brown repre-
sentations when only a limited amount of training
data is available: a scenario in which the role of
such lexical representations can be prominent. We
select a subset of training data (by words) with vari-
ous sampling schemes described in Section 3.2.

Fixed amount of data. Table 3 shows the perfor-

2Qur code is available at:
karlstratos/minitagger.

https://github.com/
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Figure 2: Dev performance of MINITAGGER with vary-
ing amounts of supervision (on EN12).

mance on the development portion when MINITAG-
GER is trained on 200, 400, and 1000 labeled words.
Active learning together with Brown representations
gives dramatic improvement in accuracy when the
amount of training data is limited. With 200 ran-
domly sampled labels, the baseline model obtains
an average accuracy of 74.97% across EN12, GE12,
and SP12. This improves to 86.09% when labels are
actively selected with CCA features. A striking re-
sult is that we can obtain an accuracy of 93% with
only 400 labeled words on the 12-tag English data.

The performance of various sampling methods
and features on EN12 is plotted in Figure 2: it is



Dataset Targetacc | BASE BIT CCA
EN12 97% 33200 10300 7000
GE12 94% 8600 4800 3000
SP12 96% 13700 6900 2700
EN45 96% 34400 17800 7700
GE16 92% 33500 15200 13200
SP24 95% 26500 8600 6000
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Table 4: (a) Smallest numbers of actively selected labels required by MINITAGGER to reach the target dev performance:
92-97%. The target performance is defined to be the accuracy of the fully supervised baseline rounded down to a whole
number (Table 5). (b) As percentages of the original training data.

clear that active sampling with Brown bit-string or
CCA embedding features outperforms others consis-
tently and very significantly.

Fixed target accuracy. Table 4(a) shows the small-
est numbers of labeled words required to achieve tar-
get performance, where the target performance is de-
fined to be the accuracy of the fully supervised base-
line rounded down to a whole number (Table 5). We
repeatedly increase the training size by 100 and re-
port the first size that allows MINITAGGER to reach
the target accuracy. These numbers are presented as
percentages of the size of the original training data
in Table 4(b).

We see that active learning with lexical repre-
sentations provides dramatic reduction in training
data while maintaining good performance. In all
cases, using CCA embeddings as features for ac-
tive learning outperforms using Brown bit-strings,
although sampling takes much longer with CCA em-
beddings since there are many more non-zero fea-
tures. MINITAGGER does almost as well as when
fully supervised with less than 1% of the training
data on English: > 97% accuracy with 0.74% of
the data on the 12-tag version, and > 96% accuracy
with 0.81% of the data on the 45-tag version.
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4.2.2 With full supervision

We also examine the effect of Brown representa-
tions in a fully supervised setting. Table 5 shows
the performance of different tagging methods on
the development portion when all training data is
used. We see that Brown representations are helpful
even under full supervision: MINITAGGER, a sim-
ple greedy model, outperforms CRF when equipped
with Brown representations.

Table 5 also shows the performance of MINITAG-
GER and CRF on the test portion. For MINITAG-
GER, we additionally consider a model trained only
on the actively selected samples with CCA features
in Table 4 which are sufficient to reach state-of-the-
art performance on the dev portion. As percent-
ages of the original training data, these samples con-
stitute 0.74% for EN12, 1.13% for GE12, 0.72%
for SP12, 0.81% for EN45, 4.98% for GE16, and
1.60% for SP24—1.66% on average. The accuracy
of MINITAGGER equipped with Brown representa-
tions is again generally higher than that of CRF. Fur-
thermore, MINITAGGER achieves competitive per-
formance using only a fraction of the original train-
ing set.



Eval Model Features Data ENI12 GE12 SP12 EN45 GEl6 SP24
dev MINI BASE all 97.42 94.91 96.75 96.51 92.44 95.42
BIT all 97.56 95.09 96.98 96.63 92.67 95.39
cca all 97.67 94.94 97.12 96.81 92.81 95.99
CRF default all 97.37 94.56 96.59 96.59 91.76 95.61
test ~ MINI cca all 97.90 94.79 95.88 97.25 92.16 94.70
MINI CCA active 97.20 (0.74)  94.09 (1.13) 94.27 (0.72) | 96.43 (0.81) 91.59 (4.98) 93.06 (1.60)
CRF default all 97.54 94.33 94.38 97.03 91.12 93.48
Table 5: Performance of MINITAGGER (MINTI in short) and CRF on the dev and test portions. The Data column

specifies the amount of training data: “all” means all training data is used, “active” means only the labeled examples
actively selected (with the same CCA features) in Table 4 are used: the amount of actively selected examples as a
percentage of the original training data is shown in parantheses.

5 Related work

We make a few remarks on related works not already
discussed earlier. Our work extends a rich body of
previous work on reducing annotation efforts with
seed examples, unlabeled data, and training exam-
ple selection (Yarowsky, 1995; Blum and Mitchell,
1998; Collins and Singer, 1999; Miller et al., 2004;
Koo et al., 2008; Kim and Snyder, 2013). In partic-
ular, Miller et al. (2004) investigate semi-supervised
named-entity recognition based on Brown clusters
and active learning. Koo et al. (2008) investi-
gate semi-supervised dependency parsing based on
Brown clusters.

The direction that Ringger et al. (2007) pursue is
perhaps the most similar to ours. They attempt to
reduce supervision required for high POS tagging
performance based on active learning. But a critical
difference is that they do not use word representa-
tions: in contrast, word representations are central
to our approach.

Another closely relevant work is the work of Gar-
rette and Baldridge (2013) who aim to learn a good
POS tagger from limited resources. Notably, they
faithfully simulate tagging resource-poor languages
with human annotators. Our contribution is differ-
ent in several important ways. Most importantly,
our results are much more striking in the aspect of
minimizing supervision. We obtain > 90% accu-
racy with a few hundred labeled words, whereas
Garrette and Baldridge (2013) obtain 71-78% with
1,537-2,650 labeled words and tag dictionaries (i.e.,
the result of two hours of annotation efforts). They
also do not make use of word representations which
are the highlight of this work.
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6 Conclusion

We have argued that that the sequence model of
Brown et al. (1992), often used for deriving lexical
representations, is particularly appropriate for cap-
turing POS tags. We have demonstrated this claim
by drastically reducing the amount of labeled data
required for state-of-the-art POS tagging accuracy
with word representations derived under the Brown
model. Our simple framework MINITAGGER allows
one to learn a functioning POS tagger with merely
a few hundred labeled tokens, or an accurate POS
tagger with less than 1% of the normally considered
amount of training data.

We focused on utilizing lexical representations in
a greedy framework, which is well-suited for the
per-position accuracy metric (which is the standard
metric for POS tagging). However, the result may be
quite different if other metric is chosen, for instance
the per-sentence accuracy metric. Thus improving
tagging performance under different metrics using
lexical representations may be a fruitful direction.

While they are not considered in this work, lexical
representations not derived under the Brown model
such as the skip-gram model in the WORD2VEC
package Mikolov et al. (2013) can certainly be used
for the same task. It may be illuminating to compare
such different representations.
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