
Proceedings of the 2nd Workshop on Argumentation Mining, pages 78–83,
Denver, Colorado, June 4, 2015. c©2015 Association for Computational Linguistics

Argument Discovery and Extraction with the Argument Workbench

Adam Wyner
Computing Science

University of Aberdeen
Aberdeen, United Kingdom

azwyner@abdn.ac.uk

Wim Peters
Computer Science

University of Sheffield
Sheffield, United Kingdom

w.peters@sheffield.ac.uk

David Price
DebateGraph

United Kingdom
david@debategraph.org

Abstract

The paper discusses the architecture and de-
velopment of an Argument Workbench, which
is a interactive, integrated, modular tool set to
extract, reconstruct, and visualise arguments.
We consider a corpora with dispersed infor-
mation across texts, making it essential to con-
ceptually search for argument elements, top-
ics, and terminology. The Argument Work-
bench is a processing cascade, developed in
collaboration with DebateGraph. The tool
supports an argument engineer to reconstruct
arguments from textual sources, using infor-
mation processed at one stage as input to a
subsequent stage of analysis, and then build-
ing an argument graph. We harvest and pre-
process comments; highlight argument indi-
cators, speech act and epistemic terminology;
model topics; and identify domain terminol-
ogy. We use conceptual semantic search over
the corpus to extract sentences relative to argu-
ment and domain terminology. The argument
engineer uses the extracts for the construction
of arguments in DebateGraph.

1 Introduction

Argumentative text is rich, multidimensional, and
fine-grained, consisting of (among others): a range
of (explicit and implicit) discourse relations between
statements in the corpus, including indicators for
conclusions and premises; speech acts and proposi-
tional attitudes; contrasting sentiment terminology;
and domain terminology. Moreover, linguistic ex-
pression is various, given alternative syntactic or

lexical forms for related semantic meaning. It is dif-
ficult for humans to reconstruct argument from text,
let alone for a computer. This is especially the case
where arguments are dispersed across unstructured
textual corpora. In our view, the most productive
scenario is one in which a human argument engineer
is maximally assisted in her work by computational
means in the form of automated text filtering and an-
notation. This enables the engineer to focus on text
that matters and further explore the argumentation
structure on the basis of the added metadata. The
Argument WorkBench (AWB) captures this process
of incremental refinement and extension of the argu-
ment structure, which the engineer then produces as
a structured object with a visual representation.

Given the abundance of textual source data avail-
able for argumentation analysis there is a real need
for automated filtering and interpretation. Cur-
rent social media platforms provide an unprece-
dented source of user-contributed content on most
any topic. Reader-contributed comments to a com-
ment forum, e.g. for a news article, are a source of
arguments for and against issues raised in the article,
where an argument is a claim with justifications and
exceptions. It is difficult to coherently understand
the overall, integrated meaning of the comments.

To reconstruct the arguments sensibly and
reusably, we build on a prototype Argument Work-
bench (AWB) (Wyner et al.(2012); Wyner(2015)),
which is a semi-automated, interactive, integrated,
modular tool set to extract, reconstruct, and visualise
arguments. The workbench is a processing cascade,
developed in collaboration with an industrial partner

78



DebateGraph and used by an Argumentation Engi-
neer, where information processed at one stage gives
greater structure for the subsequent stage. In partic-
ular, we: harvest and pre-process comments; high-
light argument indicators, speech act terminology,
epistemic terminology; model topics; and identify
domain terminology and relationships. We use con-
ceptual semantic search over the corpus to extract
sentences relative to argument and domain terminol-
ogy. The argument engineer analyses the output and
then inputs extracts into the DebateGraph visualisa-
tion tool. The novelty of the work presented in this
paper is the addition of terminology (domain top-
ics and key words, speech act, and epistemic) along
with the workflow analysis provided by our indus-
trial partner. For this paper, we worked with a corpus
of texts bearing on the Scottish Independence vote in
2014; however, the tool is neutral with respect to do-
main, since the domain terminology is derived using
automatic tools.

In this short paper, we briefly outline the AWB
workflow, sketch tool components, provide sample
query results, discuss related work in the area, and
close with a brief discussion.

2 The Argument WorkBench Workflow

The main user of the Argument WorkBench (AWB)
is Argumentation Engineer, an expert in argumen-
tation modeling who uses the Workbench to select
and interpret the text material. Although the AWB
automates some of the subtasks involved, the ulti-
mate modeler is the argumentation engineer. The
AWB distinguishes between the selection and mod-
eling tasks, where selection is computer-assisted and
semi-automatic, whereas the modeling is performed
manually in DebateGraph (see Figure 1).

The AWB encompasses a flexible methodology
that provides a workflow and an associated set of
modules that together form a flexible and extendable
methodology for the detection of argument in text.
Automated techniques provide textually grounded
information about conceptual nature of the domain
and the argument structure by means of the detec-
tion of argument indicators. This information, in the
form of textual metadata, enable the argumentation
engineer to filter out potentially interesting text for
eventual manual analysis, validation and evaluation.

Figure 1 shows the overall workflow. Document
collection is not taken into account. In the first
stage, text analysis such as topic, term and named
entity extraction provides a first thematic grouping
and semantic classification of relevant domain ele-
ments. This combination of topics, named entities
and terms automatically provides the first version
of a domain model, which assists the engineer in
the conceptual interpretation and subsequent explo-
ration. The texts filtered in this thematic way can
then be filtered further with respect to argument in-
dicators (discourse terminology, speech acts, epis-
temic terminology) as well as sentiment (positive
and negative terminology). At each stage, the Argu-
mentation Engineer is able to query the corpus with
respect to the metadata (which we also refer to as
the conceptual annotations). This complex filtering
of information from across a corpus helps the Argu-
mentation Engineer consolidate her understanding
of the argumentative role of information.

3 AWB Components

3.1 Text Analysis
To identify and extract the textual elements from the
source material, we use the GATE framework (Cun-
ningham et al.(2002)) for the production of semantic
metadata in the form of annotations.

GATE is a framework for language engineer-
ing applications, which supports efficient and ro-
bust text processing including functionality for
both manual and automatic annotation (Cunningham
et al.(2002)); it is highly scalable and has been ap-
plied in many large text processing projects; it is an
open source desktop application written in Java that
provides a user interface for professional linguists
and text engineers to bring together a wide variety of
natural language processing tools and apply them to
a set of documents. The tools are concatenated into
a pipeline of natural language processing modules.
The main modules we are using in our bottom-up
and incremental tool development (Wyner and Pe-
ters(2011)) perform the following functionalities:

• linguistic pre-processing. Texts are segmented
into tokens and sentences; words are assigned
Part-of-Speech (POS).

• gazetteer lookup. A gazetteer is a list of words

79



Figure 1: Overview of the Argument WorkBench Workflow

associated with a central concept. In the lookup
phase, text in the corpus is matched with terms
on the lists, then assigned an annotation.

• annotation assignment through rule-based
grammars, where rules take annotations and
regular expressions as input and produce
annotations as output.

Once a GATE pipeline has been applied, the ar-
gument engineer views the annotations in situ or
using GATE’s ANNIC (ANNotations In Context)
corpus indexing and querying tool (see section 4),
which enables semantic search for annotation pat-
terns across a distributed corpus.

3.2 Term and Topic Extraction
In the current version of the AWB, we used two
automatic approches to developing terminology, al-
lowing the tool to be domain independent and
rapidly developed. We used the TermRaider tool
in GATE to identify relevant terminology (Maynard
et al.(2008)). TermRaider automatically provides
domain-specific noun phrase term candidates from
a text corpus together with a statistically derived ter-
mhood score. Possible terms are filtered by means
of a multi-word-unit grammar that defines the pos-
sible sequences of part of speech tags constituting
noun phrases. It computes term frequency/inverted
document frequency (TF/IDF), which takes into ac-
count term frequency and the number of documents
in the collection, yielding a score that indicates the
salience of each term candidate for each document
in the corpus. All term candidates with a TF/IDF
score higher than an manually determined threshold
are then selected and presented as candidate relevant
terms, annotated as such in the corpus. In addition

to TermRaider, we have used a tool to model top-
ics, identifying clusters of terminology that are taken
to statistically “cohere” around a topic; for this, we
have used a tool based on Latent Dirichlet Alloca-
tion (Blei et al.(2008)). Each word in a topic is used
to annotate every sentence in the corpus that con-
tains that word. Thus, with term and topic annota-
tion, the Argumentation Engineer is able to query
the corpus for relevant, candidate passages.

3.3 DebateGraph
DebateGraph is a free, cloud-based platform that en-
ables communities of any size to build and share dy-
namic interactive visualizations of all the ideas, ar-
guments, evidence, options and actions that anyone
in the community believes relevant to the issues un-
der consideration, and to ensure that all perspectives
are represented transparently, fairly, and fully in a
meaningful, structured and iterative dialogue. It sup-
ports formal argumentation as well as structured dia-
logue, and has been used by, amongst others, CNN,
The Independent newspaper, the White House Of-
fice of Science and Technology Policy, the European
Commission, and the UK’s Prime Minister’s Office
as well as the Foreign and Commonwealth Office.

4 Viewing and Querying

The AWB enriches the manual, close reading ori-
ented method of argument map creation in Debate-
Graph with automated analysis, which filters rele-
vant text segments with respect to a certain topic of
interest, and provides initial argument structure in-
formation to the text by means of annotations.

Once the corpus is annotated, we can view the
annotations in the documents themselves. In Fig-
ure 2, we have a text that has been highlighted with

80



Figure 2: Highlighting Annotations in the Text

a selection of available annotation types (differen-
tiated by colour in the original): Topic4 (labels in-
dicative of Topic 4); SentenceTopic4 (Sentences in
which Topic4 labels occur); various discourse level
information types such as discourse/argument mark-
ers and speech acts. Other annotations are available,
e.g. sentiment and epistemic. The argumentation
engineer can now focus on the close reading of sen-
tences that represent relevant topics, contain the re-
quired terminology and argumentational aspects.

For corpus-level exploration and selection, search
patterns can be formulated and examined by means
of the ANNIC (Annotation in Context) querying and
visualization tool in GATE (Aswani et al.(2005)).
This tool can index documents not only by content,
but also by their annotations and features. It also
enables users to formulate versatile queries mixing
keywords and information available from any anno-
tation types (e.g. linguistic, conceptual). The re-
sult consists of the matching texts in the corpus, dis-
played within the context of linguistic annotations
(not just text, as is customary for KWIC systems).

The data is displayed in a GUI, facilitating explo-
ration and the discovery of new patterns.

Searching in the corpus for single annotations
returns all those strings that are annotated with
the search annotation along with their context and
source document. Figure 3 illustrates a more com-
plex query in the top pane by means of which an ar-
gumentation engineer wants to explore up to seven
token corpus contexts that contain particular term
candidates and argument indicators. The query finds
all sequences of annotated text where the first string
is annotated with ArgumentationIndicator, followed
by zero to five other Tokens, followed by a string
with a TermCandidate annotation. One of the search
results is visualised in the bottom pane by means of
query matches and left/right contexts. The coloured
bars form an annotation stack that shows the occur-
rence of selected annotations in the contexts. In this
case we see an emphasis argument indicator ”obvi-
ously” co-occurring with the term candidates ”Scot-
land”, ”independent Scotland” and ”choice”.

By inspecting the document more closely the ar-

81



gumentation engineer will be able to produce a
structured representation of the identified argument.
The ANNIC interface thus uses the annotations to
reduce the search space for human engineers, and fo-
cuses their attention on passages that are relevant for
sourcing arguments. The tool allows incremental re-
finement of searches, allowing for a interactive way
to examine the semantic content of the texts. Also,
the argumentation engineer can provide feedback in
the form of changing/adding annotations, which will
be used in GATE to improve the automated analysis.

5 Related Work
The paper presents developments of an imple-
mented, semi-automatic, interactive text analytic
tool that combines rule-based and statistically-
oriented approaches. The tool supports analysts
in identifying “hot zones” of relevant textual ma-
terial as well as fine-grained, relevant textual pas-
sages; these passages can be used to compose ar-
gument graphs in a tool such as DebateGraph. As
such, the tool evaluated with respect to user facili-
tation (i.e. analysts qualitative evaluation of using
the tool or not) rather than with respect to recall and
precision (Mitkof(2003)) in comparison to a gold
standard. The tool is an advance over graphically-
based argument extraction tools that rely on the an-
alysts’ unstructured, implicit, non-operationalised
knowledge of discourse indicators and content (van
Gelder(2007); Rowe and Reed(2008); Liddo and
Shum(2010); Bex et al.(2014)). There are a va-
riety of rule-based approaches to argument an-
notation: (Pallotta and Delmonte(2011)) classify
statements according to rhetorical roles using full
sentence parsing and semantic translation; (Saint-
Dizier(2012)) provides a rule-oriented approach to
process specific, highly structured argumentative
texts; (Moens et al.(2007)) manually annotates le-
gal texts then constructs a grammar that is tailored
to automatically annotated the passages. Such rule-
oriented approaches share some generic compo-
nents with our approach, e.g. discourse indicators,
negation indicators. However, they do not exploit
a terminological analysis, do not straightforwardly
provide for complex annotation querying, and are
stand-alone tools that are not integrated with other
NLP tools. Importantly, the rule-based approach
outlined here could be used to support the creation

of gold standard corpora on which statistical models
can be trained. Finally, we are not aware of statis-
tical models to extract the fine-grained information
that is required for extracting argument elements.

The tool is used to construct or reconstruct argu-
ments in complex, high volume, fragmentary, and
alinearly presented comments or statements. This
is in contrast to many approaches that, by and large,
follow the structure of arguments within a particu-
lar (large and complex) document, e.g. the BBC’s
Moral Maze (Bex et al.(2014)), manuals (Saint-
Dizier(2012)), and legal texts (Moens et al.(2007)).

The tool can be modularly developed, adding
further argumentation elements, domain mod-
els, disambiguating discourse indicators (Webber
et al.(2011)), auxilary linguistic indicators, and
other parts of speech that distinguish sentence com-
ponents. More elaborate query patterns could be ex-
ecuted to refine results. In general, the openness and
flexibility of the tool provide a platform for future,
detailed solutions to issues in argumentation.

6 Discussion
The tool offers a very flexible, useful and meaning-
ful way to query a corpus of text for relevant ar-
gument passages, leaving the argument engineer to
further analyse and use the results. Having devel-
oped in in conjunction with an industrial partner, the
next task is to evaluate it with user studies, inquiring
whether the tool facilitates or changes the capabil-
ity to develop arguments for graphs. As a result of
this feedback, the tool can be developed further, e.g.
adding a summarisation component, automating ex-
traction, augmenting the base terminology (speech
acts, propositional attitudes, etc), and creating dis-
course indicator patterns. The tool can also be used
to examine the role of the various components in
the overall argument pattern search, investigating the
use of, e.g. discourse indicators or speech acts in dif-
ferent discourse contexts.

Acknowledgments
The authors gratefully acknowledge funding from
the Semantic Media Network project Semantic Me-
dia: a new paradigm for navigable content for the
21st Century (EPSRC grant EP/J010375/1). Thanks
to Ebuka Ibeke and Georgios Klados for their con-
tributions to the project.

82



Figure 3: Searching for Patterns in the Corpus

References

Niraj Aswani, Valentin Tablan, Kalina Bontcheva, and
Hamish Cunningham. Indexing and Querying Lin-
guistic Metadata and Document Content. In Proceed-
ings RANLP 2005, Borovets, Bulgaria, 2005.

Floris Bex, Mark Snaith, John Lawrence, and Chris Reed.
Argublogging: An application for the argument web.
J. Web Sem., 25:9–15, 2014.

David Blei, Andrew Ng, and Michael Jordan. Latent
dirichlet allocation. Journal of Machine Learning Re-
search, 3(4-5):9931022, 2008.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, and Valentin Tablan. GATE: A framework
and graphical development environment for robust
NLP tools and applications. In Proceedings of ACL
2002, pages 168–175, 2002.

Anna De Liddo and Simon Buckingham Shum. Cohere:
A prototype for contested collective intelligence. In
ACM CSCW 2010 - Collective Intelligence In Organi-
zations, Savannah, Georgia, USA, February 2010.

Diana Maynard, Yaoyong Li, and Wim Peters. NLP tech-
niques for term extraction and ontology population.
In Proceedings of OLP 2008, pages 107–127, Ams-
terdam, The Netherlands, The Netherlands, 2008. IOS
Press.

Ruslan Mitkof, editor. The Oxford Handbook of Compu-
tational Linguistics. Oxford University Press, 2003.

Marie-Francine Moens, Erik Boiy, Raquel Mochales-
Palau, and Chris Reed. Automatic detection of argu-
ments in legal texts. In Proceedings ICAIL ’07, pages
225–230, New York, NY, USA, 2007. ACM Press.

Vincenzo Pallotta and Rodolfo Delmonte. Automatic
argumentative analysis for interaction mining. Argu-
ment and Computation, 2(2-3):77–106, 2011.

Glenn Rowe and Chris Reed. Argument diagramming:
The Araucaria Project. In Alexandra Okada, Si-
mon Buckingham Shum, and Tony Sherborne, editors,
Knowledge Cartography: Software Tools and Map-
ping Techniques, pages 163–181. Springer, 2008.

Patrick Saint-Dizier. Processing natural language argu-
ments with the <TextCoop> platform. Argument &
Computation, 3(1):49–82, 2012.

Tim van Gelder. The rationale for Rationale. Law, Prob-
ability and Risk, 6(1-4):23–42, 2007.

Bonnie Webber, Markus Egg, and Valia Kordoni. Dis-
course structure and language technology. Natural
Language Engineering, December 2011.

Adam Wyner. Mining fine-grained argument elements.
In Elena Cabrio, Serena Villata, and Adam Wyner,
editors, Proceedings of ArgNLP2014, volume 1341,
Bertinoro, Italy, July 2015. CEUR Workshop Proceed-
ings.

Adam Wyner and Wim Peters. On rule extraction from
regulations. In Katie Atkinson, editor, Proceedings of
JURIX 2011, pages 113–122. IOS Press, 2011.

Adam Wyner, Jodi Schneider, Katie Atkinson, and Trevor
Bench-Capon. Semi-automated argumentative anal-
ysis of online product reviews. In Proceedings of
COMMA 2012), pages 43–50. IOS Press, 2012.

83


