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Abstract 

Many current documents include multimedia consisting of text, images and embedded videos. This pa-

per presents a general method that uses Random Forests to automatically extract keyphrases that can be 

used as very short summaries and to help in retrieval, classification and clustering processes.  

1   Introduction 

A keyphrase is an important concept, presented either as a single word (unigram), e.g.: 'extraction', 

'keyphrase' or as a collocation, i.e., a meaningful group of two or more words, e.g.: 'keyphrase extrac-

tion'. Keyphrases can be regarded as very short summaries and can be used for representing documents 

in retrieval, classification and clustering problems.  

Nowadays, many documents (e.g. web pages, articles) include multimedia consisting of text, imag-

es and embedded videos. In this case, the keyphrase extraction process should not be limited to the 

textual data but also consider the audiovisual data.  

In this context, this paper proposes a novel framework for automatic keyphrase extraction from 

documents containing text and images based on supervised learning and textual and visual features.  

2  Baseline Methods for Keyphrase Extraction 

In this section, we introduce the baseline methods we use for keyphrase extraction using textual and 

visual information.  

2.1 Textual Keyprhase Extraction 

In all methods, words and terms that have a grammatical role for the language are excluded from the 

key words list according to Fox's stop list. This stop list contains 421 high frequency stop list words 

(e.g.: we, this, and, when, in, usually, also, near). 

(1) Term Frequency (TF): This method rates a term according to the number of its occurrences in 

the text. Only the N terms with the highest TF in the document are selected. 

(2) Term length (TL): TL rates a term according to the number of the words included in the term. 

(3) First N Terms (FN): Only the first N terms in the document are selected. The assumption is that 

the most important keyphrases are found at the beginning of the document because people tend to 

place important information at the beginning. This method is based on the baseline summariza-

tion method which chooses the first N sentences. This simple method provides a relatively strong 

baseline for the performance of any text-summarization method. 

(4) Last N Terms (LN): Only the last N terms in the document are selected. The assumption is that 

the most important keyphrases are found at the end of the document because people tend to place 

their important keyphrases in their conclusions which are usually placed near to the end. 
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(5) At the Beginning of its Paragraph (PB): This method rates a term according to its relative posi-

tion in its paragraph. The assumption is that the most important keyphrases are likely to be found 

close to the beginning of their paragraphs. 

(6) At the End of its Paragraph (PE): This method rates a term according to its relative position in 

its paragraph. The assumption is that the most important keyphrases are likely to be found close 

to end of their paragraphs. 

(7) Resemblance to Title (RT): This method rates a term according to the resemblance of its sen-

tence to the title of the article. Sentences that resemble the title will be granted a higher score. 

(8) Maximal Section Headline Importance (MSHI): This method rates a term according to its most 

important presence in a section or headline of the article. It is a known that some parts of papers 

are more important from the viewpoint of presence of keyphrases. Such parts can be headlines 

and sections as: abstract, introduction and conclusions. 

(9) Accumulative Section Headline Importance (ASHI): This method is very similar to the previ-

ous one. However, it rates a term according to all its presences in important sections or headlines 

of the article. 

(10) Negative Brackets (NBR): Phrases found in brackets are not likely to be keyphrases. Therefore, 

they are defined as negative phrases, and will grant negative scores. 

These methods were applied to extract and learn keyphrases from scientific articles (HaCohen-

Kerner et al., 2005). 

2.2 Visual Keyprhase Extraction 

On the other hand, visual keyphrase extraction is performed for a pre-defined set of keyphrases (e.g. 

demonstration, moving car, etc.). The predefined keyphrases are selected in order to be relevant to the 

domain of interest. In the following, low level visual features (SIFT, SURF) are extracted (Markato-

poulou, et al., 2013). We apply supervised machine learning using Random Forests (RF) (Breiman, 

2001) to detect the presence of each concept in an image. RF have been successfully applied to several 

image classification problems (e.g. (Bosch et al., 2007; Xu et al., 2012)). Moreover, an important mo-

tivation for using RF was the application of late fusion based on the RF operational capabilities, which 

is discussed below. 

In the training phase, the feature vectors from each low level feature vector are used as input for the 

construction of a single RF. The training set can be constructed either manually or automatically. In 

the automatic case, we submit a text query to a general purpose web search engine (e.g. Google, Bing) 

to retrieve relevant images, while irrelevant images can be selected randomly from the web. From the 

RFs that are constructed (one for each descriptor), we compute the weights for each modality in the 

following way. From the out-of-bag (OOB) error estimate of each modality’s RF, the corresponding 

OOB accuracy values are computed. These values are computed for each concept separately. Then the 

values are normalized and serve as weights for the different modalities. Finally, each image is repre-

sented with a vector that includes the scores for each predefined visual keyphrase.  

It should be noted that the visual concept/keyphrase detectors perform decently for specific visual 

concepts (e.g. news studio: 0,5 MEIAP (Mean Extended Inferred Average Precision)), while for some 

others (e.g. bridge: 0,02MEIAP) the performance is very low (Markatopoulou, et al., 2013). Therefore, 

the representation is based on visual concepts for which the trained models can perform decently.  

3   The Proposed Supervised Extraction Model 

Our model, in general, is composed of the following steps:  

    For each document: 

(1) Extract all possible n-grams (n=1, 2, 3) that do not contain stop-list words.  

(2) Transform these n-grams into lower case. 

(3) Apply all baseline textual extraction methods on these n-grams.  

(4) Apply variable selection using Random Forests on all textual features (the results of the textual 

baseline methods) in order to find the best combination of the textual features (Genuer, et al. 

2010).  

122



 

(5) Extract visual keyphrases for each image and calculate the average score for each visual 

keyphrase to represent the document. 

(6) Apply variable selection using Random Forests on all visual features in order to find the best per-

forming visual features (Genuer, et al. 2010). 

(7) After the feature selection two fusion techniques are investigated: 

a. Early fusion: Concatenation of the textual and visual vectors in a single vector. In the case 

of unsupervised tasks (e.g. retrieval, clustering) the L1 distances between these vectors are 

considered to compute similarity measures. In supervised tasks (e.g. classification) we train 

a RF with the concatenated vector using as training set manually annotated documents. 

b. Weighted late fusion: In the case of unsupervised tasks similarity scores are computed in-

dependently for each modality and the results are fused. In order to calculate the weights a 

regression model based on Support Vector Machines is applied. In the case of supervised 

tasks we train two RF (i.e. one for each modality) using a manually constructed training set 

and finally we apply weighted late fusion based on the OOB error estimate using the ap-

proach mentioned in chapter 2. 

4   Conclusions and Future Work 

The proposed approach is work in progress so specific results are not yet available. However, initial 

results using weighted late fusion (based on OOB estimate) of textual features and visual low level 

features for a representative (i.e. histograms and not concepts) have shown that the results are im-

proved when compared to the ones generated with using only textual features. The next steps of this 

work include application of the proposed method to retrieval, clustering and classification problems of 

web pages and news articles, which include multimodal information such as text and images. 

Future directions for research are: (1) Developing additional baseline methods for keyphrase ex-

traction, (2) Applying other ML methods in order to find the most effective combination between 

these baseline methods, (3) Conducting more experiments using additional documents from additional 

domains (5) Development of Methodology for predefined visual concept selection, and (6) Applying 

ML to extract keyphrases using both textual and low level visual features. 

Concerning research on additional domains, there are many potential research directions. For in-

stance the following research questions can be addressed: (1) Which baseline extraction methods are 

good for which domains? (2) Which are the specific reasons for methods to perform better or worse on 

different domains? (3) Which are the guidelines to choose the correct methods for a certain domain? 

(4) Can the appropriateness of a method for a domain be estimated automatically?  
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