
Proceedings of the Workshop on Automatic Text Simplification: Methods and Applications in the Multilingual Society, pages 21–29,
Dublin, Ireland, August 24th 2014.

Exploring the effects of Sentence Simplification on Hindi to English
Machine Translation System

Kshitij Mishra Ankush Soni Rahul Sharma Dipti Misra Sharma
Language Technologies Research Centre

IIIT Hyderabad
{kshitij.mishra,ankush.soni,rahul.sharma}@research.iiit.ac.in,

dipti@iiit.ac.in

Abstract

Even though, a lot of research has already been done on Machine Translation, translating com-
plex sentences has been a stumbling block in the process. To improve the performance of ma-
chine translation on complex sentences, simplifying the sentences becomes imperative. In this
paper, we present a rule based approach to address this problem by simplifying complex sen-
tences in Hindi into multiple simple sentences. The sentence is split using clause boundaries and
dependency parsing which identifies different arguments of verbs, thus changing the grammatical
structure in a way that the semantic information of the original sentence stay preserved.

1 Introduction

Cognitive and psychological studies on ‘human reading’ state that the effort in reading and understand-
ing a text increases with the sentence complexity. Sentence complexity can be primarily classified
into ‘lexical complexity’ and ‘syntactic complexity’. Lexical complexity deals with the vocabulary
practiced in the sentence while syntactic complexity is governed by the linguistic competence of
native speakers of a particular language. In this respect, the modern machine translation systems are
similar to humans. Processing complex sentences with high accuracy has always been a challenge in
machine translation. This calls for automatic techniques aiming at simplification of complex sentences
both lexically and syntactically. In context of natural language applications, lexical complexity can
be handled significantly by utilizing various resources like lexicons, dictionary, thesaurus etc. and
substituting infrequent words with their frequent counterparts. However, syntactic complexity requires
mature endeavors and techniques.

Machine Translation systems when dealing with highly diverges language pairs face difficulty in trans-
lation. It seems intuitive to break down the sentence into simplified sentences and use them for the task.
Phrase based translation systems exercise a similar approach where system divides the sentences into
phrases and translates each phrase independently, later reordering and concatenating them into a single
sentence. However, the focus of translation is not on producing a single sentence but to preserve the
semantics of the source sentence, with a decent readability at the target side.

We present a rule based approach which is basically an improvement on the work done by (Soni et al.,
2013) for sentence simplification in Hindi. The approach adapted by them has some limitations since it
uses verb frames to extract the core arguments of verb; there is no way to identify information like time,
place, manner etc. of the event expressed by the verb which could be crucial for sentence simplification.
A parse tree of a sentence could potentially address this problem. We use a dependency parser of Hindi
for this purpose. (Soni et al., 2013) didn’t consider breaking the sentences at finite verbs while we split
the sentences on finite verbs also.

This paper is structured as follows: In Section 2, we discuss the related work that has been done earlier
on sentence simplification. Section 3 addresses criteria for classification of complex sentences. In section
4, we discuss the algorithm used for splitting the sentences. Section 5 outlines evaluation of the systems

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings
footer are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

21

using both BLEU scores and human readability . In Section 6, we conclude and talk about future work
in this area.

2 Related Work

Siddharthan (2002) presents a three stage pipelined approach for text simplification. He has also looked
into the discourse level problems arising from syntactic text simplification and proposed solutions to
overcome them. In his later works (Siddharthan, 2006), he discussed syntactic simplification of sen-
tences. He has formulated the interactions between discourse and syntax during the process of sentence
simplification. Chandrasekar et al. (1996) proposed Finite state grammar and Dependency based ap-
proach for sentence simplification. They first build a stuctural representation of the sentence and then
apply a sequence of rules for extracting the elements that could be simplified. Chandrasekar and Srinivas
(1997) have put forward an approach to automatically induce rules for sentence simplification. In their
approach all the dependency information of a words is localized to a single structure which provides a
local domain of influence to the induced rules.

Sudoh et al. (2010) proposed divide and translate technique to address the issue of long distance re-
ordering for machine translation. They have used clauses as segments for splitting. In their approach,
clauses are translated separately with non-terminals using SMT method and then sentences are recon-
structed based on the non-terminals. Doi and Sumita (2003) used splitting techniques for simplifying
sentences and then utilizing the output for machine translation. Leffa (1998) has shown that simplifying
a sentence into clauses can help machine translation. They have built a rule based clause identifier to
enhance the performance of MT system.

Though the field of sentence simplification has been explored for enhancing machine translation for
English as source language, we don’t find significant work for Hindi. Poornima et al. (2011) has reported
a rule based technique to simplify complex sentences based on connectives like subordinating conjunc-
tion, relative pronouns etc. The MT system used by them performs better for simplified sentences as
compared to original complex sentences.

3 Complex Sentence

In this section we try to identify the definition of sentence complexity in the context of machine trans-
lation. In general, complex sentences have more than one clause (Kachru, 2006) and these clauses are
combined using connectives. In the context of machine translation, the performance of system generally
decreases with increase in the length of the sentence (Chandrasekar et al., 1996). Soni et al. (2013) has
also mentioned that the number of verb chunks increases with the length of sentence. They have also
mentioned the criteria for defining complexity of a sentence and the same criteria is apt for our purpose
also. We consider a sentence to be complex based on the following criteria:

• Criterion1 : Length of the sentence is greater than 5.

• Criterion2 : Number of verb chunks in the sentence is more than 1.

• Criterion3 : Number of conjuncts in the sentence is greater than 0.

Table 1 shows classification of a sentence based on the possible combinations of 3 criteria mentioned
above.

4 Sentence Simplification Algorithm

We propose a rule based system for sentence simplification, which first identifies the clause boundaries
in the input sentence, and then splits the sentence using those clause boundaries. Once different clauses
are identified, they are further processed to find shared argument for non-finite verbs. Then, the Tense-
Aspect-Modality(TAM) information of the non-finite verbs is changed. Below example (12) illustrates
the same,

22

Table 1: Classification of a sentence as simple or complex

Criterion1 Criterion2 Criterion3 Category
No No No Simple
No No Yes Simple
No Yes No Simple
No Yes Yes Simple
Yes No No Simple
Yes No Yes Complex
Yes Yes No Complex
Yes Yes Yes Complex

(1) raam
Ram

ne khaanaa
food

khaakara
after+eating

pani
water

piya
drink+past

‘Ram drank water after eating.’

We first mark the boundaries of clauses for example (12). ‘raam’ and ‘khaanaa’ are starts, and ‘khaakara’
and ‘piya’ are ends of two different clauses respectively. Once the start and end of clauses are identified
we break the sentence into those clauses. So for above example, the two clauses are:

1. ‘raam ne pani piya’

2. ‘khaanaa khaakara’

Once we have the clauses, we post process those clauses which contain non-finite verbs, and add the
shared argument and TAM information for these non-finite clauses. After post-processing, the two
simplified clauses are:

1. ‘raam ne pani piya.’

2. ‘raam ne khaanaa khaayaa.’

4.1 Algorithm

Our system comprises of a pipeline incorporating various modules. The first module determines the
boundaries of clauses (clause identification) and splits the sentence on the basis of those boundaries.
Then, the clauses are processed by a gerund handler - which finds the arguments of gerunds, shared
argument adder which fetches the shared arguments between verbs, TAM(Tense Aspect Modality)
generator which changes the TAM of other verbs on the basis of main verb. The figure 4.1 shows the
data flow of our system, components of which have been discussed in further detail in this section.

23

Input
Sentence

Preprocessing

Clause boundary
identification
and splitting
of sentences

Gerunds Handler

Shared
Argument

Adder

TAM
generator

Output

Figure 1: Data Flow

4.1.1 Preprocessing
In this module, raw input sentences are processed and each lexical item is assigned a POS tag, chunk and
dependency relations information in SSF format(Bharati et al., 2007; Bharati et al., 2009). We have used
(Jain et al., 2012) dependency parser for preprocessing. Example (2) shows the output of this step.
Input sentence:

(2) raam ne
Ram+erg

khaanaa
food

khaayaa
eat+past

aur
and

paani
water

piyaa.
drink+past

’Raam ate food and drank water’

Output: Figure (1) shows the different linguistic information in SSF format. Tag contains the Chunk
and POS information of the sentence, and drel in feature structure stores different dependency relations
in a sentence.

Offset Token Tag Feature structure
1 ((NP <fs name=‘NP’ drel=‘k1:VGF’>

1.1 raama NNP <fs af=’raama,n,m,sg,3,d,0,0’>
1.2 ne PSP <fs af=’ne,psp,,,,,,’>

))
1 2 ((NP <fs name=‘NP2’ drel=‘k2:VGF’>
2.1 khaanaa NN <fs af=’khaanaa,n,m,sg,3,d,0,0’ name=‘khaanaa’>

))
3 ((VGF <fs name=‘VGF’ drel=‘ccof:CCP’>

3.1 khaayaa VM <fs af=’KA,v,m,sg,any,,yA,yA’ name=‘khaayaa’>
))

4 ((CCP <fs name=‘CCP’>
4.1 aur CC <fs af=’Ora,avy,,,,,,’ name=’aur‘>

))
5 ((NP <fs name=‘NP3’ drel=‘k2:VGF2’>

5.1 paani NN <fs af=’pAnI,n,m,sg,3,d,0,0’ name=‘paani’>
))

6 ((VGF <fs name=‘VGF2’ drel=‘ccof:CCP’>
6.1 piyaa VM <fs af=’pIyA,unk,,,,,,’ name=‘piyaa’>

))

Figure 1: SSF representation for example 2

24

4.1.2 Clause boundary Identification and splitting of sentences
This module takes the input from preprocessing module and identifies the clause boundaries in the sen-
tence. Once clause boundaries are identified, the sentence is divided into different clauses. We have
used the technique mentioned in Sharma et al. (2013) which has shown how implicit clause information
present in dependency trees/relations can be used to extract clauses from a sentence. Once we mark the
clause boundaries using this approach, we break the sentence into different simple clauses along those
clause boundaries. The example(3) given below illustrates the same.

(3) raam
Ram

jisne
who+rel.

khaanaa
food

khaayaa
eat+past

ghar
home

gayaa
go+past

‘Ram who ate food, went home’

Example(3) with clause boundaries marked is, (raam (jisne khaanaa khaayaa) ghar gayaa). Once
the clause boundaries are marked, we break the sentence using those boundaries. So for Example(3),
split clauses are,

1. raam ghar gayaa.

2. jisne khaanaa khaayaa.

4.1.3 Gerunds Handler
Since, Sharma et al. (2013) identifies clause boundary for non-finite and finite verb only, gerunds are not
handled in the previous module. This module is used to handle gerunds in the given sentence. In this
module, the gerund chunks are first indentified and then further processed after getting the arguments.
Consider an example:

(4) logon ko
people

sambodhit
address

karne ke baad
doing after

dono
both

netaon ne
leaders

pradhanmantri
Prime minister

ko
to

istifa
resignation

saunpa
gave

’After addressing people, both leaders gave resignation to the prime minister’

In the above example, the clause boundary identifier module marks the entire sentence as a clause but
karne ke baad is a gerund chunk (verb chunk) here, which is marked as VGNN according to the tagset
of the POS tagger used. According to definition of complex sentence given in section 3 gerunds also
introduce complexity in a sentence. Therefore, in order to simplify such sentences, we use dependency
parsing information for extracting the arguments of gerund and splitting the sentence.

Here logon ko and sambodhit are the arguments of verb chunk karne ke baad. Here ke baad is postpo-
sition of verb karne so, ke baad is splitted from karne and it has been used with the pronoun is to make
the sentence more readable.

1. logon ko sambodhit karne

2. iske baad dono netaon ne pradhanmantri ko istifa saunpa

4.1.4 Shared Argument Adder
After identifying clauses and handling gerunds, the shared arguments are identified between the verbs
and sentences are formed accordingly. For example:

(5) (ram
(ram

(chai
(tea

aur
and

paani
water

peekar)
after drinking)

soyaa)
slept)

’ram slept after drinking tea and water’

25

Here ram is the shared argument(k1-karta) of both the verbs peekar and soyaa . The dependency
parser used, marks the inverse dependencies for shared arguments which helps in . So the output of this
module is:

1. ram chai aur paani peekar.

2. ram soyaa.

4.1.5 TAM generator
The split sentences given by the above module are converted into more readable sentences using this
module. The form of other verbs is changed using TAM information of the main verb provided by the
morph, as shown in Figure 1. For example:

INPUT:

1. ram chai aur paani peekar.

2. ram soyaa.

OUTPUT:

1. ram chai aur paani peeyaa.

2. ram soyaa.

Here soyaa is the main verb having yaa as TAM. Word generator1 has been used to generate the
final verb given root form of the verb and TAM of the verb. Here pee is the root form of peekar and
yaa is given as the TAM. Word generator generates peeyaa as the final word which is used in the sentence.

5 Evaluation

We have taken a corpus of 100 complex sentences for the evaluation of our tool. These sentences
were taken from the Hindi treebank (Bhatt et al., 2009; Palmer et al., 2009). Evaluation of both sen-
tence simplification and its effects on google MT system for Hindi to English(google translate) was
performed. The evaluation of sentence simplification is a subjective task which considers both readabil-
ity and preservation of semantic information. Hence both manual as well as automatic evaluations have
been performed.

5.1 Automatic Evaluation
We have used BLEU score (Papineni et al., 2002) for automatic evaluation of both tasks; sentence sim-
plification and enhancing MT system. Higher the BLEU score, closer the target set is to the reference set.
The maximum attainable value is 1 while minimum possible value is 0. For our Automatic evaluation
we adopted the same technique as Specia (2010) using BLEU metric. We have achieved 0.6949 BLEU
score for sentence simplification task. For MT system, we have evaluated the system with and without
sentence simplification tool. It was observed that the system with sentence simplification tool achieved
0.4986 BLEU score whereas the system without sentence simplification gave BLEU score of 0.4541.

5.2 Human Evaluation
To ensure the simplification quality, manual evaluation was also done. 20 sentences were randomly
selected from the testing data-set of 100 sentences. Output of these 20 sentences, from the target set were
manually evaluated by 2 subjects, who have done basic courses in linguistics, for judging ‘Readability’
and ‘Simplification’ quality on the scale of 0− 3, 0 being the worst and 3 being the best.

For Simplification performance, scores were given according to following criteria :
1Taken from the ILMT pipeline.

26

• 0 = None of the expected simplifications performed.
• 1 = Some of the expected simplifications performed.
• 2 = Most of the expected simplifications performed.
• 3 = Complete Simplification.

After taking input from all the participants the results averaged out to be 2.5.
For Human evaluation of MT system, the subjects had to select the better translation between system with
sentence simplification tool and system without it. The subjects reportedly observed a better translation
of the system with sentence simplification tool. It was reported that 12 out of 20 sentences were translated
better after being simplified, and quality of 3 remained unchanged.

Translation quality of 5 was reported to be better before simplification. This happened because the
system breaks the sentences at every verb chunk it encounters, which in some cases makes the sentence
lose its semantic information.

For example the sentence below contains five verb chunks. The system breaks the sentence into five
sentences.:

(6) yah
this

poochne
ask

par
on

ki
that

kya
what

we
he

dobaara
again

congress
Congress

mein
in

lautenge
return

sangama
Sangama

ne kaha
told

ki
that

na
neither

to
then

iski
its

zarurat
requirement

hai
is

aur
and

na
nor

hi peeche
back

lautane
return

ka sawal
question

hi uthta
raises

hai
is

’On asking whether he would return again in Congress, Sangma replied that neither there is need
of this nor there is the question of reverting back.’

System’s Output

1. (7) kya
what

we
he

dobaara
again

congress
Congress

mein
in

lautenge
return

’Would they return again in Congress ?’

2. (8) yah
this

poochane
ask

par
on

sangama
Sangama

ne kaha
told

’On asking this, Sangama said.’

3. (9) na
neither

to iski
its

zarurat
requirement

hai
is told

’Neither it is needed.’

4. (10) na
neither

hee peeche
back

lautana
return

hai
is

’Neither he will return.’

5. (11) iska
its

sawal
question

uthta
raises

hai
is

’The question arises.’

It is clearly observable that the simplified sentences failed to preserve the meaning of the original sen-
tence. Further, the system does not change the vibhakti (Bharati et al., 1995) of the simplified sentences
which, in some cases makes the sentence lose its meaning. For example

(12) machharon
Mosquitoes

ke
of

katne
bite

ke
of

baad
after

wo
they

beemar
sick

hue
became

‘They became sick after being bitten by the mosquitoes.’

System’s Output:

27

1. (13) machharon
Mosquitoes

ke
of

kata
bite

’Not a valid sentence’

2. (14) is
this

ke
of

baad
after

wo
they

beemar
sick

hue
became

’After this they became sick.’

In the first simplified sentence the vibhakti “ke” should have been changed to “ne” for the formation of
a valid sentence.

6 Conclusion and Future Work

As shown in the results, after simplifying the sentences, BLEU score of the translation increases by 4.45.
The manual evaluation also got encouraging results in simplification and readability with a score of 2.5 on
a scale of 0−3. There is a clear indication that our tool can enhance the performance of MT for complex
sentences by simplifying them. Future work will include minimizing the lose of semantic information
while splitting the sentences and making simplified sentences more readable and grammatically correct.
In addition to extending the system, evaluating the impact of our tool on other NLP tasks like parsing,
dialog systems, summarisation, question-answering systems etc. is also a future goal.

Acknowledgements

We would like to thank Riyaz Ahmad Bhat, Rishabh Shrivastava and Prateek Saxena for their useful
comments and feedback which helped us to improve this paper and Anshul Bhargava, Arpita Batra,
Abhijat Sharma, Gaurav Kakkar, Jyoti Jha and Urmi Ghosh for helping us in annotation.

References
Akshar Bharati, Vineet Chaitanya, Rajeev Sangal, and KV Ramakrishnamacharyulu. 1995. Natural language

processing: a Paninian perspective. Prentice-Hall of India New Delhi.

Akshar Bharati, Rajeev Sangal, and Dipti M Sharma. 2007. Ssf: Shakti standard format guide. pages 1–25.

Akshara Bharati, Dipti Misra Sharma, Samar Husain, Lakshmi Bai, Rafiya Begam, and Rajeev Sangal. 2009.
Anncorra: Treebanks for indian languages, guidelines for annotating hindi treebank.

R. Bhatt, B. Narasimhan, M. Palmer, O. Rambow, D.M. Sharma, and F. Xia. 2009. A multi-representational
and multi-layered treebank for hindi/urdu. In Proceedings of the Third Linguistic Annotation Workshop, pages
186–189. Association for Computational Linguistics.

Raman Chandrasekar and Bangalore Srinivas. 1997. Automatic induction of rules for text simplification.
Knowledge-Based Systems, 10(3):183–190.

Raman Chandrasekar, Christine Doran, and Bangalore Srinivas. 1996. Motivations and methods for text sim-
plification. In Proceedings of the 16th conference on Computational linguistics-Volume 2, pages 1041–1044.
Association for Computational Linguistics.

Takao Doi and Eiichiro Sumita. 2003. Input sentence splitting and translating. In Proc. of Workshop on Building
and Using Parallel Texts, HLT-NAACL 2003, pages 104–110.

Naman Jain, Karan Singla, Aniruddha Tammewar, and Sambhav Jain, 2012. Proceedings of the Workshop on
Machine Translation and Parsing in Indian Languages, chapter Two-stage Approach for Hindi Dependency
Parsing Using MaltParser, pages 163–170. The COLING 2012 Organizing Committee.

Yamuna Kachru. 2006. Hindi, volume 12. John Benjamins Publishing.

Vilson J Leffa. 1998. Clause processing in complex sentences. In Proceedings of the First International Confer-
ence on Language Resources and Evaluation, volume 1, pages 937–943.

28

M. Palmer, R. Bhatt, B. Narasimhan, O. Rambow, D.M. Sharma, and F. Xia. 2009. Hindi Syntax: Annotating
Dependency, Lexical Predicate-Argument Structure, and Phrase Structure. In The 7th International Conference
on Natural Language Processing, pages 14–17.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics,
pages 311–318. Association for Computational Linguistics.

C Poornima, V Dhanalakshmi, Anand M Kumar, and KP Soman. 2011. Rule based sentence simplification for
english to tamil machine translation system. International Journal of Computer Applications, 25(8):38–42.

Rahul Sharma, Soma Paul, Riyaz Ahmad Bhat, and Sambhav Jain. 2013. Automatic clause boundary annotation
in the hindi treebank.

Advaith Siddharthan. 2002. An architecture for a text simplification system. In Language Engineering Confer-
ence, 2002. Proceedings, pages 64–71. IEEE.

Advaith Siddharthan. 2006. Syntactic simplification and text cohesion. Research on Language and Computation,
4(1):77–109.

Ankush Soni, Sambhav Jain, and Dipti Misra Sharma. 2013. Exploring verb frames for sentence simplification in
hindi. Proceedings of the Sixth International Joint Conference on Natural Language Processing, pages 1082–
1086. Asian Federation of Natural Language Processing.

Lucia Specia. 2010. Translating from complex to simplified sentences. In Computational Processing of the
Portuguese Language, pages 30–39. Springer.

Katsuhito Sudoh, Kevin Duh, Hajime Tsukada, Tsutomu Hirao, and Masaaki Nagata. 2010. Divide and translate:
improving long distance reordering in statistical machine translation. In Proceedings of the Joint Fifth Work-
shop on Statistical Machine Translation and MetricsMATR, pages 418–427. Association for Computational
Linguistics.

29

