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Abstract

Creating high-quality manual annotations on text corpus is time-consuming and often requires the
work of experts. In order to explore methods for optimizing annotation efforts, we study three key
time burdens of the annotation process: (¢) multiple annotations, (i7) consensus annotations, and
(7i7) careful annotations. Through a series of experiments using a corpus of clinical documents
annotated for personally identifiable information written in French, we address each of these
aspects and draw conclusions on how to make the most of an annotation effort.

1 Introduction

Statistical and Machine Learning methods have become prevalent in Natural Language Processing (NLP)
over the past decades. These methods sucessfully address NLP tasks such as part-of-speech tagging or
named entity recognition by relying on large annotated text corpora. As a result, developping high-
quality annotated corpora representing natural language phenomena that can be processed by statistical
tools has become a major challenge for the scientific community. Several aspects of the annotation task
have been studied in order to ensure corpus quality and affordable cost. Inter-annotator agreement (IAA)
has been used as an indicator of annotation quality. Early work showed that the use of automatic pre-
annotation tools improved annotation consistency (Marcus et al., 1993). Careful and detailed annotation
guideline definition was also shown to have positive impact on IAA (Wilbur et al., 2006).

Efforts have investigated methods to reduce the human workload while annotating corpora. In par-
ticular, active learning (Settles et al., 2008) sucessfully selects portions of corpora that yield the most
benefit when annotated. Alternatively, (Dligach and Palmer, 2011) investigated the need for double an-
notation and found that double annotation could be limited to carefully selected portions of a corpus.
They produced an algorithm that automatically selects portions of a corpus for double annotation. Their
approach allowed to reduce the amount of work by limiting the portion of doubly annotated data and
maintained annotation quality to the standard of a fully doubly annotated corpus. The use of automatic
pre-annotations was shown to increase annotation consistency and result in producing quality annotation
with a time gain over annotating raw data (Fort and Sagot, 2010; Névéol et al., 2011; Rosset et al., 2013).
With the increasing use of crowdsourcing for obtaining annotated data, (Fort et al., 2011) show that there
are ethic aspects to consider in addition to technical and monetary cost when using a microworking plat-
form for annotation. While selecting the adequate methods for computing IAA is important (Artstein
and Poesio, 2008) for interpreting the IAA for a particular task, annotator disagreement is inherent to
all annotation tasks. To address this situation (Rzhetsky et al., 2009) designed a method to estimate
annotation confidence based on annotator modeling. Overall, past work shows that creating high-quality
manual annotations is time-consuming and often requires the work of experts. The time burden is dis-
tributed between the sheer creation of the annotations, the act of producing multiple annotations for the
same data and the subsequent analysis of multiple annotations to resolve conflicts, viz. the creation of a
consensus. Research has addressed methods for reducing the time burden associated to these annotation
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activities (for example, adequate annotation tools such as automatic pre-annotations can reduce the time
burden of annotation creation) with the final goal of producing the highest quality of annotations.

In contrast, our hypothesis in this work is that annotations are being developed for the purpose of train-
ing a machine learning model. Therefore, our experiments consist in training a named entity recognizer
on a training set comprising annotations of varying quality to study the impact of training annotation
quality on model performance. In order to explore methods for optimizing annotation efforts for the de-
velopment of training corpora, we revisit the three key time burdens of the annotation process on textual
corpora: (i) careful annotations, (i¢) multiple annotations, and (7i7) consensus annotations. Through a
series of experiments using a corpus of French clinical documents annotated for personally identifiable
information (PHI), we address each of these aspects and draw conclusions on how to make the most of
an annotation effort.

2 Material and methods

2.1 Annotated corpus

Experiments were conducted with a corpus of clinical documents in French annotated for 10 categories of
PHI. The distribution of the categories over the corpus varies with some categories being more prevalent
than others. In addition, the performance of entity recognition for each type of PHI also varies (Grouin
and Névéol, 2014). The datasets were split to obtain a training corpus (200 documents) and a test
corpus (100 documents). For all documents in the training corpus, three types of human annotations
are available: annotations performed independently by two human annotators and consensus annotations
obtained after adjudication to resolve conflicts between the two annotators. Inter-annotator agreement
on the training corpus was above 85% F-measure, which is considered high (Artstein and Poesio, 2008).

The distribution of annotations over all PHI categories on both corpora (train/dev) is: address
(188/100), zip code (197/97), date (1025/498), e-mail (119/57), hospital (448/208), identifier (135/76),
last name (1855/855), first name (1568/724), telephone (802/386) and city (450/217).

2.2 Automatic Annotation Methods

We directly applied the MEDINA rule-based de-identification tool (Grouin, 2013) to obtain baseline
automatic annotations. We used the CRF toolkit Wapiti (Lavergne et al., 2010) to train a series of models
on the various sets of annotations available for the training corpus.

Features set For each CRF experiment, we used the following set of features with a /1 regularization:
o Lexical features: unigram and bigram of tokens;

e Morphological features: () the token case (all in upper/lower case, combination of both), (ii) the
token is a digit, (i77) the token is a punctuation mark, (iv) the token belongs to a specific list (first
name, last name, city), (v) the token was not identified in a dictionary of inflected forms, (vi) the
token is a trigger word for specific categories (hospital, last name);

e Syntactic features: (7) the part-of-speech (POS) tag of the token, as provided by the Tree Tagger
tool (Schmid, 1994), (i) the syntactic chunk the token belongs to, from a home made chunker
based upon the previouses POS tags;

e External features: (i) we created 320 classes of tokens using Liang’s implementation (Liang, 2005)
of the Brown clustering algorithm (Brown et al., 1992), (ii) the position of the token within the
document (begining, middle, end).

Design of experiments The models were built to assess three annotation time-saving strategies:

1. Careful annotation: (i) AR=based on automatic annotations from the rule-based system,
(7i) ARNH2=intersection of automatic annotations from the rule-based system with annotations
from annotator 2. This model captures a situation where the human annotator would quickly revise
the automatic annotations by removing errors: some annotations would be missing (average recall),
but the annotations present in the set would be correct (very high precision), (iii) ARH2=automatic
annotations from the rule-based system, with replacement of the three most difficult categories by

55



annotations from annotator 2. This model captures a situation where the human annotator would
focus on revising targeted categories, and (iv) ARHC=automatic annotations from the rule-based
system, with replacement of the three most difficult categories by consensus annotations;

2. Double annotation: () Hl=annotations from annotator 1, (7i) H2=annotations from annotator 2,
(#47) H12=first half of the annotations from annotator 1, second half from annotator 2, and
(iv) H21=first half of the annotations from annotator 2, second half from annotator 1;

3. Consensus annotation: (7) HIUH2=all annotations from annotator 1 and 2 (concatenation without
adjudication), and (i) HC=consensus annotations (after adjudication between annotator 1 and 2).

3 Results

Table 1 presents an overview of the global performance of each annotation run (H12 and H21 achieved
similar results) across all PHI categories in terms of precision, recall and F;-measure (Manning and
Schiitze, 2000). Table 2 presents the detailed performance of each annotation run for individual PHI
categories in terms of F-measure.

Baseline | AR | ARNH2 | ARH2* | ARHC | H1* | H12 | HIUH2 | H2 | HC
Precision .820 || .868 920 942 943 1 959 | 962 969 | 974 | 974
Recall .806 || .796 763 .854 .854 | 927 | 934 935 | 936 | 942
F-measure 813 || .830 .834 .896 .896 | 943 | 948 951 | .955 | .958

Table 1: Overall performance for all automatic PHI detection. A star indicates statistically significant
difference in F-measure over the previous model (Wilcoxon test, p<<0.05)

Category Baseline | AR | ARNH2 | ARH2 | ARHC H1 | H12 | HIUH2 H2 | HC
Address .648 || .560 .000 .800 800 | 716 | .744 89| 795 | 791
Zip code 950 || .958 947 964 958 | 974 | 984 974 | 984 | .990
Date 958 || .968 962 963 967 | 965 | .963 963 | 959 | .970
E-mail 937 || .927 927 927 .927 | 1.000 | 1.000 1.000 | 1.000 | 1.000
Hospital 201 || .248 .039 .856 .868 | .789 | .809 .856 | .861 | .867
Identifier .000 || .000 .000 762 797 870 | .892 .823 | .836| .876
Last name .816 || .810 .834 .832 828 | 953 | .957 954 | 961 | .963
First name .849 || .858 900 901 902 | 960 | .956 961 | 965 | .960
Telephone 1.000 || .980 978 983 980 | 987 | .994 2999 | 999 | 1.000
City .869 || .874 .883 .887 887 | 948 | 972 962 | 965 | 972

Table 2: Performance per PHI category (F-measure)

4 Discussion

4.1 Model performance

Overall, the task of automatic PHI recognition has been well studied and the rule-based tool provides a
strong baseline with .813 F-measure on the test set. Table 1 shows that there are three different types
of models, in terms of performance: the lower-performing category corresponds to models with no hu-
man input. The next category corresponds to models with some human input, and the higher-performing
models correspond to models with the most human input. This reflects the expectation that model per-
formance increases with training corpus quality. However, it also shows that, within the two categories
that include human input, there is no statistical difference in model performance with respect to the type
of human input. We observed that the model trained on annotations from the H2 human annotator per-
formed better (F=0.955) than the model trained on annotations from the H1 annotator (F=0.943). This
observation reflects the agreement of the annotators with consensus annotations, where H2 had higher
agreement than H1 (Grouin and Névéol, 2014). This is also true at the category level: H2 achieved
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higher agreement with the consensus compared to H1 on categories “address” (F=0.985>0.767) and
“hospital” (F=0.947>0.806) but H2 had lower agreement with the consensus on the category “identifier”
(F=0.840<0.933).

4.2 Error Analysis

The performance of CRF models depends on the size of the training corpus and the level of diversity of
the mentions. Error analysis on our test data shows that a few specific mentions are not tagged in the test
corpus, even though they occur in the training corpus. For example, some hospital names occur in the
clinical narratives either as acronyms or as full forms (e.g. “GWH” for “George Washington Hospital”
in transfer patient from GWH). The acronyms are overall much less prevalent than the full forms and
also happen to be difficult to identify for human annotators (depending on the context, a given acronym
could refer to either a medical procedure, a physician or a hospital). We observed that the only hospital
acronym present in the test corpus was not annotated by any of the CRF models. Nevertheless, only five
occurrences of this acronym were found in the training corpus which is not enough for the CRF to learn.

Other errors occur in recognizing sequences of doctors’ names that appear without separators in sig-
natures lines at the end of documents (e.g. “Jane BROWN John DOE Mary SMITH”). In our test set
we observed that models trained on automatic annotations correctly predicted the beginning of such se-
quences and then produced erroneous predictions for the rest of the sequence (models AR, ARNH2,
ARHC and ARH2). In contrast, models built on human annotations produced correct predictions on the
entire sequence (models H1, H12, HIUH2, H2 and HC). Similarly, for last names containing a nobiliary
particle, the models trained on automatic annotations only identified part of the last name as a PHI. We
also observed that spelling errors (e.g. “Jhn DOE”) only resulted in correct predictions from the mod-
els trained on the human annotations. We did not find cases where the models built on the automatic
annotations performed better than the models built on the human annotations.

4.3 Annotation strategy

Table 1 indicates that for the purpose of training a machine learning entity recognizer, all types of human
input are equivalent. In practice, this means that double annotations or consensus annotations are not
necessary. The high inter-annotator agreement on our dataset may be a contributing factor for this finding.
Indeed, (Esuli et al., 2013) found that with low inter-annotator agreement, models are biased towards
the annotation style of the annotator who produced the training data. Therefore, we believe that inter-
annotator should be established on a small dataset before annotators work independently. Table 2 shows
that using human annotations for selected categories results in strong improvement of the performance
over these categories (“address”, “hospital” and “identifier” categories in ARHC and ARH2 vs. AR) with
little impact on the performance of the model on other categories. Therefore, careful human annotations
are not necessarily needed for the entire corpus. Targeting “hard” categories for human annotations can
be a good time-saving strategy. While the difference between the models using some human input vs.
all human input is statistically significant, the performance gain is lower than between models without
human input and some human input. Using data with partial human input for training statistical models
can cut annotation cost.

5 Conclusion and future work

Herein we have shown that full double annotation of a corpus is not necessary for the purpose of training a
competitive CRF-based model. Our results suggest that a three-step annotation strategy can optimize the
annotation effort: (i) double annotate a small subset of the corpus to ensure human annotators understand
the guidelines; (i7) have annotators work independently on different sections of the corpus to obtain wide
coverage; and (#i7) train a machine-learning based model on the human annotations and apply this model
on a new dataset.

In future work, we plan to re-iterate these experiments on a different type of entity recognition task
where inter-annotator agreement may be more difficult to achieve, and may vary more between categories
in order to investigate the influence of inter-annotator-agreement on our conclusions.
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