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Abstract

This work investigates situations in the de-
coding process of Phrase-based SMT that
cause particular errors on the output of
the translation. A set of translations post-
edited by professional translators is used
to automatically identify errors based on
edit distance. Binary classifiers predicting
the sentence-level existence of an error are
fitted with Logistic Regression, based on
features from the decoding search graph.
Models are fitted for 3 common error types
and 6 language pairs. The statistically sig-
nificant coefficients of the logistic function
are used to analyze parts of the decoding
process that are related to the particular er-
rors.

1 Introduction

Evaluating the output of Machine Translation
(MT) has been in the focus since the first devel-
opments of the field. There have been several ef-
forts to measure the translation performance, or to
identify errors by defining manual and automatic
metrics.

Advanced automatic metrics and Quality Esti-
mation methods have introduced machine learn-
ing (ML) techniques in order to predict indica-
tions about the quality of the produced transla-
tions (Lavie and Agarwal, 2007; Stanojevic and
Sima’an, 2014). When compared to traditional
automatic metrics, ML techniques allow acquir-
ing knowledge about the quality of the translation
out of a big amount of features. Such features
are typically black-box features, generated by au-
tomatic analysis over the text of the source or the
translations, or less often glass-box features, de-
rived from the internal functioning of the transla-
tion mechanism.

In this work, we focus on the glass-box fea-
tures. However, instead of focusing on the e20
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formance of a quality assessment mechanism, we
look backwards into what happened during the de-
coding process and led into known errors in the
translation output.

2 Problem definition

This work uses ML in order to fit a statistical
model, associating properties and events of the de-
coding process with the existence of particular er-
rors of a phrase-based statistical MT system. Such
a model optimizes a function f:

Y =f(X)=80X (1)
where:

e X is the independent variable, i.e. a feature
vector representing properties and events of
the decoding process and has been extracted
from the decoding search graph

e Y is the dependent variable, i.e a value pre-
dicting the existence of errors

e (3 is a weight vector estimated by ML to min-
imize the error of the function o, given sam-
ples of X and Y. This vector contains coef-
ficients for each one of the features. Given a
well-fit model and a relevant statistical func-
tion, these coefficients can indicate the im-
portance of each feature.

Our aim is to use the 3 coefficients in order to ex-
plain several behaviours of the decoding process,
relevant to the errors. The exact formulation of the
statistical function o is given in Section 4.3.

Our intention is to not train the model using as a
dependent variable a complex quality metric such
as BLEU (Papineni et al., 2002) or WER, since
this would increase complexity by capturing many
issues in just one number. Instead, we choose a
more fine-grained approach, by focusing onto spe-
cific type of errors that occur often in machine
translation output (Section 4.1).
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3 Related Work

Error detection for MT and Quality Estimation
is an important component of post-editing ap-
proaches. Our work focuses solely on features de-
rived from the decoding process.

The first experiments on “Confidence Estima-
tion” make use of a small number of Statistical
Machine Translation (SMT) features in order to
train a supervised model for predicting the qual-
ity of the Translation (Blatz et al., 2004). Later
work, identified as “Quality Estimation”, defines
such features as “glass-box” features (Specia et
al., 2009). 54 glass-box features are shown to
be very informative, when fitted in a regression
model, along with other black-box features.

Avramidis (2011) uses decoding features in a
sentence-level pairwise classification approach for
Hybrid MT in order to select the best translations
out of outputs produced by statistical and rule-
based systems, whereas a corpus of machine trans-
lation outputs with internal meta-data was released
at that time (Avramidis et al., 2012). Later works
use glass-box features in order to predict numeri-
cal indications of translation quality, such as post-
editing effort (Rubino et al., 2013; Hildebrand and
Vogel, 2013) or post-editing time (Avramidis et
al., 2013). Contrary to these works, we only pre-
dict specific error types, with the focus on under-
standing the contribution of the features.

Prediction of specific error types was included
in the shared tasks of the 8th and 9th Workshop
on Statistical Machine Translation (Bojar et al.,
2013; Bojar et al., 2014). Several participants con-
tributed systems that predict error types (Besacier
and Lecouteux, 2013; Bicici and Way, 2014; de
Souza et al., 2014). In that case, prediction was
done on the word level and contrary to our experi-
ments, no glass-box features were used, therefore
there was no connection of the ML with the de-
coding process.

Guzman and Vogel (2012), in the work that is
most related to ours, aim to identify the contribu-
tion of the features. Similar to several previously
mentioned works, a multivariate linear regression
model is trained in order to predict continuous
quality values of complex metrics. Although the
aim of this work is similar to ours, we work in a
more fine-grained way: instead of modelling met-
rics, we try to explain the contribution of the de-
coding features on the occurrence of specific error
types. 21

4 Methods

4.1 Error detection

The errors on the target output are used as a train-
ing material for the supervised ML algorithm.
They are identified as a subset of commonly ob-
served error categories (Vilar et al., 2006). For our
purpose we focus on missing words, extra words
and re-ordering errors, since our data give suffi-
cient amounts for training a statistical model on
these error categories.!.

In order to detect the errors on the trans-
lation output, we follow the automatic method
by Popovi¢ and Ney (2011), which has shown to
correlate well with human error annotation. This
method automatically detects errors based on the
edit distance of the produced translation against a
reference human translation. An example of how
errors are detected can be seen in Figure 1.

4.2 Phrase-based SMT search graph

The glass-box features are extracted from the de-
coding process of a phrase-based SMT system
(Koehn et al., 2003) with cube-pruning (Huang
and Chiang, 2007). The decoding process per-
forms a search in various dimensions, calculat-
ing scores for many phrases and hypothesis ex-
pansions. Most scores are difficult to be inter-
preted as glass-box features in their initial form.
The amount of scores calculated per sentence is
not fixed, whereas the basic requirement for each
feature is to have only one value that is valid on
a sentence level, so that it can be used in the sen-
tence error prediction model.

For this purpose, we process the verbose out-
put of the decoder and derive scores, counts and
other statistics that can have this sentence-level in-
terpretation. When decoding steps contain a num-
ber of scores which is not fixed for every sen-
tence, we extract features out of their statistics,
such as the mean and the standard deviation, the
minimum/maximum value and their position in the
sentence. An example of how some of these fea-
tures are extracted is illustrated in Table 1. On
the upper part of the table, one can see the log-
probability and the future cost estimate for each
one of the phrases in the sentences. On the lower
part we demonstrate some statistics that are de-
rived from the scores and the positions of the
words in the upper part.

! Although previous work defines 5 error types, not all of
them could be sufficiently modelled given this amount of data



source:
griffe etwas im Dunkeln tappen.
translation:
in the dark.
post-editing:

Uberraschenderweise zeigte sich, dass die neuen Riite in Bezug auf diese neuen Be-
Surprisingly, showed that the new councils in relation to these new concepts slightly

Surprisingly, [miss:it] [lex:seems] that the new [lex:councillors] [miss:are] [reorder:

slightly in the dark] in relation to these new concepts.

Figure 1: Example of the results found with the automatic error detection process. One can see missing
words, reordering of 4 words and some lexical errors, which are not discussed in this work

Similar practice is applied to extract the entire
set of 104 glass-box features, which includes:

Phrase counts and positions: The produced
translation consists of sets of phrases that are cho-
sen as the most probable hypothesis. On this hy-
pothesis we count the number of phrases, words,
the length of the phrases, the length difference be-
tween source and aligned target phrases and also
the position of the shortest and the longest phrase
in the sentence.

Unknown tokens are words or phrases that are
not found in the phrase table. Their count, their
ratio and their position in the translated sentence
(average position, standard deviation of their posi-
tions, position of first and last unknown word) are
included as features.

Translation probabilities: Log probability (pC)
and future cost estimate (c) are available for each
phrase of the chosen hypothesis. We extract their
average, standard deviation and also their min-
imum and maximum values and their position
in the sentence. Additionally, we count phrases
whose pC or ¢ is too low or too high. This is done
by checking whether their values are out of the
standard deviation of all phrases in the sentence.

Time: The decoder reports the time required for
the entire translation process, the search, the lan-
guage model calculation, the generation of hy-
potheses other than the ones chosen and for col-
lecting translation options. We use these as fea-
tures, also averaged over the entire translation
time.

Decoding graph: These features come from the
entire set of alternative phrase hypotheses gener-
ated during the search. From the entire set of alter-
native hypotheses he derive statistics for their log
probability, the future estimate (average, standard
deviation, count of alternative phrase hypotheses
lower and higher than the standard deviation). 22

4.3 Machine Learning

The existence of an error (binary classification) is
modelled with logistic regression. It is a widely-
used ML method that optimizes a logistic function
to predict values Y in the range between zero and
one (Cameron, 1998), given a feature set X:

1

Y = B [e) X = —1 + 6—1(a+6X)

2)
For fitting the model we use the Newton-Raphson
algorithm, which minimises iteratively the least-
squares error given the training data (Miller,
2002). The regression fitting included Stepwise
Feature Set Selection (Hosmer, 1989).

In order to assess the contribution of individ-
ual predictors in a given model, we examine the
significance by calculating a p-value for each of
them. This is the probability that the beta coef-
ficient differs from 0.0. The probability is com-
puted based on Wald statistic of each co-efficient,
following the x? distribution. The Wald statistic is
the ratio of the square of the regression coefficient
to the square of the standard error of the coeffi-
cient (Menard, 2002; Harrell, 2001).

S Experiment

5.1 Data and models

For the purpose of our analysis we train one logis-
tic regression model per error category and lan-
guage pair, practically resulting into 21 models.
We include a set of models trained on the data
from all the language pairs, in order to model cases
that are independent of the languages involved in
the translation, or that are not statistically signifi-
cant in single language pairs, due to data sparsity.

The experiment is based on data from
WMT11 (Callison-Burch et al., 2011), augmented
with a small amount of data of WMT10 (Callison-
Burch et al., 2010) and technical documentation
of mechanical engineering equipment, as provided



source: [liberraschenderweise] [zeigte sich] [, dass die neuen] [Réte] [in Bezug
auf] [diese neuen] [Begriffe] [etwas] [im Dunkeln tappen .]

translation: [surprisingly ,] [showed] [that the new] [councils] [in relation to]
[these new] [concepts] [slightly] [in the dark .]

position phrase pC c
[0..0] surprisingly , —0-770335 —2-69341
[1..2] showed —1-54184 —2-81277
[3..6] that the new —0-563381 —2-65923
[7..7] councils —0-386571 —1-98291
[8..11] in relation to —1-29663 —2-85591
[12..13] these new —0-332607 —2-17422
[14..14] concepts —0-540415 —2-01213
[15..15] slightly —0-585549 —2-00382
[16..19] in the dark . —1-48327 —3-90992
minimum —1-54184 —3-90992
maximum —0-332607 —1-98291
average (avg) —0-83334 —2-56715
standard deviation (std) 0-448 0-5862
no of phrases with score lower than avg-std 3 1

no of phrases with score higher than avg+std 1 0
averaged position of phrase with lowest score 0-11111 0-88889
averaged position of phrase with highest score 0-55556 0-33333

Table 1: Example glass-box feature extraction from the decoding result. Decoding scores such as phrase
log probability (pC) and future cost estimate (c), whose number is not the same for every sentence (upper
part of the table), are reduced to a fixed feature vector based on basic statistics (shown on the lower part

of the table)

by a translation agency. The amount of sentences
originating from each data source per language
pair is shown in Table 2. Almost half of these
sentences are given to professional translators,
with the instructions to perform as few changes as
possible in order to correct the translations. The
size of the corpus and the number of post-edited
(p-e) sentences can be seen in Table 3.

Minimal post-editing is considered to be ideal
for automatic error detection. In contrast, refer-
ence translations may contain severe alterations to
the structure of the sentence, misleading the au-
tomatic error detection. Nevertheless, as it can
be seen in 3, the amount of sentences for cer-
tain error types and language pairs may be too
small, leading to a severely sparse set of training
data and therefore weak models. Consequently,
as it was not technically possible to acquire post-
editing on a bigger amount of data, we perform
error-detection on a mixture of post-editions and
reference translations, in case this increases tHe

quality of the statistical models. Preliminary ex-
periments confirmed the positive effect, as the pre-
cision and recall was increased on most models
(even up to 29%) when adding errors detected on
reference translations to the ones detected on post-
editing. Despite some obvious drawbacks, this
move is also motivated by the fact that the orig-
inal experiments that showed the accuracy of the
automatic error detection (Popovi¢, 2011a) were
also performed against reference translations.

5.2 Experiment set-up

As a statistical phrase-based system we trained
one Moses (Koehn et al., 2007) system per lan-
guage direction, using Europarl (Koehn, 2005)
and News Commentary corpora’. Its settings
follow the WMT11 baseline, including a com-
pound splitter for German-English and a truecaser
for all language pairs. The system was tuned

*News Commentary was used only for German-English
due to lack of alignments for the other languages



de-en | de-fr | de-es | en-de | fr-de | es-de
wmt10 118 30 14 74 0
wmtl1 952 952 1087 | 977 101
customer | 741 0 430 0 0 830
total 1811 | 982 | 543 1101 | 1051 | 931

Table 2: Amount of senteces from various sources per language pair

lang sentences reordering err. | missing words | extra words
total p.e | total p.e | total p.e | total p.-e

de-en | 1811 1139 | 1043 474 1 1079 570 | 869 454
en-de | 1101 315 | 891 232 | 671 151 | 722 208
de-fr | 982 198 | 819 157 | 597 80 | 630 147
fr-de | 1051 122 | 851 88 | 691 76 | 621 66
de-es | 543 543 | 288 288 | 322 322 | 186 186
es-de | 931 931 | 345 345 | 333 333 | 339 339
all | 6419 3248 | 4237 1584 | 3693 1532 | 3367 1400

Table 3: The size of the corpus per error category and language pair. p.e. indicates the number of

sentences that were minimally post-edited by professional translators

with MERT using the news corpus test set from
WMTO07 (Callison-Burch et al., 2007). The de-
coding features are extracted from Moses’ verbose
output of level 2. Our target language model with
an order of 5 is trained with SRILM toolkit (Stol-
cke, 2002), based on the respective monolingual
training material. The Orange toolkit (Demsar et
al., 2004) is used for processing and running the
Logistic Regression algorithms. The Hjerson tool
(Popovié, 2011b) was used in order to detect errors
on the translation.

6 Results

6.1 Model performance

A necessary step is to check how well each model
fits the data, since a well-fit model is required for
drawing conclusions. For this purpose we perform
cross-fold validation with 10 folds. The precision
and recall scores are shown in Table 4. Precision
indicates the ratio of the predicted sentences that
contain an error, whereas recall indicates the ratio
of the sentences that have an error and are success-
fully predicted.

The model predicting the existence of reorder-
ing errors has the highest precision and recall
on all individual language pairs and achieves a
generally high precision of about 83-87% (apart
from Spanish-German). The model of predict-
ing missing words seems most successful on the
dataset combining all language pairs. Extraneod$t

words have models with much lower scores, which
means that it is more difficult to draw conclusions.

6.2 Analysing coefficients

We proceed to the analysis by considering the
coefficient of the fitted logistic function (function
2) for each feature. Additionally, the confidence
p-value indicates the evidence that the respective
feature contributes to the prediction of the out-
come.

The feature coefficients given by the fitted logis-
tic function vary per error category and language
pair. This is understandable, given the fact that the
translation systems and the test sentences are quite
heterogeneous among language pairs.

Interpretation of the feature coefficients may
vary. The most clear indication is the positive
or negative sign of each coefficient. Addition-
ally, one has to note that several features result
as a mathematical function of other features; thus,
when they all occur in the logistic function, ex-
plaining the coefficients of a feature should not
neglect the existence of the features that are math-
ematically related to it.

In order to lead to useful conclusions, we show
the feature coefficients who seem to have a statis-
tically significant relation to known functionality
of the decoding process for several language pairs.
Conclusions are detailed per error category, based
on Tables 5, 6 and 7 which include the beta co-



all
prec rec

de-en
prec rec

de-fr
prec rec

de-es
prec rec

en-de
prec rec

fr-de
prec rec

es-de
prec rec

ext Jo 70 .68 59 | 72 .82
miss | .85 .88 |.75 76| .67 .79
reord | .70 .79 | .83 .81 | .88 .96

61 52173 8 |.67 76| .62 .53
80 82|.67 78].70 86 |.64 .52
L5 82|18 93|87 92|.77 .0

Table 4: Precision (prec) and recall (rec) of the logistic regression model, measure with cross-validation.
There is one model per combination of language pair and error category; plus one model trained on data
from all language pairs per error category. High precision and recall indicate that the model is well-fit.

efficient and the respective p-value for statistical
significance. Coefficients not appearing in specific
cells of the table have been eliminated by the step-
wise feature set selection. For a few language pairs
we also include coefficients with p-values higher
than our confidence level, when the same coeffi-
cient is statistically significant for some other lan-
guage pairs.

6.2.1 Reordering errors

The coefficients for the reordering errors are
shown in Table 5. First, the sentence-level ratio
of unknown words (unk-per-tokens) the standard
deviation of the position of an unknown token in
the translated sentence (unk-pos-std) has a positive
effect towards the creation of a reordering error. A
high standard deviation means that unknown to-
kens are scattered in distant places along the sen-
tence; being “unknown” they cannot be captured
by the lexical reordering model and it is therefore
likely that they cause an erroneous phrase order in
the parts of the sentence where they occur. This
is confirmed for 3 of our models (Table 5) with p-
value p <0.10, including the model trained on all
language pairs.

Calculating the length difference between the
source phrases and the aligned target phrases
chosen for the translation output provides a use-
ful feature too. The maximum difference of all
source-phrase lengths minus the respective cho-
sen target-phrase lengths (src-tgt-diff-max) has a
positive effect into creating a reordering error.
This effectively occurs for cases when the decoder
chooses to translate a source phrase with a much
shorter target phrase. Invertedly, the smallest dif-
ference between source and target phrase (src-tgt-
diff-min) has a negative effect on creating reorder-
ing errors. The two indications are confirmed with
a positive statistically significant coefficient for 6
cases in our models.

All of our translation systems into German i

crease their reordering errors due to a big length of
the longest source phrase chosen by the decoder
(src-phrase-len-max). This may be due to the fact
that German language has significantly different
word order than the other languages and this re-
sults into a common error for SMT systems.

6.2.2 Missing words

For the language pairs indicated in Table 6,
there is a positive effect on having missing words
by the standard deviation of the phrase log
probability (pC-std) and the position of the
phrase with the lowest log probability (pC-min-
pos) towards the end of the sentence, confirmed
by our logistic regression models for 4 language
pairs. Similar are the conclusions for the future
cost estimate (c-avg) averaged to the number of
phrases, and the number of phrases with low fu-
ture cost estimate, i.e. when it is lower than the
mean of all phrases minus the standard deviation.
These features reflect situations during the decod-
ing when dropping a phrase results to a higher
overall probability. This may occur due to the low
probability and the high future cost estimate of all
the possible translations of the phrase.

In other cases, there may be words missing
when the phrase alignments chosen for translat-
ing the source sentences are longer, namely when
the average source length (src-phrase-len-avg)
is higher and the length of the shortest source
phrase (src-phrase-len-min) is lower. A positive
impact to having words missing is also given by
the standard deviation of the length difference
between respective source and target phrases
(src-tgt-diff-std), i.e. when the length between
aligned source and target phrases varies a lot.

6.2.3 Extra words

The coefficients from the models on extra words
are not so conclusive, due to their low precision
and recall. One can note that the time for cal-
culating the language model and the total time



all de-en de-fr de-es en-de fr-de es-de

B p B p B p B p B p B p B p
unk-per-tokens 2.08 .00 598 .07 3.03 .19
unk-pos-std 0.19 .00 | 022 .00 0.17 .15 | 025 .09
pC-var -1.42 .06 | -0.70 .37 | -10.66 .00 995 .01
src-phrase-len-max -0.50 .04 | 036 .17 | -1.45 .02
src-tgt-diff-min -0.26 .02 -0.60 .00 | -0.50 .06 | -0.84 .01
src-tgt-diff-max 027 .02 | 0.14 .30 024 21 0.83 .01 047 .13

Table 5: Indicative beta coefficients and their respective p-values for the features affecting the existence

of reordering errors.

all de-en de-fr de-es en-de fr-de es-de
B p B p B p | B p | B P B P B p

pC-min-pos 040 .00 | 057 .02 1.06 .03 .15 .01
pC-std 211 .00 | 1.14 50| 382 .13 | 946 .00 7.05 .02
c-avg 052 .02 | 0.66 .08 144 17 | 266 .07 | 2.14 .00
c-low A1 .20 19 .04 | 028 .18

src-phrase-len-avg 0.70 .00 1.23 .00 1.56 .01 1.74 .01
src-phrase-len-min | -048 .08 | -0.88 .13 | -0.86 .30 -1.10 .09 | -095 .38
src-tgt-diff-std 041 .02 | 087 .04 | 091 .08 1.06 .02 | 057 .16

Table 6: Indicative beta coefficients and their respective p-values for the features related to the error of

missing words.

of the translation (time-translation) get increased
when extra words occur, for some language pairs.
The effect of the standard deviation of the un-
known tokens (unk-pos-std) is opposite to what
it causes to the reordering errors: the closer the
unknown tokens are to each other, the more extra
words occur.

For some models, including the model built
on all language pairs, extra words correlate with
the length of the source sentence (total-source-
words), particularly when translating from English
and French into German. Three models also indi-
cate small but highly significant contribution by a
feature from the search graph: the count of alter-
native hypothesized phrases, whose log proba-
bility is lower than the standard deviation of the
log probability in their respective sentence (alt-
pC-low).

7 Conclusions and further work

We have provided statistical evidence for how the
functioning of the phrase-based SMT decoding
process affects the existence of three frequently
occurring error types. The existence of the er-
rors in a sentence is modelled over some decoding
process features with logistic regression, which re-
sulted into several models with satisfactory preci-
sion and recall values.

By grouping the observations by error type, we
managed to show important features (represen‘[in’-)g6

stages of the decoding process) that are common
for several language pairs at the same time. Most
of the indications observed are based on statisti-
cally significant coefficients.

One observation is that the chosen method is
traditionally employed to examine feature contri-
butions in a specific model, which is seldom gen-
eralized across different models. Moreover, al-
though the features in the decoding procedure do
affect the translation performance, there are con-
cerns that the logistic relationship between decod-
ing features and specific translation errors is very
large, so that the statistical relationship is hard
to be captured by simple binary classification ap-
proaches. Our next efforts will therefore look on
other machine learning methods, also considering
the possibility to model the amount and/or the ex-
act location of errors.

Further work could extend this effort by in-
cluding a wider range of error categories that de-
scribe better the requirements for a translation cor-
rect output. Instead of automatically detecting er-
rors on post-edited output, a possible extension
could consider modelling error types assigned by
humans. Additionally, the analysis of features
can be extended in order to cover other types of
machine translation, such as hierarchical phrase-
based translation and rule-based translation.

An obvious application of this analysis would
be incorporating the findings into the decoding



all de-en de-fr de-es en-de fr-de es-de
B P B P B p B P B P B P B P
pC-std 1.55 .09 | 2.06 .17 7.03 .03
pC-max-pos 0.38 .00 | 046 .04 1.29 .01
time-calculate-lm 0.89 .02
time-translation 0.52 .34 235 .06 | 027 37| 207 .10
unk-pos-std -0.02 .16 -0.11 .11 -0.21 .01
total-source-words 0.22 .01 0.18 .00 0.27 .01
alt-pC-low 0.01 .03 | 002 .06 | 0.04 .00

Table 7: Indicative beta coefficients and their respective p-values for the features affecting the existence

of erroneous extra words.

process, in order to improve it, e.g. by introduc-
ing features to the decoding engine that directly
indicates the factors that cause errors.
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