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Abstract 

 

This article presents a new sequence 

labeling model named Context 

OVerlapping (COV) model, which 

expands observation from single word 

to n-gram unit and there is an 

overlapping part between the 

neighboring units. Due to the 

co-occurrence constraint and transition 

constraint, COV model reduces the 

search space and improves tagging 

accuracy. The 2-gram COV is applied 

to Chinese PoS tagging and the 

precision rate of the open test is as high 

as 96.83%, which is higher than the 

second order HMM, which is 95.73%. 

The result is also comparable to the 

discriminative models but COV takes 

much less training time than them. 

With symbol decoding COV prunes 

many nodes before statistics decoding 

and the search space of COV is 

about10-20% less than that of HMM.  

1 Introduction 

Part of Speech (PoS) can provide much useful 

information for most natural language 

processing tasks such as word sense 

disambiguation, chunk detection, sentence 

parsing, speech synthesis, machine translation 

and so on. Therefore lots of efforts have been 

made to build effective and robust models for 

automatic PoS tagging. According to Doug 

Cutting (1992), a practical PoS tagger should be 

“robust, efficient, accurate, tunable and 

reusable”. With regard to efficiency the basic 

requirement for a PoS tagger is that training and 

test time should not be too long. And for a 

robust tagger the tagging accuracy should be as 

high as possible and can well deal with the 

sparseness data. 

Most of the approaches to PoS tagging can be 

divided into two main classes, rule-based and 

statistics-based approach. In rule-based 

approaches, words are assigned tags based on a 

set of rules and a lexicon. These rules can either 

be manually crafted, or learned, as in the 

transformation-based error-driven approach of 

Brill (1995). 

In the statistics-based approaches HMM is the 

representative of generative models and is 

widely used in PoS tagging (Church, 1988; 

Cutting et al. 1992; Thede & Harper 1999, 

Huang et al. 2007, etc.) . 

Maximum Entropy model and Conditional 

Random Fields (CRFs) model are the 

representatives of discriminative models and 

are also applied in PoS tagging. Thanks to the 

flexibility of features selection these 

discriminative models achieve higher precision 

rates than the generative models in PoS tagging 

(Adwait, 1996; Lafferty, 2001 etc.). But the 

training of discriminative models is 
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time-consuming and requires high-quality 

computer processing power, which affects their 

applications in the real tasks.  

Concerning all the characteristics of generative 

and discriminative models, we proposed a new 

model on the basis of HMM. The new model 

expand the observation from one single word to 

n-gram unit and between the neighboring units 

there is an n-1 gram part, which is shared by the 

neighboring units. So the new model is called 

Context OVerlapping (COV) model.  

COV is a general sequence labeling model and 

has been applied to Chinese and English PoS 

tagging tasks. In these tasks COV achieves 

better performance than HMM and its 

performance is comparable to the discriminative 

models. Meanwhile its training time is much 

less than the discriminative models, which 

makes the model more efficient and robust in 

the real tasks.  

The structure of the article is that: the first part 

will briefly introduce PoS tagging, in the second 

part we will introduce COV model. The third 

part will compare COV with HMM. The fourth 

part will address how to estimate parameters 

and handle sparseness data. The fifth part is 

about the algorithm of symbol decoding. The 

sixth part is about evaluation criteria and the 

seventh part presents the experiments and 

results. The final part is some discussions and 

future work to do. 

2 COV Model 

COV model is based on HMM. HMM is a form 

of generative model, that defines a joint 

probability distribution p(X,Y) where X and Y 

are random variables respectively ranging over 

observation sequences and their corresponding 

state sequences. In order to define a joint 

distribution, generative models must enumerate 

all possible observation sequences. For most 

domains, it is intractable unless observation 

elements are represented as isolated units, 

independent from the other elements in an 

observation sequence. More precisely, the 

observation element at any given time may only 

directly depend on the state at that time. This is 

an appropriate assumption for a few simple data 

sets, however most real-world observation 

sequences such as sentences are best 

represented in terms of multiple interacting 

features and even long-range dependencies 

between observation elements. Due to the 

observation independence assumption the 

performance of HMM is limited in PoS tagging.  

For example, here are 2 Chinese sentences: 

(1) 市长 /n 强调/v 深入/v a 细致/a 的/u 

工作/vn  作风/n 

(The mayor put emphasis on the careful 

working style.) 

(2) 市长/n 要/v 深入/v a 困难/a 的/u 群众/n 

中间/f  

(The mayor should care about those people in 

troubles.) 

For the convenience of analysis we assume that 

in each sentence only “深入”(careful or care) 

has two parts of speech, adjective (a) or verb (v), 

and other words only have one PoS. If we use 

the first-order HMM model to predict the PoS of 

“深入” the prediction will be like: 

n)|p(

vn)|a)p(|a)p(|X)p(|p(

v)|n)p(|vn)p(|u)p(n|a)p(vn|p(u

X)|v)p(a|n)p(X|p(n)p(vmaxarg
},{

1

作风

工作的细致深入

强调市长

vaX

Q 


1Q


denotes the state sequence of sentence (1) 

and X denotes the possible state of “深入”. For 

only “深入” is ambiguous and other words all 

have only one PoS, the formula can be 

simplified as: 

1Q


X)|X)p(|v)p(a|p(Xmaxarg
},{

深入
vaX

  
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And as same as sentence (1) we can get the 

prediction formula of sentence (2) as: 

2Q


X)|X)p(|v)p(a|p(Xmaxarg
},{

深入
vaX

  

Comparing the two formulae, we find that 1Q


 

and 2Q


are the same, which means that HMM 

tagger will not distinguish between the different 

PoSs of “深入” in the two sentences. In fact 

“深入” in sentence (1) is an adjective and in 

sentence (2) is a verb. So HMM must make one 

mistake either in sentence (1) or sentence (2). 

The mistake shows the limitation of HMM in 

PoS tagging. 

In order to overcome the shortcomings of 

observation independence assumption of HMM 

and combine more context information into the 

model, COV model is proposed in this paper. 

The formalism of 2-gram COV is as follows 

and the formalisms of other n-gram COV (n>2) 

models can be gotten according to the 2-gram 

model. 

In the 2-gram COV there is a basic state set 

},...,{ 21 sqqqQ  . The observation sequence is 

S= hww ...1 . The corresponding state of a 

2-gram observation unit ii ww 1 （2≤i≤h）is a 

state set }{ 1

j

i

j

ii qqe  , in which 
j

iq 1 is one 

of the basic states of 1iw  and 
j

iq is one of the 

basic states of iw . The state sequence 
j

i

j

i qq 1  

is called one state unit of the observation unit 

ii ww 1 . It is notable that ie is the state set 

when the word 1iw  and iw co-occur, which 

is called Co-occurrence Constraint(CC). When 

1iw  and iw co-occur the amount of possible 

states of ii ww 1  will not be more than the 

amount of the combination of states 

of 1iw and iw . 

The search for the state sequence with the 

highest joint probability can be computed like: 

Q


= S)|P(Qmaxarg = 

Q)|P(Q)P(Smaxarg ≈ 

))|()|(

)|()|()((maxarg

2

1111

3

121121

,1















h

i

iiii

h

i

iiii
qq

qqoopqop

qqqqpqqpqp
ii  

Q denotes the state sequence and S denotes the 

observation sequence. Q


denotes the final state 

sequence, whose joint probability is the 

highest.  

For the convenience of computation, we insert 

2 “*B*”, whose state is “B” at the beginning of 

the sequence and insert 2 “*E* ”, whose state is 

“E” at the end of the sequence. And then the 

above formula will be: 

))|(

)|((maxargˆ

2

1

11

2

1

121

,1





















h

i

iiii

h

i

iiii
qq

qqoop

qqqqpQ
ii

In this model there is an overlapping part 

between the neighboring observation units 

12  ii ww  and ii ww 1 . For 1iw  is shared by 

the neighboring units, the corresponding states 

units of 12  ii ww  and ii ww 1  should also 

share the same overlapping state. If 
k

i

k

i qq 12  is 

one state of 12  ii ww and 
j

i

j

i qq 1  is one state 

of ii ww 1 , then only if 
k

iq 1  is the same as 

j

iq 1  then it is possible to transmit from state 

k

i

k

i qq 12   to 
j

i

j

i qq 1 , otherwise there is no 

transition path from 
k

i

k

i qq 12   to 
j

i

j

i qq 1 . The 

constraint 
k

iq 1 =
j

iq 1  is called Transition 

Constraint (TC). 

Q


 is a sequence consisting of h+1 2-gram 

state units like: 

EqqqqqqqqB hhh
ˆ,ˆˆ,...,ˆˆ,ˆˆ,ˆ

132211 

（ Qqi ˆ ） 

It is obvious that the final state sequence can be 

gotten from the above sequence. 
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3 Comparisons between COV and 

HMM  

There are 3 different points between COV  

and HMM. 

First, in the nth HMM if each observation has k 

states and then the amount of the history states 

will be k
n
. But in the n-gram COV the amount 

of the history states will usually be smaller than 

k
n 

 because of the Constraint of Co-occurrence. 

And then the search space of COV will also be 

smaller than HMM. 

Second, in the nth order HMM the emission 

probability of tq  to to  is only P( to | tq ). But 

in the n-gram COV, there are n emission 

probabilities relevant to tq  and to , which are 

P( tnt oo ...1 | tnt qq ...1 ) ， … ，

P( 1... ntt oo | 1... ntt qq ） . For all of these 

emission probabilities are related to tq and to , 

these observation units will make constraints 

on the possible state units. 

Third, in the nth order HMM the transition 

probability from the history state to the current 

state is P( 1,...|  inii qqq ). But in the n-gram 

COV the transition path must obey TC, which 

requires the overlapping part of the 

neighboring state units must be the same. If the 

neighboring state units obey TC the transition 

probability is the same as that in nth order 

HMM. If the neighboring state units don’t obey 

TC there will be no transition path between 

them. With TC a great amount of paths are 

pruned, which makes the search space reduced. 

Here is an example to illustrate the lattice 

building and tagging process by 2-gram COV. 

In particular, this example needn’t any 

probability computation and can get the final 

state sequence just with symbol comparing. 

 

1 2 3 4 5 

*B*-*B* 
*B*-领

导 

领导-

强调 

强调-

深入 

深入-细

致 

B-B B-n n-v v-a a-a 

 B-vn  v-ad ad-ad 

 B-v    

 

6 7 8 9 10 

细致-的 的-工作 工作-作风 
作风- 

*E* 

*E*- 

*E* 

a-u u-v vn-n n-E E-E 

 u-n    

 u-vn    

Table 1: An example to illustrate COV tagging 

process (For the space limitation the table is 

split to two) 

 

In the above table each column is a 2-gram 

observation unit and the neighboring units 

share an overlapping part. For example, unit 2 

is “*B*-领导”（*B*-leader） and unit 3 is “领

导 -强调 ” （ leader-emphasizes） , “领导 ”

（leader） is the overlapping part between unit 

2 and unit 3. Unit 2 has 3 possible state units, 

which are “B-n, B-vn, B-v”, and unit 3 has 

only one possible state unit, which is “n-v”. 

With Transition Constraint only if the 

overlapping part of state unit 2 and state unit 3 

is the same there can be a transition path. So in 

the state units of unit 2 only “B-n” is remained 

and the state units “B-vn” and “B-v” are all 

eliminated for their overlapping parts (vn and v) 

are not the same as the overlapping part of state 

unit 3 (n). The shadowed grids in the table are 

all the impossible states and are eliminated. In 

this example after the symbol comparing and 

elimination there remains only one path for the 

sentence and the path is the final tagging result. 

So this sentence is tagged without any 

probability computation but only with the 

symbol comparing. The process of symbol 

comparing and elimination is called symbol 

decoding. 

Most times there may be more than one 

possible paths remained after symbol decoding 

and then the Viterbi algorithm will be applied 

to get the best tagging sequence. Although 

HMM also applies Viterbi for decoding, the 

search space of HMM is bigger than that of 

COV because COV has eliminated many 

impossible states in the step of symbol 

decoding. 

4 Parameters estimation and strategy 

of handling sparseness data 

There are 2 main parameters to be estimated in 

COV: 

(1) tP :State transition probability; 

(2) eP :State emission probability.  
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We apply the maximum likelihood to estimate 

these parameters from the tagged corpus. The 

details of the estimation will not be introduced 

here. 

For the expansion of the observation the 

sparseness problem in n-gram COV is more 

serious than that in HMM. COV applies 

back-off strategy to deal with the sparseness 

data. The main idea is that if n-gram (n>2) 

ini ww ...1  is not in the n-gram vocabulary, 

which is gotten from the training corpus, it will 

be replaced by n-1 gram ini ww ...2 . And if 

ii ww 1  is not in the 2-gram vocabulary then 

the state units of ii ww 1  will be replaced by 

the combination of states of 1iw  and iw . If 

iw  is not in the unigram vocabulary it will be 

handled as same as in HMM.  

5 Tagging Procedures and Decoding 

Algorithm 

The main procedures of COV tagging is 

described in the following flow diagram. 

 
Figure 1: Flow diagram of PoS tagging by COV 

There are two steps of decoding in PoS tagging 

by COV:  

(1) Symbol decoding 

(2) Statistics decoding 

Statistics decoding applies Viterbi algorithm, 

which is explained in detail by Rabiner (1989) 

and will not be repeated here. 

Here we will describe the symbol decoding 

algorithm in detail. First we define the suffix 

and prefix of a state sequence: 

Suffix of ini qq ...1  is defined as ini qq ...2  

Prefix of ini qq ...1  is defined as 11...  ini qq  

The symbol decoding algorithm is as follows: 

Input: word sequence S= hww ...0  and all the 

possible state units of each n-gram unit 

(1) Comparing the neighboring n-gram state 

units from left to right. 

For any given neighboring observation units 

1is = 1...  ini ww  and is = ini ww ...1 , they 

have the corresponding state unit sets 1ie  

and ie . And each state unit in the set is called 

state node. 

For each node Ei-1 in the state set of 1ie , a 

comparison is made between the suffix of Ei-1 

and the prefix of the node Ei  in ie . If they are 

the same then a parent-child relation is built 

between the neighboring nodes Ei-1 and Ei . 

If node Ei in ie  has no parent node in 1ie  

then Ei will be eliminated and if node Ei-1 in 

1ie has no child node in ie , Ei-1 will also be 

eliminated. 

(2) Backward from right to left 

A. If a node Ei-1 is eliminated in step (1) for 

it doesn’t have any child node in ie , then the 

relation between Ei-1  and its parent node Ei-2  

will also be eliminated. 

B. If the parent-child relation between Ei-2 

and Ei-1 is eliminated in step A and Ei-2  

doesn’t have any child node then Ei-2  will also 

be eliminated. 

Backward to the left end of the sequence and 

the process of symbol decoding finishes. 

Table 2 Symbol Decoding Algorithm 

 

After symbol decoding the remaining nodes 

construct a node lattice. If there is only one 

path from left to right in the lattice then 

 

No 

Yes 

Tagging Result 

Text 

One Path 

Symbol Decoding 

Statistics Decoding 

Preprocessing 
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decoding finishes and the state sequence is output. 

Otherwise Viterbi algorithm is used to calculate 

and select the most probable path. 

6 Evaluation Criteria 

We use the following criteria to evaluate the 

performances of COV. 

(1) PA: Overall precision rate 

(2) PM: Precision rate of the multi-class words, 

(3)PO: Precision rate of OOV (Out Of 

Vocabulary), not including the personal names, 

location names and organization names, etc. 

(4) PE: Error reduction rate, comparing with the 

baseline model. 

All the above criteria have been introduced in 

Kupiec (1992) and Cutting (1992) etc and will 

not be repeated here. 

(5) PS : State certainty rate 

In order to measure the statistics decoding 

complexity, we define State certainty rate PS.  

)(

)__(

nsObservatiocount

NodesStateTotalcount
PS   

Count(Total_State_Nodes) denotes the total 

number of possible states for all the 

observations in statistics decoding. Due to the 

symbol decoding many states have been pruned 

in COV and the search space for statistics 

decoding is reduced accordingly. The level of 

search space reduction can be indicated by the 

criteria of Ps. 

7 Experiments 

7.1 Corpus and Preprocessing 

The training and test data are all taken from the 

People’s Daily of 2000 year, which has been 

segmented and manually assigned PoS tags by 

the Peking university. The division of corpus is 

as follows: 

Group 
Usage of  

corpus 
Months 

Amount of 

tokens  

1 
Training 

Feb. 1050934 

2 Feb.-June. 6142402 

3 Open Test Jan. 1235628 

4 Close Test Feb. 1050934 

Table 3 Division of corpus 

The baseline model is the 2nd order HMM, 

whose results will be compared with that of 

2-gram COV. 

Before training and tagging the corpus is 

preprocessed. All the named entities such as 

personal names, location names, organization 

names and all the digits are replaced by some 

particular symbols. For example, personal 

names are all replaced by “*PerN*”.  

7.2 Results 

 

 PA PM 

2nd order HMM 96.54% 92.76% 

2-gram COV 98.29% 96.44% 

PE 50.58% 50.83% 

Table 4: Results of the close test.  

Corpus of group 2 in table 3 is used as the 

training corpus.  

 Group 1 Group 2 

2nd order HMM 94.63% 95.73% 

2-gram COV 95.53% 96.79% 

3-gram COV 95.63% 96.83% 

Table 5: PA of HMM, 2-gram and 3-gram COV 

in open test.  

The corpus of Group 1 and 2 are used as 

training corpus. 

The above results show that 2-gram and 

3-gram COV all outperform second order 

HMM. And 3-gram COV outperforms 2-gram 

COV, which indicates that with the expansion 

of observation the precision rate of COV will 

not decline but increase. 

 Group 1 Group 2 

2nd order HMM 90.75% 92.02% 

2-gram COV 92.66% 94.24% 

PE 20.64% 27.85% 

Table 6: PM of HMM and COV in open test. 

The result shows that COV has a better 

performance in tagging multi-class words than 
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HMM. 

 Group 1 Group 2 

HMM 53.21% 55.07% 

COV(2-gram) 92.24% 93.99% 

COV (unigram) 53.27% 55.35% 

Table 7: PO of HMM and COV 

With regard to the 2-gram OOV, the OOV 

precision rate of COV is higher than 90%, 

which indicates that COV can well deal with 

the OOV problem when the observation unit is 

expanded.  

We have done some experiments to compare 

the time cost and precision rate among HMM, 

COV and discriminative models such as 

MaxEnt and CRFs. For the limitation of 

computer processing power, we choose the 

People’s Daily of January, 2000 as the training 

data and the first 5000 paragraphs of the 

People’s Daily of February , 2000 as test data. 

The taggers are the MaxEnt tagger developed 

by Standford University and CRF++. 

 HMM COV 
MaxEn

t 
CRF 1 CRF 2 

Trainin

g 

time 

1mins 2mins 4.6hrs 63hrs 60 hrs 

Test 

time 
4mins 8mins 11mins 17mins 11mins 

PA 
94.23

% 

95.43

% 
95.69% 

95.67

% 

95.80

% 

Table 8: Training, test time and PA of different 

models 

The template of MaxEnt is: w-1, w0, w+1, 

prefix of w0, suffix of w0, length of w0 

The template of CRF1 is: w-1, w0, w+1, prefix 

of w0 

The template of CRF2 is: w-1, w0, w+1, prefix 

of w0, suffix of w0, length of w0 

The above data show that the precision rate of 

COV is higher than HMM, and comparable to 

the discriminative models. Moreover, training 

time of COV is much less than the 

discriminative models and almost at the same 

level as HMM. High precision rate and low 

time cost makes COV more competitive and 

practical than other models. 

Training 

Group 
HMM COV 

Reduction 

of Ps 

Reduction 

rate of Ps 

1 1.79 1.66 0.14 7.82% 

2 2.03 1.57 0.46 22.66% 

Table 9: Ps of 2nd order HMM and 2-gram 

COV  

The above result shows that the search space in 

statistics decoding of COV is smaller than 

HMM.  

We also count the tokens which can be tagged 

with symbol decoding. 

Training 

Group 

Tokens of 

Symbol 

Decoding 

Percentage 

of Symbol 

Decoding 

PA 

1 86187 6.98% 99.24% 

2 92174 7.46% 99.42% 

Table 10: Results of symbol decoding 

The total tokens of test corpus is 1235631. 

The above data shows that there are about 7% 

tokens which can be tagged with symbol 

decoding and without any probability 

computation. Moreover, the precision rate of 

symbol decoding is above 99%, which is much 

higher than the average precision rate.  

The smaller search space and higher precision 

rate proves the efficiency and robustness of 

COV in PoS tagging. 

We also conducted some experiments of 

English PoS tagging. The training and test data 

are from the Wall Street Journal (WSJ) in Penn 

Tree Bank. We use the texts of group 00 to 19 

in WSJ as training data and group 00 to 04 as 

close test data and group 23 to 24 as open test 

data. The baseline model is also the 2nd order 

HMM. Results are as follows. 

 PA of PA of PM of PM of 
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HMM COV HMM COV 

Close 

Test 
97.85% 98.29% 94.85% 96.44% 

Open 

Test 
96.48% 96.79% 93.92% 95.18% 

Table 11 Results of English PoS tagging 

Experiments 

The above results show that COV also 

outperforms HMM in English PoS tagging.  

8 Discussion 

COV is not only suitable to PoS tagging task. 

We have applied it to the Chinese word 

segmentation, sentence boundary detection and 

chunk detection, in which COV also achieves 

satisfactory results. COV is not limited to the 

certain language but can be applied in the 

tagging tasks of different languages. 

Comparing with HMM, COV has the 

advantages of smaller search space and higher 

tagging precision rate. Comparing with the 

discriminative models, COV has the 

advantages of less training time and 

comparable precision rate. All of these prove 

that COV is a general, efficient and robust 

model for sequence labeling.  

Meanwhile we also find that it is difficult for 

COV to combine more context and lexical 

features as discriminative models can do. For 

example, COV has not taken the suffix or 

prefix of a word into the model. In fact such 

information is important for guessing the PoS 

of unknown words. In the future we will make 

efforts to take more context and lexical 

information into the model and improve its 

performance. 
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