
D S Sharma, R Sangal and J D Pawar. Proc. of the 11th Intl. Conference on Natural Language Processing, pages 362–367,
Goa, India. December 2014. c©2014 NLP Association of India (NLPAI)

Named Entity Based Answer Extraction form Hindi Text Corpus Using
n-grams

Lokesh Kumar Sharma Namita Mittal
Dept. of Computer Science and Engineering Dept. of Computer Science and Engineering
Malaviya National Institute of Technology Malaviya National Institute of Technology

Jaipur, India Jaipur, India
2013rcp9007@mnit.ac.in Nmittal.cse@mnit.ac.in

Abstract

Most existing systems, are constructed for the
English language, such as state-of-art system
Watson that win the Jeopardy challenge.
While working with Indian languages (i.e.
Hindi), a richer morphology, greater syntactic
variability, and less number of standardized
rules availability in the language are just some
issues that complicate the construction of sys-
tems. It is also considered a resource-poor
language since proper gazetteer lists and
tagged corpora is not available for it. In this
paper, Named Entity (NE) based n-gram ap-
proach is used for processing questions writ-
ten in Hindi language and extract the answer
from Hindi documents. Combination of clas-
sical information retrieval term weighing
model with a linguistic approach mainly based
on syntactic analysis is used. We use a corpus
of 420 questions and 300 documents contain-
ing around 20,000 words as a back-end for
closed-domain (World History) Question
Answering. A Named Entity Recognizer is
employed to identify answer candidates which
are then filtered according their usage. Results
obtained using this technique outperforms the
previously used techniques (e.g. Semantic
Based Query Logic).

1 Introduction

With the advancement in technology, Question
Answering has become a major area of research.
Question Answering systems enable the user to ask
questions in natural language instead of a query
and retrieve one or many valid and accurate an-
swers in natural language. The explosion of infor-
mation on Internet, Natural language QA is

recognized as a capability with great potential
(Hirschman and Gaizauskas, 2001). Information
retrieval systems allow us to locate full documents
or best matching passages that might contain the
pertinent information, but most of them leave it to
the user to extract the useful information from a
ranked list. Therefore, professionals from various
areas are beginning to recognize the usefulness of
other types of systems, such as QA systems, for
quickly and effectively finding specialist informa-
tion. The QA technology takes both IR and IE a
step further, and provides specific and brief an-
swers to the user’s questions formulated naturally.
Hindi holds 5th position among top 100 spoken
languages in the world, with no. of speakers being
close to 200 million (Shachi et al., 2001) but com-
paring Indian languages with other languages,
word segmentation is a key problem in Indian
question answering. As per our knowledge not
much work has been done in Hindi as compared to
various other languages like English (Ittycheriah
et al., 2008), Chinese etc. This motivates for de-
veloping a Hindi question answering system (Vi-
shal and Jaspreet, 2013). Our dataset consists of
420 questions and 300 documents containing
around 20,000 words chosen from a specific do-
main (World History). Our model involves three
general phases which are as follows. The first
phase, Question Processing, involves analyzing
and classifying the questions into different catego-
ries. This classification later helps in Answer type
Detection. Further, in this module, a query is for-
mulated which is passed on to the next phase for
searching the relevant documents which might
contain the answer. In the second phase, Informa-
tion Retrieval, we have applied an algorithm called
Term Frequency-Inverse-Document-Frequency

362

(TF-IDF) (Ramos, 2003), which uses dot product
and cosine similarity rule to find the probability of
a given text in a given set of documents. This gives
us the list of relevant documents. The next phase,
Answer Extraction, uses bigram forming approach
(Wang et al., 2005) to retrieve the answer from a
given document. In this we have also used a pre-
built Hindi named entity recognition model which
categorizes the given text into different categories.

2 Related Work

Specific research in the area of question answer-
ing has been prompted in the last few years in
particular by the Question Answering track of
the Text Retrieval Conference (TREC-QA)
competitions (Satoshi and Ralph, 2003). Recent-
ly IBM Watson defeated two human winners and
win the Jeopardy game show. Watson uses very
complex algorithm to read any given clue. At the
first stage in question analysis Watson does pars-
ing and semantic analysis using a deep Slot
Grammar parser, a named entity recognizer, a
co-reference resolution component, and a rela-
tion extraction component (Lilly et. al 2012).
Our work uses similar approach by using named
entity taggers and parsing. Research work has
been done in Surprise Language Exercise (SLE)
within the TIDES program where viability of a
cross lingual question answering (CLQA) (Sha-
chi et al., 2001) has been shown by developing a
basic system. It presents a model that answers
English questions by finding answers in Hindi
newswire documents and further translates the
answer candidates into English along with the
context surrounding each answer (Satoshi and
Ralph, 2003). Another approach taken by some
researchers (Praveen et al., 2003) presents a
Hindi QA system based on a Hindi search en-
gine that works on locality-based similarity heu-
ristics to retrieve relevant passages from the
corpus over agriculture and science domain.
Some researchers (Sahu et al., 2012) discusses
an implementation of a Hindi question answer-
ing system “PRASHNOTTAR”. It presents four
classes of questions namely: “when”, “where”,
“what time” and “how many” and their static
dataset includes 15 questions of each type which
gives an accuracy of 68%. In addition to the tra-
ditional difficulties with syntactic analysis, there
remains many other problems to be solved, e.g.,

semantic interpretation, ambiguity resolution,
discourse modeling, inference, common sense
etc.

3 Proposed Approach

Question Processing is the first phase of our pro-
posed question answering model in which we ana-
lyze the question and create a proper IR query
which is further used to retrieve some relevant
documents which may contain the answer of the
question. Another task is question classification to
classify a question by the type of answer it re-
quires. The former task is called Question Classifi-
cation and the latter one is known as Query
Formulation. Both these aspects are equally impor-
tant for Question Processing.

3.1. Question Classification

The goal of Question Classification is to accurately
assign labels to questions based on expected an-
swer type. Hence, we detect the category of a giv-
en question.

Question Phrase Answer Type (AT)
Èया AT:Desc, Single type can-

not be decided
कब Date

कहाँ Location

Ǒकतनी Ǒकतना
Ǒकतने

Number

कौनसा कौनसी Answer type depends on
next following word

Ǒकसका Ǒकसकȧ
कौन Ǒकसे Ǒकसने

Person

Èयɉ AT:Desc, Single type can-
not be decided

कैसे AT:Method, Single type
cannot be decided

Ǒकस Answer type depends on
next following word

Table 1. Possible Answer Type Based on Question
Phrase

In English there are 6 main categories namely
LOCATION, PERSON, NUMERIC, ENTITY,
ABBREVIATION and DESCRIPTION and but for

363

Hindi we have taken only 4 categories for our ca-
tegorization process includes PERSON, COUNT,
DATE and LOCATION. We applied proposed al-
gorithm over the following answer types hig-
hlighted in table 1. The output file contains the
previously mentioned category of question to
which it belongs followed by the question itself
and thus mapping from questions to answer types
is done here. After categorization of the question,
we store it in a file, so that it can be used later for
answer extraction. Here is an example. Suppose we
have the following question, लोक अदालत कȧ
शǽुआत राजःथान मɅ सबसे पहले कहां हुई ? Then

the output file will contain: LOCATION: लोक
अदालत कȧ शǽुआत राजःथान मɅ सबसे पहले कहां
हुई।

3.2. Query Formation

Query Formation is a technique to make the ques-
tion format such that it can be passed on to a sys-
tem which takes the input in the form of a query
and searches out the relevant documents i.e. the
documents which have the maximum probability
of containing the answer. For this purpose, we
have formulated a query by extracting the main or
focus words (Haung, 2008) of the question by re-
moving the stop words occurring in the question.
For this, we have used a file containing a prebuilt
list of stop words. Examples of some stop words
are: (के, का, हुई, है, पर, इस, होता, , बनी, नहȣं, तो,
हȣ, या, एवं, Ǒदया, हो, इसका, था, Ʈारा, हुआ, तक,

साथ, करना, कुछ, सकते, Ǒकसी, हुई) After stop

words removal, the text looks like this: लोक
अदालत शǽुआत राजःथान पहले After removal of
these less important words from the question, the
resultant output can be used as a query for the in-
formation retrieval system which involves the next
part of the model.

3.3. Relevant Information Extraction

The task of Information Retrieval phase is to query
the IR Engine, find relevant documents and return
candidate passages that are likely to contain the
answer. In our model, our dataset is scattered over
various documents, each containing question re-

lated text along with its answer. Then we per-
formed a search within these documents in order to
find out such documents which may contain the
answer. And for this purpose, we have applied an
algorithm called TF-IDF; it gives as output the list
of various documents which may contain any of
the given words from the query. The term frequen-
cy (TF) for a given term ti within a particular doc-
ument dj is defined as the number of occurrences
of that term in the dj

th document, which is equal to
ni,j: the number of occurrences of the termti in the
document dj.

TFi,j = ni,j

IDF(ti) = loge(Total number of documents / Num-
ber of documents with term t in it).

IDFi = ௟௢௚ |஽|
|ሼௗ׷ ௧௜ א ௗሽ|

With |D|: total number of documents in the collec-
tion and |{d : ti א d}|: number of documents where
the term ti appears. To avoid divide-by-zero, we
can use 1 + |{d : ti א d}|. For a given corpus D,
then the TF-IDF is then defined as:

(TF-IDF)i,j = TF i,j × IDFi.

The input of TF-IDF is the file which contains fo-
cus words of the question i.e. the output of query
processing. When TF-IDF algorithm was applied
on this file, it gave as output the relevant docu-
ments i.e. documents having maximum probability
of containing the answer. TF-IDF numbers imply a
strong relationship with the document they appear
in, suggesting that if that word were to appear in a
query, the document could be of interest to the user
(Ramos, 2003). For our given example, the given
method extracted the following:

औधोिगक ǒववादɉ के ×वǐरत िनपटारे के Ǒकए जयपुर
ǔःथत राजःथान उÍच-Ûययालय मɅ 20 जुलाई को मेगा
लोक अदालत का आयोजन Ǒकया जाएगा । लोक

अदालत कȧ शुǽआत राजःथान मɅ सबसे पहले कोटा मɅ
हुई । </146.txt>
146 is the document number from which it extracts
the passage. Then we take the mentioned docu-
ments and retrieve all its content in a separate file
which is further used to find answers in the answer
extraction phase.

3.4. Answer Extraction
364

The final task of a QA system is to process the
relevant Passages (which we get after Information
Retrieval phase) and extract a segment of word(s)
that is likely to be the answer of the question.
Question classification comes handy here. There
are various techniques for answer extraction. We
have used the following steps to extract answer.
Step 1: Take the file containing the text and re-
move all of its stop words.
Step 2: Take the file which contains the question
and form its bigrams i.e. form words taking twice
a time and stored it in a file.
Step 3: Then take the output file and form the
bigram of the text it contains and match it with
the file which contains the question’s bigrams.
Step 4: Save the number of bigrams matched for
each line to the question’s bigrams.
Step 5: Output the line which contains the maxi-
mum number of bigrams matched.
We have the following output after removing stop
words from the passage:

औधोिगक ǒववादɉ ×वǐरत िनपटारे जयपुर ǔःथत

राजःथान उÍच-Ûययालय 20 जुलाई मेगा लोक

अदालत आयोजन जाएगा लोक अदालत शǽुआत

राजःथान पहले कोटा
After storing this output file as a target document.
The questions are stored in a separate file of their
bigrams i.e. taking two words together (Wang and
McCallum, 2005). Storing the outcome in a file
called QBigram-feature file. This gave us the fol-
lowing output,

Q-Bi-gram(feature) = {(लोक अदालत)1, (अदालत
शǽुआत)2, (शुǽआत राजःथान)3, (राजःथान पहले)4,

(पहले हुई)5}

The given passage will have following bigrams,

P-Bi-gram(feature) = {(लोक अदालत)1, (अदालत

शǽुआत)2, (शुǽआत राजःथान)3, (राजःथान पहले)4,

(पहले कोटा)5, (कोटा हुई)6}

Now these bigrams will be matched with the ques-
tion’s bigram as per our designed algorithm. The
concept in this is, the line which contains the max-
imum number of two words same at a time will

have maximum probability of containing the an-
swer. So when we do this we will get following
line as output:

लोक अदालत कȧ शǽुआत राजःथान मɅ सबसे पहले

कोटा मɅ हुई । </146.txt>

Now we pass the question containing file to the
prebuilt Hindi Named Entity Recognition (NER)
System (Maksim and Andrey, 2012) which will tag
the given text into the aforementioned 5 categories.
The NER gives output as following:

लोक o both

अदालत o both

शǽआत o both

राजःथान LOCATION GAZETTEER

पहले o both

As we know the possible type of answer from the
question classification method which we have ap-
plied earlier, we can remove those named entities
which are present in both answer and the question,
as they will not be the required answer. And hence,
the remaining tagged entity will be our required
answer. After removing the named entities which
are tagged in the question, following words are left
in the text: लोक अदालत शǽुआत पहले कोटा Now
running the NER on the output line again, getting
the tagged output:

लोक o both

अदालत o both

शǽआत o both

पहले o both

कोटा LOCATION GAZETTEER

Through this output, we extract the entities which
matches the Answer Type which we have detected
earlier i.e. Answer Type Detection (Roberts and
Hickl, 2008) is done on the output. For example in
our case here the Answer Type is LOCATION, so
we extract the entity which is tagged as location
which is <कोटा>.

365

Figure 1: Proposed Named Entity Based QA System Architecture

Hence, this is our final answer. Overall system
architecture is shown in figure 1.

4. Experimental Setup and Analysis

To evaluate the effectiveness of the proposed
methods for answer extraction from Hindi cor-
pus, 300 standard documents datasets is used.
The accuracy for the questions of category ‘कब’,

‘कहाँ’, ‘Ǒकतनी, Ǒकतना, Ǒकतने’, and ‘Ǒकसका,
Ǒकसकȧ’ is satisfactory in proposed approach
shown in table 2. The accuracy of question type
‘Ǒकस समय’ is not considered by the proposed
approach because the answer type of this ques-
tion has been not considered. The accuracy of
the question type ‘कब’, ‘कहाँ’, and ‘Ǒकसका
Ǒकसकȧ’ is highly accurate. Some question has
low syntactic information to reach the answer,
and it is difficult for the system to answer. For
such a questions it may have multiple documents
and multiple matches in these documents, an
algorithm may not extract every answer in the

dataset perfectly. For every question, first com-
pute its precision (P) and its recall (R) by taking
the dataset as gold standard answers as the rele-
vant answer and the predicted answer at the re-
trieved set. Now, taking an average of P and R
over all Topics. Now, calculating macro F1 us-
ing the harmonic mean of the average P and R,

૚ࡲ ࢕࢘ࢉࢇ࢓ ൌ
૛ࡾࡼ

ሺࡼ ൅ ሻࡾ

Where,

ܲ ൌ ௖௢௥௥௘௖௧

௥௘௧௥௜௘௩௘ௗ
 and ܴ ൌ ௖௢௥௥௘௖௧

௥௘௧௥௜௘௩௘ௗ
 .

Accuracy (F1-measure) is calculated which out-
performs existing Semantic Based Query Logic
approach comparison results are highlighted in
the Table 2.

Type of
Question

(Total 420
Question)

Accuracy (macro F1)

(Semantic
Based Query

Logic)

(Proposed
Approach- NE
Based n-gram)

366

कब 66.66% 74.33%

कहाँ 53.00% 86.66%

Ǒकतना
Ǒकतने

Ǒकतनी
73.33% 72.50%

Ǒकसका
Ǒकसकȧ - 82.75%

Total 64.33% 79.06%

Table 2. Accuracy of the proposed approach

The question set of 420 questions1 and supported
answer documents used in this work are manual-
ly collected from web. The documents have an-
swer for every question still it is not easy to
extract correct answers for all questions.

5. Conclusion and Future Work

In this paper, Question answering for Hindi
language has been experimented on 420 natural
language questions. Results outperforms the
previously used semantic based logic query
approach. Using this approach, we achieved
state-of-art results for most of the question
types namely Person, Location, Date and
Count. But as this approach is syntactic, so us-
ing this approach we able to get answers for
factoid questions. Text where usage of syn-
onyms or hyponyms of words is seen, accurate
answers could not be extracted. Such issues can
be dealt by introduction of the semantic ap-
proach. Results can be improved by adding fea-
tures like entailment, co-reference etc in the
answer extraction phase. Improving the accura-
cy of Hindi NER will also help in improving
the accuracy of the system. Also, as our model
is domain based, one can extend its domain by
using a searching algorithm over the Wikipedia
or other online resources.

References

Hirschman L., Gaizauskas R., “Natural language
question answering: the view from here”, Natural
Language Engineering, v.7 n.4, p.275-300, De-
cember, 2001.

1 https://code.google.com/p/hindiqset/

Ittycheriah et al., “IBM’s Statistical Question
Answering System”, In Proceedings of the Ninth
Text Retrieval Conference (TREC-9), 2000. Ro-
berts, K., & Hickl, A, “Scaling Answer Type De-
tection to Large Hierarchies”, In Proceedings of
LREC, May 2008.

Lally A., Prager J. M., McCord M. C., Boguraev B.
K., S. Patwardhan, Fan J., Fodor P., and Chu-
Carroll J., “Question analysis: How Watson reads
a clue”, IBM J. Res. Dev., vol. 56, no. 3/4, Paper
2, pp. 2:1–2:14, May/Jul. 2012.

Maksim Tkachenko, Andrey Simanovsky, “Named
Entity Recognition: Exploring Features”. In Pro-
ceedings of KONVENS 2012, Vienna, September
20, 2012.

Praveen Kumar, Shrikant Kashyap and Ankush Mit-
tal, "A Query Answering System for E-
Learning Hindi Documents", South Asian Lan-
guage Review Vol. XIII, Nos. 1&2, January-
June,2003.

Ramos J., “Using TF-IDF to determine word relev-
ance in document queries”. In Proceedings of the
First Instructional Conference on Machine Learn-
ing, December 2003.

Roberts K. and Hickl A, “Scaling Answer Type De-
tection to Large Hierarchies”, In Proceedings of
LREC, May 2008.

Sahu S., Vasnik N., and Roy D., “Prashnottar: A
Hindi Question Answering System”, International
Journal of Computer Science and Technology, Vol
4, pp. 149-158, 2012.

Satoshi Sekine and Ralph Grishman, “Hindi-English
cross-lingual question-answering system”, ACM
Transactions on Asian Language Information
Processing (TALIP), v.2 n.3, p.181-192, Septem-
ber 2003.

Shachi Dave, Pushpak Bhattacharya & Dietrich Kla-
kowya, “Knowledge Extraction from Hindi Text”,
Journal of Institution of Electronic and telecom-
munication engineers, 18(4), 2001.

Vishal G. and Jaspreet K., “Comparative Analysis of
Question Answering System in Indian Languages”,
International Journal of Advanced Research in
Computer Science and Software Engineering” 3(7)
pp.584-592, July 2013.

Wang X. and McCallum A., “A note on topical n-
grams”, Massachusetts University Amherst Dept
of Computer Science, 2005.

367

