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Abstract

We apply the well-known parsing technique of self-training to a new type of text: language-
learner text. This type of text often contains grammatical and other errors which can cause
problems for traditional treebank-based parsers. Evaluation on a small test set of student data
shows improvement over the baseline, both by training on native or non-native text. The main
contribution of this paper adds additional support for the claim that the new self-trained parser
has improved over the baseline by carrying out a qualitative linguistic analysis of the kinds of
differences between two parsers on non-native text. We show that for a number of linguistically
interesting cases, the self-trained parser is able to provide better analyses, despite the sometimes
ungrammatical nature of the text.

1 Introduction

The vast majority of treebank-based parsing research assumes that the text to be parsed is well-formed.
In this paper, we are concerned with parsing text written by non-native speakers of English into phrase
structure trees, as a precursor for applications in automated scoring and error detection. Non-native text
often contains grammatical errors ranging in severity from minor collocational differences to extremely
garbled strings that are difficult to interpret. These kinds of errors are known to cause difficulty for
automated analyses (De Felice and Pulman, 2007; Lee and Knutsson, 2008).

We explore a previously documented technique for adapting a state-of-the-art parser to be able to bet-
ter parse learner text: domain adaptation using self-training. Self-training is a semi-supervised learning
technique that relies on some labeled data to train an initial model, and then uses large amounts of unla-
beled data to iteratively improve that model. Self-training was first successfully applied in the newspaper
parsing domain by McClosky et al. (2006) who used the Penn Treebank WSJ as their labeled data and un-
labeled data from the North American News Text corpus. Previous attempts (Charniak, 1997; Steedman
et al., 2003) had not shown encouraging results, and McClosky et al. (2006) hypothesize that the gain
they saw was due to the two-phase nature of the BLLIP parser used in their experiments. In a follow-up
study (McClosky et al., 2008) they find that one major factor leading to successful self-training is when
the process sees known words in new combinations.

2 Related Work

Foster et al. (2011) compare edited newspaper text and unedited forum posts in a self-training parsing
experiment, evaluating on a treebank of informal discussion forum entries about football. They find that
both data sources perform about equally well on their small test set overall, but that the underlying gram-
mars learned from the two sources were different. Ott and Ziai (2010) apply an out-of-the-box German
dependency parser to learner text and analyze the impact on down-stream semantic interpretation. They
find that core functions such as subject and object can generally be reliably detected, but that when there
are key elements (e.g. main verbs) missing from the sentence that the parses are less reliable. They
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also found that less-severe grammatical errors such as agreement did not tend to cause problems for the
parser.

An alternative approach to parsing learner text is to modify the underlying dependency scheme used in
parsing to account for any grammatical errors. This can be useful because it is not always clear what the
syntactic analysis of ungrammatical text should be, given some scheme designed for native text. Dick-
inson and Ragheb (2009) present such a modified scheme for English, designed for annotating syntactic
dependencies over a modified POS tagset. Dickinson and Lee (2009) retrain a Korean dependency parser,
but rather than adding additional unlabeled data as we do, they modify the original annotated training
data. The modifications are specifically targeted to be able to detect errors relating to Korean postpo-
sitional particles. They show that the modified parser can be useful in detecting those kinds of particle
errors and in their conclusion suggest self-training as an alternative approach to parsing of learner text.
A similar alternative approach is to directly integrate error detection into the parsing process (Menzel
and Schröder, 1999; Vandeventer Faltin, 2003).

3 Self-training a new parser

We first describe the data that we use for both training and evaluating our parsers, and then we describe
our experiments and results.

We take the standard portion of the Penn Treebank (sections 02–21) as our seed labeled data. We
then compare two different unlabeled training data sets. The first data set consists of 480,000 sentences
of newspaper text extracted from the LA Times portion of the North American News Corpus (NANC).
The second is a corpus of non-native written English text randomly sampled from a large dataset of
student essays. It consists of 480,900 sentences from 33,637 essays written as part of a test of English
proficiency, usually administered to non-native college-level students. The essays have been written to
422 different prompts (topics) and so cover a wide range of vocabulary and usage. Each essay has been
assigned a proficiency level (high, medium, low) by a trained human grader. 17.5% of the sentences were
from low proficiency essays, 42% from medium proficiency and 40.5% from high proficiency essays.

In order to determine the optimal number of self-training iterations and carry out our final evaluations
we use a small corpus of manually treebanked sentences. The corpus consists of 1,731 sentences written
by secondary level students which we randomly split into a development set (865 sentences) and a test set
(866 sentences). The native language of the students is unknown, but it is likely that many spoke English
as their first language. In addition, this corpus had originally been developed for another purpose and
therefore contains modifications that are not ideal for our experiments. The main changes are that spelling
and punctuation errors were corrected before the trees were annotated (and we do not have access to the
original text). Although the treebanked corpus does not align perfectly with our requirements, we believe
that it is a more useful evaluation data set than any other existing treebanked corpus.

We used the Charniak and Johnson (2005) (BLLIP) parser1 to perform the self training experiments.
Our experiment is setup as follows: first we train a baseline model on the Penn Treebank WSJ data
(sections 02-21). Then, iteratively, sentences are selected from the unlabeled data sets, parsed by the
parser, and combined with the previously annotated data to retrain the parser. The parser also requires
development data, for which we use section 22 of the WSJ data. After each iteration we evaluate the
parser using our 865-sentence development set. Parser evaluation was done using the EVALB2 tool and
we report the performance in terms of F1 score.

There are two main parameters in our self-training setup: the size of the unlabeled data set added at
each iteration and the weight given to the original labeled data.3 In preliminary experiments, we found
that a block size of 40,000 sentences per each iteration and a weight of 5 on the original labeled data
performed best. Given our training data, and a block size of 40K, this results in 12 iterations. In each
iteration, the training data consists of the PTB data repeated 5 times, plus the parsed output of previous
blocks of unlabeled data.

1https://github.com/BLLIP/bllip-parser
2http://nlp.cs.nyu.edu/evalb/
3Note that this approach differs to that outlined in McClosky et al. (2006) who only perform one self-training iteration. It is

more similar to the approach described in Reichart and Rappoport (2007).
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The results of our experiments are as shown in Figure 1. Iteration 0 corresponds to the baseline parser
while iterations 1–12 are the self trained parsers. We see that the F1 score of the baseline parser is
80.9%.4 The self trained parsers have higher accuracies compared to the baseline parser starting at the
first iteration. The highest score training on non-native text (82.3%) was achieved on the 11th iteration,
and the highest score training on newspaper text (81.8%) was achieved on the 8th iteration. Both of these
results are statistically significantly better than the baseline parser only trained on WSJ text.5 The graph
also shows that the non-native training results in slightly higher overall f-scores than the parser trained
on the native data after iteration 5, however these differences are not statistically significant.
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Figure 1: Performance of parsers after each iteration. Parsers used WSJ Section 22 as development data
and were evaluated on the student response development data.

The final evaluation was carried out by evaluating on the student test corpus of 866 sentences, using
the parsing model that performed best on the student dev corpus. The parser trained on native text
achieved an f-score of 82.4% and the parser trained on the non-native text achieved an f-score of 82.6%.
This difference is not statistically significant and is a similar finding to Foster et al. (2011). In another
experiment, we found that if the development data used during self-training is similar to the test data, we
see even smaller differences between the two different kinds of training data.6

4 Analysis

We carry out a qualitative analysis of the differences in parses between the original parser and one of the
best-performing self-trained ones, trained on non-native text. We randomly sample 5 essays written by
non-native speakers (but not overlapping with the data used to self-train the parser). Table 1 shows the
number of sentences and the number of parse trees that differ, according to each proficiency level.

Proficiency # Essays # Sentences # Words # Differing Parses % Differing Parses
High 2 30 694 12 40
Mid 1 22 389 12 54
Low 2 17 374 8 47
Totals 5 69 1457 32 46

Table 1: Descriptive Statistics for Essays in the Qualitative Sample

4Note that these overall f-scores are considerably lower than current state-of-the-art for newspaper text, indicating that this
set of student texts are considerably different.

5Significance testing was carried out using Dan Bikel’s Randomized Parsing Evaluation Comparator script for comparing
evalb output files. We performed 1000 random shuffles and tested for p-values < 0.01.

6These data sets were all quite small, however, so further investigation is required to fully assess this finding.

68



Figure 2 reports the number of differences by proficiency level. It is important to note that these
differences only included ones that were considered to be independent (e.g. a change in POS tag that
necessitated a change in constituent label was only counted once). We note a trend in which the self-
trained parser produces better parses than the baseline more often; however, at the highest proficiency
level the baseline parser produces better parses more often. In some applications it might be possible to
take the proficiency level into account before running the parser. However for many applications this will
present a challenge since the parser output plays a role in predicting the proficiency level. A possible
alternative would be to approximate proficiency using frequencies of spelling and other grammatical
errors that can be automatically detected without relying on parser output and use this information to
decide which version of the parser to use.
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Figure 2: Unrelated Differences by Proficiency Level.

We systematically examine each of the 32 pairs of differing parse trees in the sample and manually
categorize the differences. Figure 3 shows the 5 most frequent types of differences, their breakdown
by proficiency level, as well as the results of a subjective evaluation on which parse was better. These
judgements were made by one of the authors of this paper who is a trained linguist.
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Figure 3: Parse Tree Differences by Proficiency Level.

The differences in Figure 3 are defined as follows. Attachment Site: the same constituent is attached
to different nodes in each parse; POS Tag: the same terminal bears a different POS tag in each parse,
where the terminal exists in our dictionary of known English7 words; Sentential Components: One parse
groups a set of constituents exhaustively into an S-node, while the other does not; POS of misspelled
terminal: the same terminal bears a different POS tag in each parse, where the terminal has been flagged
as a misspelling; Headedness: a terminal heads a maximal projection of a different syntactic category in
one parse but not the other, (e.g. a VP headed by a nominal).

7We use the python package enchant with US spelling dictionaries to carry out spelling error detection.
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We characterized the differences according to whether the better output was produced by the original
parser, the self trained parser, or if it was not clear that either parse was better than the other. Attachment
Site differences were evaluated according to whether or not they were attached to the constituent they
modified; POS Tag differences were evaluated according to the Penn Treebank Guidelines (Santorini,
1995); Sentential Components differences were evaluated according to whether or not the terminals
should indeed form a clausal constituent, infinitive, or gerund; POS of Misspelled Terminal differences
were evaluated according to the evaluator’s perception of the writer’s intended target. We note that
the most abundant differences are in Attachment Site, that the biggest improvements resulting from self-
training are in the recognition of Sentential Components and in the identification of the POS of Misspelled
Terminals, and that the biggest degradation is in Headedness.

4.1 General Difference Patterns

Using the categories defined during the manual analysis of the 5 essays, we develop rules to automatically
detect these kinds of differences in a large dataset. We expect that the automatic rules will identify more
differences than the linguist, however we hope to see the same general patterns. We apply our rules to an
additional set of data consisting of roughly 10,000 sentences written by non-native speakers of English.
Table 2 shows the number of sentences for which the parsers found different parses at each proficiency
level, and Table 3 gives the totals for each of the five difference categories described above.

Proficiency # Essays # Sentences # Words # Differing Parses % Differing Parses
High 256 4178 266543 2214 53
Mid 285 4168 263685 2364 57
Low 149 1657 93466 971 59
Totals 690 10003 623694 5549 55

Table 2: Descriptive Statistics for Essays in the Larger Sample

Difference Total Low Medium High
Attachment Site 7805 1331 3474 3000
POS Tag 6827 1205 3238 2384
Sentential Components 4103 778 1786 1539
POS of Misspelled Terminal 2040 346 894 800
Headedness 1357 353 568 436

Table 3: Total number of differences detected automatically by proficiency level

We see that the proportion of sentences with different parses is similar to the 5-essay sample and also
that the relative ordering of the five difference categories is identical. This at least indicates that the
5-essay sample does not differ largely in its general properties from a larger set.

4.2 Illustrative Observations

We highlight some of the most interesting differences between the baseline parser and the self-trained
parser, using examples from our 5-essay sample described above.

Ambiguity of subordinating conjunctions: Figure 4 shows an example from a lower proficiency
essay that contains multiple interacting differences, primarily stemming from the fact that the POS tag
for a subordinating conjunction is the same as the POS tag for a regular preposition according to the
Penn Treebank guidelines (Santorini, 1995). The original parser (4a) treats it as a preposition: it is
dominated by PP and takes NP as a complement. The self-trained parser (4b) correctly treats because
as a subordinating conjunction: it is dominated by SBAR and takes S as a complement. In addition,
the original parser identified suffer as the main verb in the sentence. The self-trained parser correctly
analyzes this as part of the dependent clause, however this results in no main verb being identified and
an overall FRAGMENT analysis. Since it is unclear what the original intention of the writer was, this
fragment analysis could be more useful for identifying grammatical errors and giving feedback.
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Figure 4: Parses for Especaily, in this time, because the world suffer, the economy empress.

Ambiguity of to: Figure 5 exemplifies a difference related to the analysis of infinitives. Here we can
see that the original parser analyzed the to phrase as a PP (c.f. afraid of) whereas the self-trained parser
analyzes it as an infinitival. We believe that the infinitival interpretation is slightly more likely (with a
missing verb do), though of course it is difficult to say for sure what the intended meaning is. Here there
are two interacting difference types: Sentential Components and Headedness. In the self-trained parse,
anything is an NN that heads a VP, whereas it is an NN that appropriately heads an NP in the original
parse. However, it is important to note that the self-trained parse treats to anything as an infinitive: a TO
dominated by a VP, which is dominated by a unary-branching S. The original parse treats to anything as
a regular PP. The fact that the self-trained parse contains a set of terminals exhaustively dominated by
an S-node that does not exist in the original parse constitutes a Sentential Components difference. We
believe that it is more useful to correctly identify infinitives and gerunds as sentential constituents, even
at the cost of an XP that is apparently headed by an inappropriate terminal (VP headed by NN).
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Figure 5: Parses for If you have this experience, you will do not afraid to anything during your life.

Attachment ambiguity: We turn now to Figure 6. The main difference has to do with the attachment
of the phrase that you think it worth: the SBAR is attached to the VP in the original parse (as a clausal
complement) and to the NP in the self-trained parse (as a relative clause). This example also shows that
a change in POS-tag can have a significant impact on the final parse tree.

5 Future Work and Conclusions

We have shown that it is possible to apply self-training techniques in order to adapt a state-of-the-art
parser to be able to better parse English language learner text. We experimented with training the parser
on native text as well as non-native text. In an evaluation on student data (not necessarily language-
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Figure 6: Parses for So I support that the money should be used in the thing that you think it worth.

learner data) we found that both training sets performed at about the same level, but that both significantly
out-performed the baseline parser trained only on WSJ text.

We carry out an in-depth study on a small data set of 5 learner essays and define a set of difference
categories in order to describe the parse-tree differences from a linguistic perspective. We implement
rules to automatically detect these parse-tree differences and show that the general proportions of errors
found in the small data set are similar to that of a larger data set. We highlight some of the most interesting
improvements of the parser, and we show that despite various grammatical errors present in sentences,
the self-trained parser is, in general, able to assign better analyses than the baseline parser.

Of course, the self-trained parser does sometimes choose a parse that is less appropriate than the
baseline one. In particular, we noticed that this happened most frequently for the highest proficiency
essays. Further investigation is required to be able to better understand the reasons for this. In future
work, the most informative evaluation of the self-trained parser would be in a task-based setting. We
plan to investigate whether the self-trained parser improves the overall performance of tasks such as
automated essay scoring or automated error detection, which internally rely on parser output.
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