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Abstract

This paper describes a methodology for supporting the task of annotating sentiment in natural
language by detecting borderline cases and inconsistencies. Inspired by the co-training strategy,
a number of machine learning models are trained on different views of the same data. The predic-
tions obtained by these models are then automatically compared in order to bring to light highly
uncertain annotations and systematic mistakes. We tested the methodology against an English
corpus annotated according to a fine-grained sentiment analysis annotation schema (SentiML).
We detected that 153 instances (35%) classified differently from the gold standard were accept-
able and further 69 instances (16%) suggested that the gold standard should have been improved.

1 Introduction

This work pertains to the phase of testing the reliability of human annotation. The strength of our
approach relies on the fact that we use multiple supervised machine learning classifiers and analyse their
predictions in parallel to automatically identify disagreements. Those, in fact, ultimately lead to the
discovery of borderline cases in the annotation, an expensive task in terms of time when carried out
manually.

Predictions with a number of different labels are manually analysed, since they may indicate inconsis-
tencies in the annotation and cases difficult to annotate. Conversely, cases with high agreement suggest
that the annotation schema is reliable. On the one hand, the analysis of those disagreements, in conjunc-
tion with the gold annotations, provides fresh insights about the efficacy of the features provided to the
classifiers for the learning phase. On the other hand, when all the classifiers agree on a wrong annotation,
it is a strong signal of ambiguity in the annotation schema and/or guidelines.

In Section 2 we briefly introduce the data to which we apply the methodology described in Section 3.
In Section 4 we report results. In Section 5 we mention studies related to ours and in Section 6 we draw
conclusions and identify steps for future work.

2 Data

We tested our methodology on the SentiML corpus (Di Bari et al., 2013) for which the annotation
guidelines, as well as the original and annotated texts, are publicly available 1. The corpus consists of
307 English sentences (6987 tokens), taken from political speeches, TED talks (Cettolo et al., 2012), and
news items from the MPQA opinion corpus (Wilson, 2008).

The aim of its annotation is to encapsulate opinions in pairs, by marking the role that each word takes
(modifier or target). For example, in

“More of you have lost your homes and even more are watching your home values plummet”

there would be two pairs: modifier “lost” and target “homes”, and modifier “values” and target “plum-
met”. Such two pairs are called appraisal groups.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

1http://corpus.leeds.ac.uk/marilena/SentiML
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Figure 1: Example of dependency tree. Dependency trees provide features for the machine learning step.

For each of these elements several features are annotated that are believed to improve the task of
sentiment analysis. The study presented here relates to the automatic identification of modifiers and
targets.

3 Methodology

To test our methodology we selected a corpus for which various types of linguistic information related
to appraisal groups were annotated. We started with the identification of modifiers and targets, since this
represents the base of all the other levels of annotation.

To test the reliability of annotation we set 10% of our annotated corpus aside, and performed the
machine learning part of the study on the remaining 90% of our corpus.

The first step consists of preparing the features for the machine learning phase. The optimal set to
model the annotation task varies from problem to problem. We used the following:

• Word features, representing the ordinal identifier, word form, lemma and POS tag of each word.
• Contextual features, representing the lemma and POS tags of the preceding and succeeding words.
• Dependency-based features, representing the reference to the word on which the current token de-

pends in the dependency tree (head) along with its lemma, POS tag and relation type (see Fig-
ure 1) (Nivre, 2005).

• Number of linked modifiers, representing the number of adjectives and adverbs linked to the current
word in the dependency tree.

• Role, representing the predicted role (modifier or target) of the current token in conveying sentiment.
The predictions are computed using fixed syntactic rules.

• Gazetteer-based sentiment. We used the NRC Word-Emotion Association Lexicon (Mohammad,
2011) to represent the a-priori sentiment of each word, i.e. regardless of its context.

Once the features are ready, two or more feature partitions (called views in the co-training strategy)
have to be defined in order to be as orthogonal as possible (Abney, 2007). We opted for a linguistically-
grounded dichotomy: lexical features (word features, role and gazetteer-based sentiment) versus syntac-
tic features (contextual and dependency-based features, number of linked modifiers). The training and
test sets are split accordingly.

At this point, machine learning classifiers are chosen. These need to be confidence-rated, i.e. able to
provide a confidence rate for each prediction. In our experiments we selected Naı̈ve Bayes, Radial Basis
Function Network and Logistic Regression2. These models rely on very different strategies, which makes
the analysis more reliable. We discarded Support Vector Machines since in our preliminary experiments
they achieved high precision (a range between 0.60 and 0.77 across modifiers and targets), but very
low recall (a range between 0.05 and 0.06 across modifiers and targets), which resulted in a very low
F-measure (a range between 0.09 and 0.11 across modifiers and targets).

A model for each combination of view and classifier is then produced and tested on the test set. We
performed a 10-fold cross-validation. In the test phase, we opted for a numerical threshold of 0.67 to
consider the predictions reliable. A prediction with a confidence lower than the threshold is considered
uncertain.

For each instance we obtained six predictions, which potentially differ from one another. The agree-
ment score is calculated for each class in order to identify the most frequent prediction.

2In each case we used the implementation provided by WEKA (http://www.cs.waikato.ac.nz/˜ml/weka/).
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Feature set Classifier Modifier Target
Precision Recall Fβ=1 Precision Recall Fβ=1

Lexical
Naı̈ve Bayes 0.71 0.10 0.48 0.82 0.12 0.43
RBF Network 0.52 0.56 0.54 0.51 0.59 0.55
Logistic regression 0.59 0.42 0.49 0.61 0.48 0.54

Syntactic
Naı̈ve Bayes 0.46 0.48 0.47 0.82 0.12 0.43
RBF Network 0.49 0.35 0.40 0.55 0.50 0.53
Logistic regression 0.58 0.22 0.32 0.60 0.41 0.49

Table 1: Performance of the classifiers trained on two views, lexical and syntactic. Experiments have
been performed using 10-fold cross-validation.

At this point, only the predictions different from the gold annotations are considered: the higher the
agreement score, the more the instance is interesting in the context of our analysis.

The final step consists of manually investigating such cases to shed light on the errors. In this experi-
ment we opted for the use of a simple protocol based on the following classification schema:

• W (wrong), where the classifiers disagree with the gold annotation, which we judge to be correct.
• A (ambiguous), where the classifiers disagree with the gold annotation and we judge both to be

valid. In such cases, the guidelines need to be clearer or the annotation method could have been
simpler.

• M (to modify), where we judge that the gold annotation is incorrect.
This approach has the advantage of yielding a much reduced subset of instances to be examined man-

ually, with respect to the full set.

4 Results

Table 1 shows the performances of the six models obtained from the training of each combination of
view and classifier, mentioned in Section 3. F-measures for modifiers range between 0.32 and 0.54
for modifiers, and 0.43 and 0.55 for targets. Overall, the RBF Network trained on the lexical view
performs best. However, there is no huge difference in general in performances between the lexical and
the syntactic feature sets, which is good in the light of data sparseness.

Performance on the the empty class (no category assigned) was exceptionally good, as 76% was pre-
dicted out of the gold 77%, whereas the performance on the modifiers was 4% out of the gold 12% and
the performance on the targets was 5% out of the gold 11%. Although the annotation allows each token
to be simultaneously annotated as modifier and target, we have not reported the performances for the MT
class as the cases were not significant. Finally, there was a 15% of cases in which the classifiers were not
confident.

In relation to the manual classification of errors (see final paragraph of Section 3) we found that, out
of the total test instances (2066), in 436 cases the most predicted class differed from the gold standard:
the label W was assigned 214 times (49%), the label A was assigned 153 times (35%), the label M
was assigned 69 times (16%). W was mostly assigned when the modifier or the target was correctly
identified, but not its counterpart in the pair (e.g., “way forward”, “blame society”, “wrong side”). It was
also assigned when a word was correctly identified as evoking sentiment (e.g., “destroy”, “flourish”),
but only the first of two or more targets was identified (e.g., “women and children”, “the city and the
country”).

A was assigned when an adverb was annotated as modifier (e.g., “through corruption”, “seize gladly”,
“tragically reminded”): these are cases in which human annotators decide to include the adverb if it is
regarded as important for the sentiment. Other cases in which the label has been used is with compound
modifiers (e.g., “face to face”, “in the face of”), phrasal verbs (e.g., “turn back”, “carried forth”, “came
forth”) and difficult couples to link (e.g., “instruments with which we meet them” [challenges]). Finally,
this label was also used in cases in which the prediction was sensible, but considered less accurate than
the gold one (e.g., in “enjoy relative plenty”, the gold standard was “enjoy plenty” and the classifiers
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predicted “relative plenty”).
M was assigned when another modifier had been wrongly annotated by the annotator, instead of mod-

ifying the value of the force of the current one (e.g., in “much more”, only “more”’ should have been
annotated with high force), in the case of couples with no sentiment (e.g., “future generations”, “different
form”), of couples not previously identified (e.g., “stairway filled with smoke”, “icy river”) or couples
that could have been annotated in an easier way (e.g., “provoke us to step up and do something”, “image
resonates with us”).

5 Related work

Evaluating the reliability of human annotation is a challenging and widely studied task (Pustejovsky
and Stubbs, 2012). The standard solution is the measurement of an inter-annotator agreement (IAA)
coefficient according to a variety of formulae that depend on the characteristics of the annotation set-
ting (Artstein and Poesio, 2008).

For example, in the case of Wilson (2008) and Read and Carroll (2007), it was useful to understand
inconsistencies in the selection of the span for attitudes and targets. Since this represents only one of
the commonly recognized challenges, some studies have focused on practically testing a methodological
framework for schema development for fine-grained and quality semantic annotations. (Bayerl et al.,
2003).

Our approach varies from the standard procedure in ways similar to that of Snow et al. (2008). For
each expert annotator (six in total) they trained a system using only the judgements provided by these
annotators, and then created a test set using the average of the responses of the remaining five labellers on
that set. This resulted in six independent expert-trained systems. The difference with our methodology
is that we trained six independent classifiers, but based on judgements of only one human annotator, and
compared the average of the responses of six classifiers with the gold standard.

Jin et al. (2009) also used the strategy of selecting the labelled sentences agreed upon by their classi-
fiers and achieved good performances in the task of identifying opinion sentences.

Finally, our methodology is also similar to one of those mentioned by Yu (2014). The author used the
traditional co-training strategy, i.e. providing a small pool of unlabelled data to two classifiers with con-
fidence rates, in order to obtain automatically labelled examples that would be added to an initial set of
labelled ones. Subsequently, this final large set is used to train the the two classifiers and a combination
of them (constructed by multiplying their predictions) is eventually the one used to label new docu-
ments. Five strategies were applied to obtain the views: (a) using unigrams and bigrams as features, (b)
randomly splitting the feature set in two, (c) using two different supervised learning algorithms because
they would provide useful examples to each other since based on different learning assumptions; (d)
randomly splitting the training set, and (e) applying a character-based language model (CLM) and a bag-
of-words model (BOW). We extended the third strategy by using three classifiers and two different views
for each of them, and by applying this to the task of annotation validation rather than semi-supervised
learning.

6 Conclusions

In this paper we have presented a methodology that makes use of multiple classifiers (based on different
views) in order to detect inconsistent annotations and borderline cases. In our test set, we found that
in 35% of the wrongly classified cases the predictions were different but acceptable, and in the 16% of
them the predictions suggested that the gold standard was wrong. On the other hand, the data resulting
from such procedure related to non-disagreeing predictions can be regarded as expression of either the
efficacy of the annotation schema and guidelines or the features used for the machine learning step.

Our next goal is to improve the performances of the classifiers over the instances that were incorrectly
handled, currently accounting for the 26% in our test set. We will also test the same methodology over
the extraction of the link between targets and modifiers (appraisal groups). The machine learning models,
the datasets and the error analysis are publicly available in order to ensure reproducibility 3.

3http://corpus.leeds.ac.uk/marilena/SentiML/LAW2014_error_analysis.zip
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