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Abstract

Motivational Interviewing (MI) is an effica-
cious treatment for substance use disorders
and other problem behaviors (Lundahl and
Burke, 2009). However, little is known about
the specific mechanisms that drive therapeu-
tic change. A growing body of research has
focused on coding within-session language to
better understand how therapist and patient
language mutually influence each other and
predict successful (or unsuccessful) treatment
outcomes. These studies typically use hu-
man raters, requiring considerable financial,
time, and training costs for conducting such
research. This paper describes the develop-
ment and testing of a recursive neural network
(RNN) model for rating 78,977 therapist and
patient talk turns across 356 MI sessions. We
assessed the accuracy of RNNs in predicting
human ratings for client speech and compared
them to standard n-gram models. The RNN
model showed improvement over ngram mod-
els for some codes, but overall, all of the mod-
els performed well below human reliability,
demonstrating the difficulty of the task.

1 Introduction

1.1 Motivational Interviewing

Motivational Interviewing (MI) (Miller and Roll-
nick, 2012) is a counseling style that attempts to
highlight and resolve patient ambivalence about be-
havioral change. To achieve these aims, MI the-
ory emphasizes that therapists should use specific
MI-consistent strategies, such as fostering collab-
oration rather than confrontation, emphasizing pa-
tient autonomy rather than therapist authority, and

eliciting discussion of the factors that motivate pa-
tients to change or not change their behavior. Dur-
ing MI sessions, therapists are instructed to attend
to patient change talk (i.e., language that indicates a
desire, reason, or commitment to make a behavioral
change), and sustain talk ( i.e., language that indi-
cates a desire, reason, or commitment against mak-
ing a behavioral change). Therapists are further in-
structed to respond to such change and sustain talk
in specific, MI-consistent manners. For example,
therapists are instructed to frequently use open ques-
tions and to reflect patient language with the goal of
eliciting change talk from patients. Likewise, thera-
pists are instructed to minimize their use of behav-
iors such as confrontation, warning, and giving ad-
vice without permission.

MI researchers have developed several coding
systems for identifying these types of patient and
therapist language. The information provided by
these MISC ratings often provides critical data for
a variety of research and training purposes. For
example, such coding data can be used to assess
therapists’ fidelity to using MI (e.g., based on the
amount of MI-consistent and MI-inconsistent thera-
pist behaviors), to understand the temporal relation-
ships between therapist and patient behaviors (e.g.,
through sequential analysis of therapist and patient
codes), or to understand how in-session behaviors
predict out-of-session behavioral change (e.g., ther-
apist and patient language predicting reductions in
substance use). These coding systems typically re-
quire human coders to listen to psychotherapy ses-
sions and manually label each therapist and patient
utterance using codes derived from MI theory. For
example, one of the most versatile but time con-
suming coding systems, the Motivation Interview-
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ing Skill Code (Houck et al., 2012) assigns codes
to every therapist and patient utterance (defined as
a single idea within a section of speech) using over
30 different predefined codes (See examples below
in Figure 1).

Counselor: “How do you feel about your
progress so far?” (Open Question)
Patient: “Everyone’s getting on me about
my drinking.” (Follow-Neutral)
Counselor: ”Kind of like a bunch of
crows pecking at you.” (Complex Reflec-
tion)
Patient: “I’m not sure I can finish treat-
ment.” (Sustain Talk)
Counselor: “You’re not sure if you can
finish treatment.” (Simple Reflection)
Patient: “I drank a couple of times
this week when I was with my brother
(Sustain Talk). I want to quit so badly
(Change Talk), but I don’t think I can do
it.” (Sustain Talk)

Figure 1: Example of MISC codes from (Houck et
al., 2012)

1.2 Machine Learning and Psychotherapy
Coding

There are few studies that have used machine learn-
ing to assess therapist and patient behavior in psy-
chotherapy sessions. Most of these methods have
relied heavily on n-grams (i.e., specific words or
phrases) and have used a bag of words approach
where the temporal ordering of n-grams within an
utterance is mostly ignored, thereby losing infor-
mation about the functional relationships between
words.

For example (Atkins et al., 2014) used topic mod-
eling to predict utterance-level MISC codes in 148
MI sessions obtained from studies of primary care
providers in public safety net hospitals and brief in-
terventions for college student drinking. The topic
models were able to predict human ratings of ut-
terances with high accuracy for many codes, such
as open and closed questions or simple and com-
plex reflections (Cohen’s kappa all >0.50). How-

ever, the topic models struggled to accurately pre-
dict other codes, such as patient change talk and sus-
tain talk (Cohen’s kappa all <0.25). The limitations
in the prediction model were attributed to multiple
sources, including low inter-rater agreement among
the human raters, the limited information provided
within the relatively small number of n-grams con-
tained in single utterances, the inability to incor-
porate the local context of the conversation in the
predictive model, and the lack of a uniform lin-
guistic style associated with some codes (e.g., ques-
tions typically contain keywords such as “what” or
“how”, but change talk does not).

Using a subset of the same data, (Can et al., 2012)
used multiple linguistic features to predict utterance-
level therapist reflections with reasonably high ac-
curacy, F1 = 0.80. Specifically, Can et al. used
N-grams (i.e., specific words and phrases), simi-
larity features (i.e., overlapping N-grams between
therapist utterances and patient utterances that pre-
ceded), and contextual meta-features (i.e., words
in the surrounding text) with a maximum-entropy
Markov model and found improved performance
relative to models that did not include similarity or
meta-features. However, this study did not test the
prediction of language categories that were difficult
to predict in Atkins et al., such as change talk and
sustain talk.

1.3 Aims
An important problem with the word and n-gram
based models is that they do not account for syntac-
tic and semantic properties of the text. In this work,
we study the question of using dense vector features
and their compositions to address this issue

To our awareness, no research to date has tested
the use of recursive neural networks (RNNs) for pre-
dicting MISC codes. It is possible that a model cap-
turing semantic and syntactic similarity in text can
perform better than n-gram models in identifying re-
flections in MI sessions. The present study aimed to
test (1) whether recursive neural networks (RNNs)
(Socher, 2014) can be used to predict utterance-level
patient MISC codes and (2) whether RNNs can im-
prove the prediction accuracy of these codes over n-
gram models.

Following the basic procedure described in
(Socher, 2014), we developed a Recursive Neural
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Network model to achieve these aims. We used the
Stanford parser (Klein and Manning, 2003) to cre-
ate parse trees that modeled the language structure
of patient and therapist utterances. These sentence-
level models were then used as input into a Maxi-
mum Entropy Markov Model (MEMM), a type of
sequence model that uses the sentence and surround-
ing context to predict MISC codes. The recursive
neural networks were designed using the ’standard’
model (Socher et al., 2011) with a single weight ma-
trix to combine each node in the tree.

We tested both a standard RNN model and an
RNN that utilized a dependency parsing of the sen-
tence. Once a final model was tuned, the perfor-
mance of each model predicting change talk and sus-
tain talk codes was examined by comparing RNNs
with an n-gram based model using cross-validation.

The main goals of this paper are to

1. Define the challenging and interesting problem
of identifying client change and sustain talk in
psychotherapy transcripts.

2. Explore and evaluate methods of using continu-
ous word representations to identify these types
of utterances and

3. Propose future directions for improving the
performance of these models

2 Data

We used the dataset constructed as part of a collab-
orative project between psychologists at the Univer-
sity of Utah and the University of Washington and
computer scientists and engineers at the University
of California, Irvine and University of Southern Cal-
ifornia. The dataset consists of 356 psychotherapy
sessions from 6 different studies of MI, including
the 5 studies (148 sessions) reported in (Atkins et al.,
2014). The original studies were designed to assess
the effectiveness of MI at a public safetynet hospi-
tal (Roy-Byrne et al., 2014), the efficacy of training
clinicians in using MI (Baer et al., 2009), and the
efficacy of using MI to reduce college student drink-
ing (Tollison et al., 2008; Neighbors et al., 2012;
Lee et al., 2013; Lee et al., 2014). All sessions have
utterance level MISC ratings totaling near 268,000
utterances in 78,977 talk turns. A subset of sessions
was coded by multiple raters to estimate inter-rater

reliability, which serves as a theoretical lower-bound
for the predictive performance.

3 Modeling MISC Codes

3.1 Sequence Labeling

All of the models attempted to correctly label utter-
ances as a single sequence. For example, a patient
may speak two or three times in a row, then the ther-
apist may speak once. Each utterance code is pre-
dicted by the preceding utterance label, regardless
of the speaker. Both patient and therapist utterances
were combined into this sequence model.

All sequence models were Maximum Entropy
Markov Models (MEMM)(McCallum and Freitag,
2000). At test time, the sequences for the codes were
inferred using the Viterbi algorithm. The models all
differed in their feature inputs into the MEMM. The
N-gram model used sparse input vectors represent-
ing the presence of the various unigrams, bigrams
and trigrams in each utterance. The RNN models
used the final sentence vector as the input into the
MEMM model. The RNN models were allowed
to learn from the mistakes in the MEMM models
through backpropogation.

Even though the purpose of this model was to pre-
dict patient change and sustain talk, we attempted to
predict all codes in the sequence to assist in the task
due to the relationship between change talk, sustain
talk, and other MISC codes. Other codes identified
by the models included reflect, affirm, giving infor-
mation, facilitate, open questions, closed questions,
advise, confront, and follow-neutral (See (Houck et
al., 2012)).

It should be noted that the MEMM models only
used the previous utterance codes (or predicted
codes) and the current utterance for feature inputs.
We were attempting in this study to identify the best
sentence model. At a later point in time, similar
work will be done testing various iterations of se-
quence models to find the optimal version, after the
best sentence level model has been chosen. One of
the reasons for choosing a MEMM over a condi-
tional random field was to allow for joint training
of the RNN models and the sequence model (with a
MEMM, it is easy to backpropogate errors from the
sequence model to the sentence model).
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3.2 Word Based Features

Our first feature set for utterances is defined using
indicators for n-grams. In all cases, the speaker of
the utterance (patient or therapist) was considered
to be known. That is, the models only had to dis-
tinguish between codes applicable for each speaker
role and did not have to distinguish the roles of the
speakers as patient or therapist. We trained two dif-
ferent models – one that uses indicators for only un-
igrams in the utterance and the second that uses in-
dicators for unigrams, bigrams and trigrams in the
utterance.

3.3 Recursive Neural Network

Our second feature set uses recursive neural network
(RNN) models, which are variants of the ideas pre-
sented in (Socher, 2014). The models were initial-
ized with word vectors (i.e., numeric representations
of word tokens) that were pre-trained using word
vectors generated by the Glove model (Pennington
et al., 2014). The RNNs in this paper relied mostly
on the standard model for combining nodes of a re-
cursive tree. For example, for combining word vec-
tor 1 a1 (e.g., numeric representation of ”hate”) and
word vector 2 a2 (e.g., numeric representation of
“hangovers”), the two vectors are multiplied through
a weight matrix Wm that is shared across the tree in
order to combine the individual words (e.g., “hate”
and “hangovers”) into a new vector that combines
the meaning of both inputs, a1,2 (e.g., “hate hang-
overs”). This is performed through the function:

p1,2 = tanh

(
Wm

[
a1

a2

]
+ b

)
where a1,a2 and p1,2 are all Rdx1 where d is dimen-
sionality value for the word vectors that is chosen by
the researcher. Typically, several sizes of word vec-
tors are tried to discover the optimal length for dif-
ferent types of problems. Based on cross-validated
comparisons of different vector lengths, 50 dimen-
sional word vectors were found to have the best
overall performance and were used in the present
study. Importantly, the non-linearity of hypertangent
is used, which constrains the outputs to be between
-1 and +1.

The top level vector of the RNN, which represents
the whole linguistic utterance, was used as input into

a MEMM to combine individual utterances with in-
formation from the surrounding linguistic context.

Figure 2: RNN Model. Each level of the parse
tree is represented by a vector of 50 numeric values.
Higher-level phrases and subphrases are modeled by
multiplying the child node vectors through a weight
matrix Wm.

The learning utilized backpropagation through
structure (Goller and Kuchler, 1996). In other
words, errors made at the top of the tree structure
gave information that allowed the parameters lower
in the model to learn, improving prediction accu-
racy. Weight updates were performed using ada-
grad with the diagonal variant (see Technical Ap-
pendix)(Duchi et al., 2011). The advantage of this
weight update method is that it allows the model to
learn faster for more rare words and to learn more
slowly for frequently seen words.

3.4 Dependency RNN

Figure 3: Example Dependency Parse

The final feature vector we tested was based on
(Socher et al., 2014), with some important differ-
ences. In our model, we used the dependency tree
from the Stanford parser to create a collection of
edges, each with its label. For example, in figure
3 the dependency parse can be thought of as hav-
ing three node with two labeled edges. The edge
between “I” and “hate” has the label nsubj for nomi-
nal subject. In our dependency RNN we multiply the
word vectors for “I” (the child node) and “Hate” (the
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parent node) through a weight matrix that is specific
to the label nominal subject.

The model cycles through all of the edges in the
dependency tree, then sums the output vectors. Af-
ter summing, a hypertangent nonlinearity is applied
to get the final feature vector for the sentence. For-
mally, this can be written as follows:

ps = tanh

(∑
(p,c,`)∈D(s)

W`

[
ap

ac

]
+ b

)
ap is the parent word vector and ac is the child

word vector. In this case, W` is the weight matrix
specific to the dependency relationship for that spe-
cific label. The model sums over all parent p, child
c and label ` triads in the dependency parse of the
sentence (D(s)) and then adds an intercept vector b.
The weight matrix is initialized to the shared weight
matrix from the pre-trained standard RNN, but then
is allowed to learn through backpropagation. The fi-
nal model combines the output of the standard RNN
and the dependency RNN as adjacent vectors. Both
models share their word vectors and learn these vec-
tors jointly.

4 Evaluation

To evaluate the performance of the RNN and n-gram
models we compared precision (i.e., proportion of
model-derived codes that matched human raters), re-
call (i.e., proportion of human-rated codes that were
correctly identified by the model), and F1 scores
(i.e., the harmonic mean of precision and recall) for
each model. The current results are an early stage
in the process toward developing a final model. As
such, all models were evaluated using 5 fold cross
validation on the section of the dataset that is des-
ignated as training data (which is two thirds of the
total dataset). The cross validation subsets were di-
vided by session (so each session could only occur
in one or the other subsets). The testing section of
the data will be used at a later date when the model-
ing process is complete.

5 Results

5.1 Prediction Accuracy
When predicting change talk (see table 1), the mod-
els varied in their performance. Unigram-only and

Table 1: Cross Validation Results: Change Talk

Model Precision Recall F1
Uni-gram .24 .13 .17
Uni,Bi,Tri-Gram .28 .18 .21
Standard RNN .15 .03 .06
Dependency RNN .29 .18 .22
Human Agreement .73 .42 .61

Table 2: Cross Validation Results: Sustain Talk

Model Precision Recall F1
Uni-gram .26 .20 .22
Uni,Bi,Tri-Gram .33 .20 .24
Standard RNN .19 .23 .21
Dependency RNN .26 .19 .22
Human Agreement .66 .53 .59

unigram, bigram, and trigram models had F1 scores
of 0.17 and 0.21, respectively. The standard RNN
had a much lower F1 score of 0.06. The depen-
dency RNN outperformed both the n-gram models
and the standard RNN on F1 score (0.22). While the
dependency RNN performed best on F1 score and
precision, the Uni,Bi and tri-gram model tied for re-
call of change talk. These values were all relatively
low compared to the theoretical upper bound of pre-
dictive performance based on the estimated human
agreement, F1 = 0.61.

When predicting sustain talk (table 2), the uni-
gram model, unigram, bigram, and trigram model,
and the standard RNN all performed similarly in
terms of F1 scores (F1 = 0.21 to 0.24), with the Uni,
Bi and trigram model performing the best (.24). The
Standard RNN had the highest recall (.23), but had
the lowest precision (.19) As with change talk, all
models had relatively low F1 scores compared to the
F1 scores between human raters, F1 = 0.59.

5.2 Examples

Figure 4 shows two example sentences from the
test sample of the dataset, one which was predicted
correctly from the dependency RNN and one that
was predicted incorrectly. Below each sentence is
a chart with the predicted probability that it was
change talk, sustain talk or follow-neutral (i.e., nei-
ther change talk or sustain talk). In the first example,

75



the dependency RNN did well at identifying a sim-
ple change statement. Similarly simple utterances,
such as “I don’t want to drink anymore” or “I en-
joy drinking alcohol” were typically coded correctly
as change talk or sustain talk. But more compli-
cated utterances, like the second example in figure
4 were less likely to be coded correctly. (Note that
the second utterance depends more than the context
of previous statements in the conversation, which in-
volved the patient discussing reasons for smoking
marijuana.)

”Because I don’t really want to have to
smoke more” (Change Talk)

“I don’t have to lay there in bed for three
hours staring at the ceiling being like why
am I still awake” (Sustain Talk)

Figure 4: Example Codings

6 Conclusions

In general, predicting change and sustain talk is a
non-trivial task for machine learning. It involves a
subtle understanding of the context of a phrase and
involves more than just the words in a single sen-
tence. These early models are able to correctly iden-
tifying many statements as change talk or sustain
talk, particularly for sentences with simple struc-
tures such as “I want to stop drinking”. However,
these models appear have a harder time with sen-
tences that are longer and have greater complexity
and sentences that require more contextual informa-

tion based on previous statements. These initial re-
sults show that our dependency RNN has the ability
to outperform n-gram models on identifying client
change talk, but this performance gain did not apply
to sustain talk.

As shown in (Can et al., 2012) and (Atkins et al.,
2014), machine learning techniques are able to re-
liably identify important linguistic features in MI.
This study represents an initial attempt at predict-
ing the more difficult-to-identify patient behaviors,
which are central to much of the research on MI.
More work is needed to improve these models, and
it is likely that performance could be improved by
going beyond word counting models, for example,
by using the syntactic structure of sentences as well
as the context of surrounding utterances.

NLP applications have been successful in areas
in which human annotators can clearly label the
construct of interest (e.g., sentiment in movie re-
views(Socher et al., 2013b), classifying news arti-
cles(Rubin et al., 2012)). Psychotherapy generally
and ‘change talk’ within MI specifically are often
concerned with latent psychological states of human
experience. Verbalizations of reducing drug use are
hypothesized to be observed indicators of a patient’s
inclination to change their behavior and is mutually
dependent on both their own previous linguistic be-
havior as well as the therapist’s. This is a challeng-
ing, new arena for NLP application and develop-
ment, and one that will only be successful through
the tight collaboration of NLP researchers and do-
main experts.

6.1 Limitations

There were some important limitations to this ini-
tial study. First, we have not yet systematically ex-
plored all of the possible options for discrete word
models. For example, one could use the dependency
tree to create non-sequential n-grams that capture
longer range dependencies than traditional n-grams.
We acknowledge that part of the advantage given to
the RNN is the information the dependency tree pro-
vides and that it is possible for discrete word models
to use this type of information as well. Second, not
all of the possible combinations of word dimensions
and word models were tried. Because of limitations
in available compute capacity, only promising com-
binations were tested. Third, there was a moder-

76



ate degree of disagreement between human raters.
These human ratings were required for training each
method and were used as the criterion for classifying
correct or incorrect ratings, and error in these ratings
limits the performance of the models.
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7 Technical Appendix

7.1 General Details on Learning

The loss function for all outputs o was: E =
1
2

∑
o

(to − yo)2 . All of the weights were given ran-

dom initialization between -.001 and .001. The se-
lection of all hyper-parameters including ada-grad
learning rate, weight decay and word vector size
were chosen using 5 fold cross validation in the
training set of data. As mentioned in the paper, these
results will be tested on a third of the data reserved
for testing at a later stage in this process when we
have selected a final set of models. The optimal
learning rate for the RNN models was .1, and the
optimal weight decay was 1 × 10−7. It should be
noted that selection of hyperparameters had a major
impact on the success of the RNN models. Differ-
ent learning rates would often result in RNN models
that performed half as well as the optimal models.

All models were pre-trained on the general psych
corpus (The corpus is maintained and updated by the
Alexander Street Press (http://alexanderstreet.com/)
and made available via library subscription) using an
idea from (Bottou, 2014) called a corrupted frame
classifier. The idea is to try to get the model to
predict which parts of its parse tree are ’real’ sen-
tences and which ones are ’corrupted’, that is, one
word has been replaced with a random word. Early
testing found this unsupervised pre-training signifi-
cantly improves the performance of the final models.

7.2 Ada-Grad

The training for both the Recursive Neural Nets and
the Maximum Entropy Markov Models in this paper
utilize stochastic gradient descent, based on com-
mon conventions in the machine learning literature,
with one important exception. We used the adaptive
gradient descent algorithm to adjust our learning rate
(Duchi et al., 2011). We opted to use the diagonal
variant for simplicity and conservation of memory.
The Ada-grad variant to stochastic gradient descent,
basically adapts the change in the gradient so that
parameters that have many updates will update more
slowly over time. Whereas, the parameters that have
very few updates will make larger changes. It is ob-
vious that this is advantageous given the fact that in
RNN’s, the main weight parameters might update on

every case, whereas certain word vectors may only
have a couple of presentation of an entire corpus.
The classic weight update for stochastic gradient de-
scent is θt+1 = θt − αGt Where θ are the weights
that are being estimated and α is the learning rate.
Gt is the gradient at time t. For Ada-grad, we just
need to save a running total of the squared gradient,
elementwise (we call it γ here):

γt = γt−1 +G2
t

And then we add an adjustment to the update step
(again, elementwise). Divide the gradient by the
square root of the running total sum of squared gra-
dients:

θt+1 = θt − αt
Gt√
γt + β

Where β is a constant.

7.3 Notes on Code
Most of the code for this project was writ-
ten specifically for this problem, but some
additional libraries were used. All matrix op-
erations used the Universal Java Matrix Pack-
age: http://sourceforge.net/projects/ujmp/files/.
Some spell checking was required of some of
the data and the open source Suggester was used:
http://www.softcorporation.com/products/suggester/
. Version 3.2 of the Stanford parser was used to
create the parse trees for the RNN’s. (Klein and
Manning, 2003; Socher et al., 2013a)
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