
Weblio Pre-reordering Statistical Machine Translation System

Zhongyuan Zhu
Weblio Inc.

chugen.shu@weblio.co.jp

Abstract

This paper describes details of the We-
blio Pre-reordering Statistical Machine
Translation (SMT) System, participated
in the English-Japanese translation task
of 1st Workshop on Asian Translation
(WAT2014). In this system, we applied the
pre-reordering method described in (Zhu
et al., 2014), and extended the model to
obtain N -best pre-reordering results. We
also utilized N -best parse trees simulta-
neously to explore the potential improve-
ment for pre-reordering system with forest
input.

1 Introduction

In this paper, we describe the details of We-
blio Pre-reordering Statistical Machine Transla-
tion (SMT) System, experiments and some issues
we faced. For this SMT system, we applied the
pre-reordering method proposed in (Zhu et al.,
2014). In particular, this method automatically
learns pre-reordering model from word alignments
and parse trees. Statistical language model is in-
tegrated in the pre-reordering model in order to
reorder each node layer in parse trees. In the
1st Workshop on Asian Translation (WAT2014)
(Nakazawa et al., 2014), we mainly applied this
method in English-Japanese translation subtask.
The parse tree we used is head-restructured CFG
parse tree for English, which is also proposed in
(Zhu et al., 2014). After the pre-reordering phase,
we trained a conventional Phrase-based model to
do the final translation.

To make some improvements, we enabled the
pre-reordering system to output N -best reordering
results. Also, we feed the whole translation pipe
line with N -best parse trees generated by Egret
parser. As a result, multiple translation hypothe-
ses can be collected for one input sentence. Fi-

nally, we select the best hypothesis according to a
balanced score.

In our experiments, the system utilizes N -best
pre-reordering results shows the ability to obtain
more accurate translation result. After incorporat-
ing N -best parse trees, improvements on the auto-
matic evaluation scores are also observed.

In section 2 and 3, we briefly describe the
method used for tree parsing and pre-reordering.
In the remaining sections, we give some details of
the experiments of our system.

2 Head-restructured CFG parse tree

In order to reorder SVO (subject-verb-object) or-
der into SOV (subject-object-verb) order, correctly
reordering long-distance words those play impor-
tant roles in a sentence is crucial. Thus, the re-
ordering model is required to capture the reorder-
ing patterns for those words. Obviously, using de-
pendency tree should be a quick solution for this
problem. As in a dependency tree, all closely re-
lated words of a specific head word come under-
neath that head word. All we need to do is to find
the best order for the branches under those related
words. In particular, if the head word is the root of
the whole sentence (usually a verb), then it’s rea-
sonable to think each dependent word leads to a
branch that contains a important part of the whole
sentence.

However, using dependency tree naively does
not work well in practice. First of all, not all com-
ponents in a sentence need to be reorder. In the
case of English-Japanese translation, noun phrases
are usually in the identical order of English. Sec-
ondly, some local grammar structures tend to keep
their unique order. For example, the combination
of an adjective word with a noun usually has the
same order in Japanese. But a noun follows the
preposition “of” in English will appear before it
in the order of Japanese. A model merely based
on dependency parse trees will be sparse and hard

33
Proceedings of the 1st Workshop on Asian Translation (WAT2014), pages 33‒38,

Tokyo, Japan, 4th October 2014.
2014 Copyright is held by the author(s).

to deal with unknown words correctly. POS (part-
of-speech) tags and also structural information are
still necessary.

The approach in (Zhu et al., 2014) addresses
this problem by injecting sentence-level depen-
dencies into CFG parse trees. Local grammat-
ical structures are still kept unchanged in the
parse tree. This new parse tree is called “Head-
restructured CFG parse tree” in the original paper.
In this paper, we use “HRCFG tree” in short to
represent it. An example of HRCFG tree is shown
in Figure 1.

S
NP VP

John hits
a ball

NP

S

NP
hits

John a ball
NP

nsubj dobj

Figure 1: An example of HRCFG tree converted
from CFG parse tree (A direct parent nodes of ter-
minal nodes are now include)

In Figure 1, A normal CFG parse tree is shown
in the left, and the corresponding HRCFG tree in
the right. In this example, tree components ex-
plicitly shows subject, object and verb parts in the
sentence. This structure with explicit annotations
makes the reordering model easier to capture long-
distance reordering patterns.

3 Reordering model integrated with
language model

The reordering model we used in our MT systems
follows the same fashion of the model in (Zhu et
al., 2014). A language model is integrated to iden-
tify the best order of a node layer according to the
order of target language. Although the using of
language model still involves spare problem and
fails to give the correct probability in some cases,
it makes the implementation fairly simple.

With a bilingual training data and automatically
learned word alignments given by GIZA++ (Och
and Ney, 2004), we find the best order for each
node layer in all parse trees, make them fit the or-
der of aligned parts in the target sentence. Specifi-
cally, for tree nodes n = (n1, n2, ..., nk), terminal
nodes beneath ni is defined as ti. Let wi repre-
sent a set of words in target side which are aligned
with any terminal node in ti. I this step, for each
node layer n, we redetermine the order of n ac-
cording to the average position of aligned words

wi for each node ni.
Then we exports a sequence of reordered non-

terminal tags. For some kinds of node, non-
terminal tags in the sequences are replaced by
head word. After we trained a language model on
them, the language model can be used to estimate
the likelihood that a tag sequence follows the order
of target language.

We show an example of this reordering process
in Figure 2.

S

NP
hits

John a ball
NP

nsubj dobj
S

NP
hits

John a ball
NP

nsubj dobj

Figure 2: An example of HRCFG tree reordering

To reorder the node layer underneath the “S”
node in Figure 2, we list all possible orders for the
tag sequence “nsubj hits dobj” (6 possibilities in
all). Then we use the language model we trained
on reordered tag sequences to estimate the prob-
ability for each possible order. Finally, it is ex-
pected that the sequence “nsubj dobj hits” gets the
highest language model score, as it is most closer
to the order in Japanese.

The reordering operation in this fashion is ap-
plied to all node layers in the HRCFG tree. We
export all terminal words in the reordered parse
trees as new training data in the source side. Like
Head-finalization (Isozaki et al., 2010), we also in-
corporate seed words in the results. So the final
reordering result of the sentence shown in Figure
1 will be “John va nsubjpass a ball va dobj hits”.

3.1 N -best reordering

In the reordering model we described above, the
best order for the whole sentence is actually com-
prised by all 1 -best orders of every node layers
in the parse tree. Although the language model
usually works perfectly to give the best reordering
result. In some cases, the best reordering result is
unclear until the translation phase.

We give an example here, for the sentence “The
rocket is launched by NASA”, two plausible re-
ordering results are shown in Table 1.

The first reordering result in Table 1 is preferred
by the reordering model as “nsubjpass auxpass
launched prep by” is usually reordered into “nsub-
jpass prep by launched auxpass”. Unfortunately,

34

Table 1: Two reordering results of the sentence
“The rocket is launched by NASA”

reordering result and corresponding
translation

1 The rocket va nsubjpass NASA by
launched is
ロケットは NASAによって発射された

2 NASA by The rocket va nsubjpass
launched is
NASAはロケットを発射した

in this case, the translation follows the second re-
ordering result is more natural in Japanese.

For the cases like what we show in Table 1,
it’s hard to find out a best order before transla-
tion. Considering N -best reordering results is nec-
essary in order to obtain the best translation result.
In our MT system, we implement this feature sim-
ply by collecting N -best reordering results for all
node layers, and finally rank the reordering results
by accumulated language model score.

4 Experiments

4.1 Experimental settings
For our baseline system, we use 1 -best parse
trees for training and test. Stanford tokenizer and
Berkeley parser (Petrov et al., 2006) are selected in
the pre-processing phase in order to produce CFG
parse trees. Then we obtain dependency parse
trees by applying Stanford rules (Klein and Man-
ning, 2002) to CFG parse trees. HRCFG trees are
built upon these two kinds of parse trees. For the
Japanese text, we use Kytea (Neubig, Nakata, and
Mori, 2011) to tokenize it.

Due to the limitation of computational resource,
we are only able to train our reordering model on
1.5M bilingual text (with relatively high scores in
ASPEC parallel corpus) for English-to-Japanese
translation task. We used this trained reordering
model to reorder all training data in the source
side.

We use conventional Phrase-based model im-
plemented in Moses toolkit to finish remaining
SMT pipe line. Distortion limit is set to 6 in all
our experiments.

For system translates forest inputs, we use Egret
parser to generate N -best packed forests. We un-
pack each forest and parse each individual tree to
HRCFG tree. For all candidate of parse trees, we

reorder them and merge same reordering results.
Then for all reordering results we obtained, we
translate them and record translation scores given
by Moses. Finally, a best translation result is se-
lected out by the sum of translation score and re-
ordering score.

4.2 Experiment results
We carried out several experiments combining the
use of N -best parse trees and N -best reordering
results. A list of automatic evaluation scores for
different system settings are listed in Table 2.

Table 2: Experiment results for different system
settings

System BLEU(%) RIBES
1 1 -best parse + 1 -best reorder 34.46 0.7817
2 N -best parse + 1 -best reorder 34.80 0.7851
3 1 -best parse + N -best reorder 34.90 0.7857
4 N -best parse + N -best reorder 35.10 0.7887

In particular, for systems marked with “N -best
parse”, 30 parse trees with highest parsing scores
are used. For systems marked with “N -best re-
order”, 10 reordering results with highest reorder-
ing scores are accepted for each parse tree. That
is, for System 4, a maximum of 300 reordering re-
sults are generated for one sentence.

In WAT2014, we submitted System 3 and Sys-
tem 4 to human evaluation. Note that in Table
2, our in-house automatic evaluation scores are
slightly different from that on the score board of
WAT2014 due to different automatic evaluation
pipe line we used. Official evaluation scores are
listed in Table 3. Where “BASELINE” refers
to Phrase-based SMT system (Koehn, Och, and
Marcu, 2003) as the official baseline for human
evaluation.

Table 3: Official evaluation scores in WAT2014
(kytea used for post-processing)

System BLEU(%) RIBES HUMAN
3 34.87 0.7869 +43.250
4 35.04 0.7900 +36.000

BASELINE 29.80 0.6919 +0.000

Our experiment results shown in Table 2 show
that incorporating N -best parse tree and reorder-
ing results gained improvements for both BLEU
and RIBES metrics.

35

In the official human evaluation, although Sys-
tem 4 achieved better results in automatic evalua-
tions. Human evaluation score of it degraded com-
pared to System 3, which only considers 1 -best
parse tree.

In Figure 3 and 4, we show the growth of BLEU
and RIBES when increasing candidate number
considered for N -best parse trees and reordering
results. Both BLEU and RIBES scores are tending
to converge after we increased the N -best parse
tree candidates to 30 for System 2. For System 3,
the automatic evaluation scores are still increasing
after 10 reordering results are considered.

Figure 3: Growth of BLEU with increasing N -
best candidates

Figure 4: Growth of RIBES with increasing N -
best candidates

4.3 Evaluation for pre-reordering
In this section, we evaluate the performance of
pre-reordering. Follows the method described in
(Isozaki et al., 2010), we estimate Kendall’s τ
from word alignments. A comparison of Kendall’s
τ distribution upon first 1.5M sentences of ASPEC
corpus is shown in Figure 5.

Figure 5: A comparison of Kendall’s τ distribution

Average Kendall’s τ of natural order and ad-
justed order is 0.30 and 0.71 respectively. Note
that in (Isozaki et al., 2010), the algorithm for
estimating Kendall’s τ does not take the words
with multiple alignments into account. Hence, the
graph of Kendall’s τ only gives a rough idea of
the performance of pre-reordering. In particular,
the algorithm skipped 20.30% aligned words for
corpus in natural order and 14.06% aligned words
for pre-reordered corpus. However, the distribu-
tion of Kendall’s τ in Figure 5 gives a intuitive
picture of the improvements of word order. Sen-
tences which are fully identical in word order in-
creased from 1.8% to 15% after pre-reordering (la-
beled with “=1.0” in Figure 5).

5 Error analysis

5.1 Issues of pre-reordering
Although our pre-reordering SMT system is able
to produce relatively better translation results
compared to baseline SMT systems. In many
cases, the translation results still suffer from the
defect of the reordering model. As the reorder-
ing model described in Section 3 is actually a lan-
guage model built on sequences mixed with non-
terminal tags and words. Involving words in the
model makes the reordering more flexible, but also
makes the model sparse. For some rare or un-
known words, the reordering model usually fails
to reorder sentences correctly.

In Table 4, we show 2 reordering samples. In
Sample 1, the sentence is correctly reordered. The
word “were” in English side should be placed in
the end of the reordered sentence, which is ex-
pected to be translated to “された” in Japanese.
In Sample 2, we replace the verb “confirmed” in
Sample 1 to “observed”, then the reordering model

36

Table 4: Samples of reordering result

Samples of reordering result
1 the changes were confirmed

→ the changes va nsubjpass
confirmed were

2 the changes were observed
→ the changes va nsubjpass
were observed

fails to place the word “were” into the rightmost
position.

The errors like what we show in Table 4 are
actually widespread in the reordering results for
the ASPEC test corpus. Although in the decod-
ing phase, the lexical distortion model of Phrase-
based SMT model can partially mitigate some lo-
cal errors, some critical errors still can be observed
from the final translations.

5.2 Issues for Context-aware Machine
Translation

In this section, we describe some efforts for utiliz-
ing context information during the translation.

We made an attempt to tackle the phrase se-
lection problem for English-Japanese translation.
In Japanese, many English words have multiple
translations. Especially Japanese words in the
form of Katakana usually also have corresponding
expressions comprised of Chinese characters. For
instance, the phrase “remote control” can be trans-
lated to both “ENKAKUSEIGYO”(遠隔制御) and
“RIMOKON”(リモコン). We show the distribu-
tion of these two translations across different do-
mains in Figure 6.

Figure 6: Translation distribution for “remote con-
trol” across several categories

From Figure 6, it’s reasonable to think the
phrase “RIMOKON” is more preferred in domain
J, P, Q and R. While in domain N, the two phrases
appear almost same times.

A simple solution is to make language model
more domain-specific. We carried out experiments
that simply interpolate general language model
and in-domain language model. The experiment
results for first three domains are shown in Figure
7.

Figure 7: LM perplexity on domain-specific test
data using interpolated language models

In Figure 7, we show the language model
perplexity achieved on domain-specific test data
using different settings. Different interpolation
weights for the in-domain language model are
tried. We can see the interpolated language
model generally achieves best perplexities when
the weight for in-domain language model is set to
0.5. Applying these interpolated language mod-
els for translation tasks in corresponding domains
should help improving the quality of translation.

6 Conclusion

In this paper, we described the reordering model
we applied in Weblio Pre-reordering SMT system,
and also some efforts to utilize N -best parse trees
and N -best reordering results. According to our
in-house experiment results, the automatic evalu-
ation scores are generally improved when multi-
ple candidates of parse tree and reordering result
are considered. However, in the human evalua-
tion, incorporating N -best parse trees did not gain
improvements.

As we demonstrated in Section 5.1, the reorder-
ing model is still unstable, and fails to work cor-
rectly even for some simple cases. Further im-
provement is required to enable the reordering

37

model to deal with general cases correctly. Then,
in Section 5.2, we show interpolating general and
in-domain language models can be a quick solu-
tion to improve translation quality when domain
information is given as context.

For future research, we still plan to explore the
performance limit of pre-reordering models. With
a complex reordering model considers multiple
factors of the language, it’s still plausible for this
approach to grow in performance. Also, as the pre-
reordering model used in this paper is independent
of specific language pair, more experiments can be
conducted on different language pairs.

References

Isozaki, Hideki et al. (2010). “Head finalization:
A simple reordering rule for sov languages”.
In: Proceedings of the Joint Fifth Workshop on
Statistical Machine Translation and Metrics-
MATR. Association for Computational Linguis-
tics, pp. 244–251.

Klein, Dan and Christopher D Manning (2002).
“Fast exact inference with a factored model for
natural language parsing”. In: Advances in neu-
ral information processing systems, pp. 3–10.

Koehn, Philipp, Franz Josef Och, and Daniel
Marcu (2003). “Statistical phrase-based trans-
lation”. In: Proceedings of the 2003 Conference
of the North American Chapter of the Asso-
ciation for Computational Linguistics on Hu-
man Language Technology-Volume 1. Associa-
tion for Computational Linguistics, pp. 48–54.

Nakazawa, Toshiaki et al. (2014). “Overview of
the 1st Workshop on Asian Translation”. In:
Proceedings of the 1st Workshop on Asian
Translation (WAT2014).

Neubig, Graham, Yosuke Nakata, and Shinsuke
Mori (2011). “Pointwise prediction for robust,
adaptable Japanese morphological analysis”. In:
Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics:
Human Language Technologies: short papers-
Volume 2. Association for Computational Lin-
guistics, pp. 529–533.

Och, Franz Josef and Hermann Ney (2004). “The
alignment template approach to statistical ma-
chine translation”. In: Computational linguis-
tics 30.4, pp. 417–449.

Petrov, Slav et al. (2006). “Learning Accurate,
Compact, and Interpretable Tree Annotation”.
In: Proceedings of the 21st International Con-

ference on Computational Linguistics and the
44th Annual Meeting of the Association for
Computational Linguistics. ACL-44. Sydney,
Australia: Association for Computational Lin-
guistics, pp. 433–440.

Zhu, Zhongyuan et al. (2014). “A preordering
method using head-restructured CFG parse tree
for SMT”. In: Proceedings of the 20th Annual
Meeting of the Association for Natural Lan-
guage Processing, pp. 594–597.

38

