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§Institute for Natural Language Processing University of Stuttgart, Germany
�Institute of Computer Science, University of Wrocław, Poland
†Department of Informatics University of Szeged, Hungary

‡Center for Information and Language Processing University of Munich, Germany

{anders,ozlem,muellets,seeker}@ims.uni-stuttgart.de
agnieszka.falenska@cs.uni.wroc.pl
{rfarkas,szantozs}@inf.u-szeged.hu

Abstract

We summarize our approach taken in the SPMRL 2014 Shared Task on parsing morphologically
rich languages. Our approach builds upon our contribution from last year, with a number of
modifications and extensions. Though this paper summarizes our contribution, a more detailed
description and evaluation will be presented in the accompanying volume containing notes from
the SPMRL 2014 Shared Task.

1 Introduction

This paper summarizes the approach of IMS-Wrocław-Szeged-CIS taken for the SPMRL 2014 Shared
Task on parsing morphologically rich languages (Seddah et al., 2014). Since this paper is a rough sum-
mary that is written before submission of test runs we refer the reader to the full description paper which
will be published after the shared task (Björkelund et al., 2014).1

The SPMRL 2014 Shared Task is a direct extension of the SPMRL 2013 Shared Task (Seddah et al.,
2013) which targeted parsing morphologically rich languages. The task involves parsing both depen-
dency and phrase-structure representations of 9 languages: Arabic, Basque, French, German, Hebrew,
Hungarian, Korean, Polish, and Swedish. The only difference between the two tasks is that large amounts
of unlabeled data are additionally available to participants for the 2014 task.

Our contribution builds upon our system from last year (Björkelund et al., 2013), with additional
features and components that try to exploit the unlabeled data. Given the limited window of time to
participate in this year’s shared task, we only contribute to the setting with predicted preprocessing,
using the largest available training data set for each language.2 We also do not participate in the Arabic
track since the shared task organizers did not provide any unlabeled data at a reasonable time.

2 Review of Last Year’s System

Our current system is based on the system we participated with in the SPMRL 2013 Shared Task. We
summarize the architecture of this system as three different components.

∗Authors in alphabetical order
1Due to logistical constraints this paper had to be written before the deadlines for the actual shared task and do thus not contain
a full description of the system, nor the experimental evaluation of the same.

2In other words, no gold preprocessing or smaller training sets.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/
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2.1 Preprocessing

As the initial step of preprocessing we converted the Shared Task data from the CoNLL06 format to
CoNLL09, which required a decision on using coarse or fine grained POS tags. After a set of preliminary
experiments we picked fine POS tags where possible, except Basque and Korean.

We used MarMoT3 (Müller et al., 2013) to predict POS tags and morphological features jointly. We in-
tegrated the output from external morphological analyzers as features to MarMoT. We also experimented
with the integration of predicted tags provided by the organizers and observed that these stacked models
help improve Basque, Polish, and Swedish preprocessing. The stacked models provided additional infor-
mation to our tagger since the provided predictions were coming from models trained on larger training
sets than the shared task training sets.

2.2 Dependency Parsing

The dependency parsing architecture of our SPMRL 2013 Shared Task contribution is summarized in
Figure 1. The first step combines the n-best trees of two parsers, namely the mate parser4 (Bohnet, 2010)
and a variant of the EasyFirst parser (Goldberg and Elhadad, 2010), which we call best-first parser. We
merged the 50-best analyses from these parsers into one n-best list of 50 to 100 trees. We then added
parsing scores to the n-best trees from the two parsers, and additionally from the turboparser5 (Martins
et al., 2010).

mate parser
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of 50-100 best
trees/sentence
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all parsers
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scores
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Figure 1: Architecture of the dependency ranking system from (Björkelund et al., 2013).

The scored trees are fed into the ranking system. The ranker utilizes the parsing scores and fea-
tures coming from both constituency and dependency parses. We specified a default feature set and
experimented with additional features for each language for optimal results. We achieved over 1% LAS
improvement on all languages except a 0.3% improvement on Hungarian.

2.3 Constituency Parsing

The constituency parsing architecture advances in three steps. For all setups we removed the morphologi-
cal annotation of POS tags and the function labels of non-terminals and apply the Berkeley Parser (Petrov
et al., 2006) as our baseline. As the first setup, we replaced words with a frequency < 20 with their pre-
dicted part-of-speech and morphology tags and improved the PARSEVAL scores across languages. The
second setup employed a product grammar (Petrov, 2010), where we combined 8 different grammars
trained on the same data but with different initialization setups. As a result, the scores substantially
improved on all languages.

Finally, we conducted ranking experiments on the 50-best outputs of the product grammars. We used
a slightly modified version of the Mallet toolkit (McCallum, 2002), where the reranker is trained for the

3https://code.google.com/p/cistern/
4https://code.google.com/p/mate-tools
5http://www.ark.cs.cmu.edu/TurboParser/
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maximum entropy objective function of Charniak and Johnson (2005) and uses the standard feature set
from Charniak and Johnson (2005) and Collins (2000). Hebrew and Polish scores remained almost the
same, whereas Basque, French, and Hungarian highly benefited from reranking.

3 Planned Additions to Last Year’s System

This year we extend our systems for both the constituency and dependency tracks to add additional
information and try to profit from unlabeled data.

3.1 Preprocessing
We use the mate-tools’ lemmatizer and MarMoT to preprocess all labeled and unlabeled data. From the
SPMRL 2013 Shared Task, we learned that getting as good preprocessing as possible is an important
part of the overall improvements. Preprocessing consists of predicting lemmas, part-of-speech, and
morphological features. Preprocessing for the training data is done via 5-fold jackknifing to produce
realistic input features for the parsers. This year we do not do stacking on top of provided morphological
analyses since the annotations on the labeled and unlabeled data were inconsistent for some languages.6

3.2 Dependency Parsing
We pursue two different ways of integrating additional information into our system from the SPMRL
2013 Shared Task (Björkelund et al., 2013): supertags and co-training.

Supertags (Bangalore and Joshi, 1999) are tags that encode more syntactic information than standard
part-of-speech tags. Supertags have been used in deep grammar formalisms like CCG or HPSG to prune
the search space for the parser. The idea has been applied to dependency parsing by Foth et al. (2006)
and recently to statistical dependency parsing (Ouchi et al., 2014; Ambati et al., 2014), where supertags
are used as features rather than to prune the search space. Since the supertag set is dynamically derived
from the gold-standard syntactic structures, we can encode different kinds of information into a supertag,
in particular also morphological information. Supertags are predicted before parsing using MarMoT and
are then used as features in the mate parser and the turboparser.

We will use a variant of co-training (Blum and Mitchell, 1998) by applying two different parsers to
select additional training material from unlabeled data. We use the mate parser and the turboparser to
parse the unlabeled data provided by the organizers. We then select sentences where both parsers agree
on the structure as additional training examples following Sagae and Tsujii (2007). We then train two
more models: one on the labeled training data and the unlabeled data selected by the two parsers, and
one only on the unlabeled data. These two models are then integrated into our parsing system from 2013
as additional scorers to score the n-best list. Their scores are used as features in the ranker.

Before we parse the unlabeled data to obtain the training sentences, we filter it in order to arrive
at a cleaner corpus. Most importantly, we only keep sentences up to length 50, and which contain at
maximum two unknown words (compared to the labeled training data).

3.3 Constituency Parsing
We experiment with two approaches for improving constituency parsing:

Preterminal labelsets play an important role in constituency parsing of morphologically rich lan-
guages (Dehdari et al., 2011). Instead of removing the morphological annotation of POS tags, we use a
preterminal set which carries more linguistic information while still keeping it compact. We follow the
merge procedure for morphological feature values of Szántó and Farkas (2014). This procedure outputs a
clustering of full morphological descriptions and we use the cluster IDs as preterminal labels for training
the Berkeley Parser.

Reranking at the constituency parsing side is enriched by novel features. We define feature tem-
plates exploiting co-occurrence statistics from the unlabeled datasets; automatic dependency parses of
the sentence in question (Farkas and Bohnet, 2012); Brown clusters (Brown et al., 1992); and atomic
morphological feature values (Szántó and Farkas, 2014).
6The organizers later resolved this issue by patching the data, although time constraints prevented us from using the patched
data.
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4 Conclusion

This paper describes our plans for the SPMRL 2014 Shared Task, most of which are yet to be imple-
mented. For the actual system description and our results, we refer the interested reader to (Björkelund
et al., 2014) and (Seddah et al., 2014).

Acknowledgements
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Iakes Goenaga, Koldo Gojenola, Yoav Goldberg, Spence Green, Nizar Habash, Marco Kuhlmann, Wolfgang
Maier, Joakim Nivre, Adam Przepiorkowski, Ryan Roth, Wolfgang Seeker, Yannick Versley, Veronika Vincze,
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