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Abstract

Language is the main communication device
to represent the environment and share a com-
mon understanding of the world that we per-
ceive through our sensory organs. Therefore,
each language might contain a great amount of
sensorial elements to express the perceptions
both in literal and figurative usage. To tackle
the semantics of figurative language, several
conceptual properties such as concreteness or
imegeability are utilized. However, there is no
attempt in the literature to analyze and bene-
fit from the sensorial elements for figurative
language processing. In this paper, we in-
vestigate the impact of sensorial features on
metaphor identification. We utilize an exist-
ing lexicon associating English words to sen-
sorial modalities and propose a novel tech-
nique to automatically discover these associ-
ations from a dependency-parsed corpus. In
our experiments, we measure the contribution
of the sensorial features to the metaphor iden-
tification task with respect to a state of the
art model. The results demonstrate that sen-
sorial features yield better performance and
show good generalization properties.

1 Introduction

Languages include many lexical items that are con-
nected to sensory modalities in various semantic
roles. For instance, while some words can be used
to describe a perception activity (e.g., to sniff, to
watch, to feel), others can simply be physical phe-
nomena that can be perceived by sensory receptors
(e.g., light, song, salt, smoke). Common usage of

language, either figurative or literal, can be very
dense in terms of sensorial words. As an example,
the sentence “I heard a harmonic melody.” contains
three sensorial words: to hear as a perception ac-
tivity, harmonic as a perceived sensorial feature and
melody as a perceivable phenomenon. The connec-
tion to the sense modalities of the words might not
be mutually exclusive, that is to say a word can be
associated with more than one sense. For instance,
the adjective sweet could be associated with both
taste and smell.

The description of one kind of sense impression
by using words that normally describe another is
commonly referred to as linguistic synaesthesia1.
As an example, we can consider the slogans “The
taste of a paradise” where the sense of sight is com-
bined with the sense of taste or “Hear the big pic-
ture” where sight and hearing are merged. Synaes-
thesia strengthens creative thinking and it is com-
monly exploited as an imagination boosting tool in
advertisement slogans (Pricken, 2008).

Synaesthesia is also commonly used in
metaphors. Synaesthesic metaphors use words
from one type of sensory modality, such as sight,
hearing, smell, taste and touch, to describe a
concept from another modality. In conceptual
metaphor theory, metaphor is defined as a system-
atic mapping between two domains; namely target
(or tenor) and source (or vehicle) domains (Lakoff
and Johnson, 1980). Such mappings are asymmetric
and might not correlate all features from the source
domain to the target domain. Systematic studies
on synaesthetic metaphors propose that there is a

1http://ahdictionary.com/
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certain directionality of sense modality mappings.
(Ullman, 1957), in a very early study, presented
this directionality as a linear hierarchy of lower
and higher sense modalities. In this hieararchy,
modalities are ordered from lower to higher as
touch, taste, smell, sound and color. Ullman (1957)
proposes that lower modalities tend to occur as
the source domain, while higher modalities tend
to occur as the target domain. For instance, in the
synaesthetic metaphor “soft light”, the target do-
main of seeing is associated with the source domain
of touching, while the target domain of hearing
is associated with the source domain of tasting in
“sweet music”. However, later studies (Williams,
1976; Shen, 1997) propose that the mapping in
the synaesthetic metaphorical transfer is more
complex among the sensory modalities. Williams
(1976) constitutes a generalized mapping for the
synaesthetic metaphorical transfer by means of the
diachronic semantic change of sensorial adjectives.
Having regard to the citation dates of adjective
meanings from Oxford English Dictionary2 and
Middle English Dictionary3, the regular transfer
rules among the sensorial modalities are introduced.

Several techniques for metaphor identification
have been explored, including selectional preference
violations (Fass, 1991; Neuman et al., 2013) or verb
and noun clustering (Shutova et al., 2010; Birke
and Sarkar, 2006; Shutova and Sun, 2013), super-
vised classification (Gedigian et al., 2006; Mohler
et al., 2013; Tsvetkov et al., 2014a). As well as the
identification techniques, different cognitive proper-
ties such as imageability (Broadwell et al., 2013;
Tsvetkov et al., 2014a) and concreteness of the
metaphor constituents (Neuman et al., 2013; Turney
et al., 2011; Tsvetkov et al., 2014a), or lexical se-
mantic properties such as supersenses (Hovy et al.,
2013; Tsvetkov et al., 2014a) have been exploited.

While detecting and interpreting metaphors, im-
ageability and concreteness features are generally
utilized to identify the metaphorical transfer from
a more concrete to a less concrete or from a more
imageable to a less imageable word. However, in
synaesthetic metaphors, the imageability or con-
creteness levels of both tenor and vehicle (or tar-

2http://www.oed.com/
3http://quod.lib.umich.edu/m/med/

get and source) words can be similar. For instance,
according to the MRC Psycholinguistic Database
(MRCPD) (Coltheart, 1981) the concreteness (C)
and imageability (I) values for target smell and
source cold in the sentence “The statue has a cold
smell.” are C:450, I:477 and C:457, I:531 respec-
tively. Likewise, in the noun phrase “Sweet silence”
the values are very close to each other (C:352, I:470
for silence and C:463, I:493 for sweet). As demon-
strated by these examples, while both imageabil-
ity and concreteness are related to human senses,
these features alone might not be sufficient to model
synaesthetic metaphors.

In this paper, we fill in this gap by measuring the
contribution of the sensorial features to the identifi-
cation of metaphors in the form of adjective-noun
pairs. We explicitly integrate features that repre-
sent the sensorial associations of words for metaphor
identification. To achieve that, we both utilize an
existing sensorial lexicon and propose to discover
these associations from a dependency-parsed cor-
pus. In addition, we exploit the synaesthetic direc-
tionality rules proposed by Williams (1976) to en-
code a degree to which an adjective-noun pair is
consistent with the synaesthetic metaphorical trans-
fer. Our experiments show that sensorial associa-
tions of words could be useful for the identification
of metaphorical expressions.

The rest of the paper is organized as follows. We
first review the relevant literature to this study in
Section 2. Then in Section 3, we describe the word-
sense association resources. In Section 4, we de-
scribe the features that we introduce and detail the
experiments that we conducted. Finally, in Section
5, we draw our conclusions and outline possible fu-
ture directions.

2 Related Work

Mohler et al. (2013) exploit a supervised classifi-
cation approach to detect linguistic metaphors. In
this work, they first produce a domain-specific se-
mantic signature which can be found to be encoded
in the semantic network (linked senses) of Word-
Net, Wikipedia4 links and corpus collocation statis-
tics. A set of binary classifiers are actuated to detect
metaphoricity within a text by comparing its seman-

4http://www.wikipedia.org/
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tic signature to the semantic signatures of a set of
known metaphors.

Schulder and Hovy (2014) consider the term rel-
evance as an indicator of being non-literal and pro-
pose that novel metaphorical words are less prone to
occur in the typical vocabulary of a text. The perfor-
mance of this approach is evaluated both as a stan-
dalone metaphor classifier and as a component of a
classifier using lexical properties of the words such
as part-of-speech roles. The authors state that term
relevance could improve the random baselines for
both tasks and it could especially be useful in case
of a sparse dataset.

Rather than an anomaly in the language or a sim-
ple word sense disambiguation problem, a cogni-
tive linguistic view considers metaphor as a method
for transferring knowledge from a concrete do-
main to a more abstract domain (Lakoff and John-
son, 1980). Following this view, Turney et al.
(2011) propose an algorithm to classify adjectives
and verbs as metaphorical or literal based on their
abstractness/concreteness levels in association with
the nouns they collocate with. The authors describe
words as concrete if they are things, events, and
properties that can be perceivable by human senses.

Neuman et al. (2013) extend the abstract-
ness/concreteness model of Turney et al. (2011) with
a selectional preference approach in order to detect
metaphors consisting of concrete concepts. They fo-
cus on three types of metaphors including i) a sub-
ject noun and an object noun associated by the verb
to be (e.g., “God is a king”), ii) the metaphorical
verb representing the act of a subject noun on an ob-
ject noun (e.g., “The war absorbed his energy”), iii)
metaphorical adjective-noun phrases (e.g., “sweet
kid”).

Beigman Klebanov et al. (2014) propose a super-
vised approach to predict the metaphoricity of all
content words with any part-of-speech in a running
text. The authors propose a model combining uni-
gram, topic models, POS, and concreteness features.
While unigram features contribute the most, con-
creteness features are found to be effective only for
some of the sets.

Based on the hypothesis that on the conceptual
level, metaphors are shared across languages, rather
than being lexical or language specific, Tsvetkov
et al. (2014a) propose a metaphor detection system

with cross-lingual model transfer for English that
exploits several conceptual semantic features; ab-
stractness and imageability, semantic supersenses,
vector space word representations. They focus on
two types of metaphors with the subject-verb-object
(SVO) and adjective-noun (AN) syntactic relations.
As another contribution, they create new metaphor-
annotated corpora for English and Russian. In ad-
dition, they support the initial hypothesis by show-
ing that the model trained in English can detect
metaphors in Spanish, Farsi and Russian by project-
ing the features from the English model into another
language using a bilingual dictionary. To the best of
our knowledge, this system is the current state of the
art for metaphor detection in English and constitutes
the baseline for our experiments.

3 Word-Sense Associations

Following the hypothesis of Broadwell et al. (2013)
that “Metaphors are likely to use highly imageable
words, and words that are generally more imageable
than the surrounding context”, we introduce a novel
hypothesis that metaphors are likely to also use sen-
sorial words. To extract the sensorial associations of
words, we use the following two resources.

3.1 Sensicon

This resource (Tekiroglu et al., 2014) is a large sen-
sorial lexicon that associates 22,684 English words
with human senses. It is constructed by employing a
two phased computational approach.

In the first phase, a bootstrapping strategy is per-
formed to generate a relatively large set of sensory
seed words from a small set of manually selected
seed words. Following an annotation task to select
the seed words from FrameNet (Baker et al., 1998),
WordNet relations are exploited to expand the sen-
sory seed synsets that are acquired by mapping the
seed words to WordNet synsets. At each bootstrap-
ping cycle, a five-class sensorial classifier model is
constructed over the seed synsets defined by their
WordNet glosses. The expansion continues until the
prediction performance of the model steadily drops.

In the second phase, a corpus based method is
utilized to estimate the association scores in the fi-
nal lexicon. Each entry in the lexicon consists of a
lemma and part-of-speech (POS) tag pair and their
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associations to the five human senses (i.e. sight,
hearing, taste, smell and touch) measured in terms of
normalized pointwise mutual information (NPMI).
Each sensorial association provided by the lexicon
is a float value in the range of -1 and 1.

Due to the way it is constructed, Sensicon might
tend to give high association values for metaphori-
cal sense associations of words as well as the literal
ones. For instance, while adjective dark is related
to sight as the literal sense association, Sensicon as-
signs very high association values to both sight and
taste. While this tendency would be helpful as a hint
for identifying synaesthetic words, metaphor iden-
tification task would need a complementary word-
sense association resource that could highlight the
literal sense association of a word.

3.2 Dependency-parsed corpus (DPC)

As an alternative to Sensicon for building word-
sense associations, we extract this information from
a corpus of dependency-parsed sentences. To
achieve that, we follow a similar approach to Özbal
et al. (2014) and use a database that stores, for each
relation in the dependency treebank of LDC Giga-
Word 5th Edition corpus5), its occurrences with spe-
cific “governors” (heads) and “dependents” (mod-
ifiers). To determine the sensorial load of a noun
n, we first count how many times n occurs with
the verb lemmas ‘see’, ‘smell’, ‘hear’, ‘touch’ and
‘taste’ in a direct object (dobj) syntactic relation in
the database. Then, we divide each count by the
number of times n appears in a direct object syntac-
tic relation independently of the head that it is con-
nected to. More specifically, the probability that n is
associated to sense s is calculated as:

p(s, n) =
cdobj(vs, n)∑
hi

cdobj(hi, n)
(1)

where cr(h, m) is the number of times that m de-
pends on h in relation r (in this case, r = dobj) in
the dependency database, vs is the most represen-
tative verb for sense s (e.g., the verb ‘hear’ for the
sense of hearing) and each hi is a different governor
of n in a dobj relation as observed in the database.

5http://www.ldc.upenn.edu/Catalog/
catalogEntry.jsp?catalogId=LDC2011T07

Our hypothesis is that nouns frequently acting as a
direct object of a verb representing a human sense s
are highly associated to s.

Similarly, to extract the sensorial load of an ad-
jective a, we calculate the number of times a occurs
with the verb lemmas ‘look’, ‘smell’, ‘sound’, ‘feel’
and ‘taste’ in an adjectival complement (acomp)
syntactic relation in the database. Then, we divide
each count by the number of times a appears in
an acomp syntactic relation. More specifically, the
probability that a is associated to sense s is calcu-
lated as:

p(s, a) =
cacomp(vs, a)∑
hi

cacomp(hi, a)
(2)

The two resources capture different properties of
words with respect to their sensorial load. While
Sensicon yields indirect sensorial associations by
modeling distributional properties of the lexicon,
DPC attempts to directly model these associations
independently of the context. For instance, while
Sensicon associates the noun plate with taste as it
frequently occurs in contexts involving eating, DPC
assigns the highests scores to sight and touch.

4 Evaluation

In this section, we demonstrate the impact of sen-
sorial associations of words on the classification of
adjective-noun pairs as metaphorical or literal ex-
pressions.

4.1 Dataset
As an initial attempt to investigate the impact of sen-
sorial associations of words in metaphor identifica-
tion, we target metaphorical expressions which can
easily be isolated from their context. In this study,
we focus on adjective-noun (AN) pairs which could
also well suit a common definition of the synaes-
thetic metaphors as adjective metaphors where an
adjective associated to one sense modality describes
a noun related to another modality (Utsumi and
Sakamoto, 2007). To this end, we experiment
with the AN dataset constructed by Tsvetkov et
al. (2014a). The dataset consists of literal and
metaphorical AN relations collected from public re-
sources on the web and validated by human annota-
tors. For instance, it includes green energy, straight
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answer as metaphorical relations and bloody nose,
cool air as literal relations. To be able to compare
our model with the state-of-the-art, we use the same
training and test split as Tsvetkov et al. (2014a).
More precisely, 884 literal and 884 metaphorical AN
pairs are used for training, while 100 literal and 100
metaphorical AN pairs are used for testing.

4.2 Classifier and Features

We perform a literal/metaphorical classification task
by adding sensorial features on top of the features
proposed by Tsvetkov et al. (2014a), which consti-
tute our baseline: concreteness, imageability, super-
senses and vector space word representations. As
we discussed earlier, imageability (I) and concrete-
ness (C) are highly effective in metaphor identifi-
cation task. We obtain the I and C scores of each
word from the resource constructed by Tsvetkov
et al. (2014a) by projecting I and C values of
words in MRCPD onto 150,114 English words. Su-
persenses are coarse semantic representations that
could reflect the conceptual mappings between ad-
jective and noun components of a relation. We at-
tain noun supersenses from the lexicographer files of
WordNet, such as noun.phenomenon, noun.feeling,
verb.perception, and adjective supersenses from the
resource generated by Tsvetkov et al. (2014b). As
the last baseline feature, Vector Space Word Rep-
resentations can be considered as lexical-semantic
properties where each word is represented by a vec-
tor and semantically similar words have similar vec-
tors. The detailed description of how the baseline
features are extracted can be found in Tsvetkov et
al. (2014a).

As the main focus of this study, we extract the
sensorial features from Sensicon and a dependency-
parsed corpus (DPC). For each adjective and noun
in an AN relation, we add as features its five sense
associations according to the two resources. This
results in 10 features (S) coming from Sensicon and
10 features (D) coming from DPC. From S and D,
we derive two more features (pS and pD respec-
tively) computed as the Pearson correlation between
the sense features for the noun and the adjective.

As the third type of sensorial feature, we add
a feature (R) which encodes the degree to which
the adjective noun pair is consistent with William’s
theory of sense modality directionality in synaes-

Touch Taste Smell

Color

Dimen-
sion

Sound

Figure 1: Directionality of sensory modalities as pro-
posed by Williams(1976).

thetic metaphors (Williams, 1976). According to
Williams, the mapping between the source and tar-
get sense of a synaesthetic adjective is more likely to
flow in some directions and not in others, as exem-
plified in Figure 1. For example, while synaesthetic
metaphors could be constructed with touch related
adjectives and taste related nouns, the opposite di-
rection, a taste related adjective and touch related
noun, is less likely to occur. In our study, we em-
ployed simplified version of the directionality map-
ping in Figure 1 by identifying sight modality with
dimension and color. For an AN relation, we first
assign a sense to each component (i.e., adjective and
noun) by choosing the highest sense association in
DPC. We decided to employ DPC instead of Sen-
sicon in the definition of this feature since by con-
struction it provides a more direct association be-
tween words and senses. The value of R is set to 1.0
if the sense associations of the adjective and noun
satisfies a direction in Figure 1. If the associations
violate the directions in the figure, the value of the
feature is set to 0.5. In all other cases it is set to 0.

Another sensorial feature set (W ) is constructed
by checking if the constituents of an AN pair appear
in the Sensicon seed set, which consists of 4,287
sensorial words. For each adjective and noun, we
add 5 binary features (one for each sense) and if the
word is listed among the seeds for a specific sense,
the feature for that sense is set to 1. In the same
way, we construct another feature set (L) from the
resource described in (Lynott and Connell, 2013;
Lynott and Connell, 2013). This resource contains
1,000 nouns and object properties annotated with the
five senses. Table 1 summarizes the features used in
the classification task.
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Feature Name Abbreviation # of the Features

Baseline B 183
Baseline - VSM B′ 55

Sensicon S 10
Sensicon Pearson pS 1
DPC D 10
DPC Pearson pD 1
Sensicon Seeds W 10
Lynott-Connell Sense Words L 10
Directionality Rules R 1
All sensorial features A 43

Table 1: Feature sets used in the experiments.

To replicate the experimental setup of Tsvetkov
et al. (2014a) as closely as possible, for our experi-
ment we also use a Random Forest classifier, which
was demonstrated to outperform other classification
algorithms and to be robust to overfitting (Breiman,
2001). To fine tune the classifier and find the best
Random Forest model for each feature set combi-
nation, we perform a grid search over the number
of the generated trees (in the range between 50 and
300) and the maximum depth of the tree (in the range
between 0 and 50) using 10-fold cross validation on
AN training data. We choose the best model for each
feature combination based on the maximum average
cross validation accuracy - standard deviation value
obtained by applying the given parameters.

4.3 Evaluation of the Baseline Features

The first row in Table 2 demonstrates the accuracy
obtained with the complete set of baseline features.
As it can be observed from the results, there is
a significant drop of accuracy when moving from
training to test data. We suspect that this perfor-
mance loss might be due to the high dimensionality
of the vector space feature set. Since according to
Tsvetkov et al. (2014a) these features were designed
mostly to deal with the multilinguality of their ex-
perimental setting, we evaluate the performance of
the baseline excluding the vector space features. The
row labeled B′ reports the resulting accuracy values.
The figures show that this simpler model has better
generalization performance on monolingual English
data. Hence, we decide to add our sensorial features
on top of the simplified B′ baseline.

Features Cross-validation Test

B 0.851 0.798
B′ 0.831 0.845

Table 2: The cross validation and test accuracies of the
baseline with and without vector space features.

4.4 Evaluation of the Sensorial Features

The second row labeled ‘All’ in Table 3 shows the
cross validation and test accuracies of the sensorial
features added on top of B′. The following rows
show the outcome of the ablation experiments in
which we remove each feature set at a time. The
results that are marked with one or more ∗ indicate
a statistically significant improvement in compari-
son to B′ according to McNemar’s test (McNemar,
1947). From the results it can be observed that the
model including all sensorial features outperforms
the baseline in both cross-validation and testing even
though the difference on test data is not significant.

According to the ablation experiments, sensorial
transaction rules (R) yield the highest contribution.
While the Pearson correlation value calculated with
Sensicon (pS) results in an improvement, the feature
representing the correlation with DPC (pD) causes a
decrease in the performance of the model. In gen-
eral, all models using any tested subset of the senso-
rial features outperform the very competitive base-
line even though the difference is significant only in
two cases. To have more conclusive insights about
the importance of each feature, an analysis on a
larger dataset would be necessary. Overall, all the
results demonstrate the useful contribution of the
sensorial features to the task.

4.5 Error Analysis

The analysis that we performed on the test results
shows that the noticeable performance differences
among test results arise from the number of the in-
stances in the test set. Indeed, a more comprehen-
sive and bigger test set would provide better insights
about the performance of sensorial features in the
metaphor identification task.

6For two classifiers that have the same accuracy, McNemar
test can yield different results with respect to the same baseline,
depending on the tendency of each classifier to make the same
errors as the baseline.
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Features Cross-validation Test

B′ 0.831 0.845

All 0.852** 0.875

All-S 0.850** 0.870
All-D 0.838 0.875
All-pS 0.855*** 0.870
All-pD 0.851** 0.890*
All-R 0.838 0.865
All-L 0.853** 0.880
All-W 0.853** 0.880*6

Table 3: Performance of the B′ baseline in combination
with the different sets of sensorial features. Statistical
significance: ***, p < .001; **, p < .01; *, p < .05.

Regarding the impact of the sensorial features, the
test results indicate that sensorial association of the
words could be beneficial in resolving the metaphors
that include at least one sensorial component. For
instance, the best configuration All-pD could iden-
tify the quiet revolution as metaphorical while iden-
tifying quiet voice as literal with the sensorial adjec-
tive quiet.

A highly observable problem that causes error in
the predictions is the limited coverage of the sen-
sorial association resources. As an example, the lit-
eral AN pair woolly mammoth could not be resolved,
since the adjective woolly, which is highly related to
touch modality, can not be found in either Sensicon
or DPC.

As another type of error, for less direct relations
to sensory modalities, DPC might not provide the
right information. For instance, in the literal AN re-
lation blind man, the adjective blind is associated
with taste as the highest sensory relation while asso-
ciating man with sight modality. This might lead to
the classification of this literal pair as metaphorical.

Considering the shortcomings of the current sen-
sorial resources, a better sensorial lexicon differen-
tiating various aspects of sensorial words such as
direct sensorial properties (e.g., coldness, odor or
touch), perceptibility of the concepts such as the
visible concept (e.g., cloud), or tasteable concept
(e.g., food), and also deeper cognitive relations of
the words with senses such as microphone with hear-
ing or blind with sight, could increase the perfor-

mance of the metaphor identification systems.

5 Conclusion

In this paper, we investigated the impact of senso-
rial features on the identification of metaphors in the
form of adjective-noun pairs. We adopted a lexical
approach for feature extraction in the same vein as
the other cognitive features employed in metaphor
identification, such as imageability and concrete-
ness. To this end, we first utilized a state-of-the-
art lexicon (i.e. Sensicon) associating English words
to sensorial modalities. Then, we proposed a novel
technique to automatically discover these associa-
tions from a dependency-parsed corpus. In our ex-
periments, we evaluated the contribution of the sen-
sorial features to the task when added to a state-
of-the art model. Our results demonstrate that sen-
sorial features are beneficial for the task and they
generalize well as the accuracy improvements ob-
served on the training data constantly reflect on test
performance. To the best of our knowledge, this
is the first model explicitly using sensorial features
for metaphor detection. We believe that our results
should encourage the community to explore further
ways to encode sensorial information for the task
and possibly to also use such features for other NLP
tasks.

As future work, we would like to investigate the
impact of sensorial features on the classification of
other metaphor datasets such as VU Amsterdam
Metaphor Corpus (Steen et al., 2010) and TroFi
(Trope Finder) Example Base7. It would also be
interesting to explore the contribution of these fea-
tures for other figure of speech types such as simi-
les. Furthermore, we plan to extend DPC approach
with the automatic discovery of sensorial associa-
tions of verbs and adverbs in addition to adjectives
and nouns. These efforts could result in the compi-
lation of a new sensorial lexicon.
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