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Abstract 

In utilizing nanodevice development research papers to assist in experimental planning and de-

sign, it is useful to identify and annotate characteristic categories of information contained in 

those papers such as source material, evaluation parameter, etc. In order to support this annota-

tion process, we have been working to construct a nanodevice development corpus and a com-

plementary automatic annotation scheme. Due to the variations of terms, however, recall of the 

automatic annotation in some information categories was not adequate. 

In this paper, we propose to use a basic physical quantities list to extract parameter informa-

tion.  We confirmed the efficiency of this method to improve the annotation of parameters. 

Recall for parameters increases between 4% and 7% depending on the type of parameter and 

analysis metric. 

1   Introduction 

“Nanoinformatics” is an emerging interdisciplinary research field in developing a computational 

framework to support nanoscale research (Karl et al. 2004). Nanoinformatics is the science and prac-

tice of determining which information is relevant to the nanoscale science and engineering commu-

nity, and then developing and implementing effective mechanisms for collecting, validating, storing, 

sharing, analyzing, modeling, and applying this information (De la Iglesia et al. 2011). In order to 

support nanodevice development process, we have been working on a project that aims at analyzing 

the experiment results related to nanodevice development to provide insights for nanodevice novice 

researchers to help them planning their experiments more effectively (Yoshioka et al. 2010). In this 

project, we have proposed a framework to annotate useful information from research papers related to 

nanodevice development (e.g., source material, evaluation parameter, and so on), and use them for 

analyzing experiment results (Dieb et al. 2011). In order to speed up the annotation process, we have 

built an automatic annotation framework using machine-learning techniques to annotate research pa-

pers (Dieb et al. 2012).  

However, due to the variations of terms, this framework may miss to annotate terms that are not in 

the training data set. Therefore, we have used chemical named entity recognition system to add gener-

alized feature to extract “source material” terms. This generalized information is useful to extract 

“source material” terms and recall of this category increased. However, there are several other catego-

ries whose recall is inadequate.  
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In this paper, we propose to use a physical quantities list for adding generalized feature for extract-

ing parameter terms in two categories (“evaluation parameter” and “experiment parameter”).  In those 

two categories, since “experiment parameter” represents a control parameter for the experimental 

equipment and “evaluation parameter” represents ones measured by measuring devices, most of the 

terms are associated with physical quantities and they contains (a) term(s) that represent(s) its charac-

teristics. We use 2 methods for the identification: first one we try to identify parameters (experiment 

and evaluation) using the new automatic annotated framework. The other one, we identify the parame-

ters (in general) using the automatic annotation framework, and then classify the parameters into ex-

periment and evaluation using SVM (Support Vector Machine) (Li 2005).   

Several attempts have been made to use dictionary to enhance machine-learning performance. For 

example, Usié et al. (2013) is using a dictionary to assist in identifying certain categories of chemical 

entities in biomedical text. Our method is using the physical quantities list to enhance the identifica-

tion of parameter information. 

This paper has five sections. The first one is introduction. Second one introduces the nanodevice 

development papers corpus we have developed (Dieb et al, 2011) and the automatic annotation 

framework we have built (Dieb et al., 2012) in brief. Section 3 discusses parameter identification 

methods. In section 4, we demonstrate the experiment and discuss the results, and section 5 is a con-

clusion. 

2   Automatic Annotation Framework for Nanodevice Development Papers 

2.1   Nanodevice Development Papers Corpus 

 In order to analyze experiment results related to nanodevice development, we constructed nanodevice 

development papers corpus that annotates characteristic information from research papers Dieb et al. 

(2011). It was very critical to decide on what categories of information are necessary and adequate for 

the analysis of experiment results. Based on discussion with nanodevice development researchers, we 

were able to build an abstract for a development experiment in order to define the necessary terms for 

the analysis. We have defined eight categories of information for annotation as below:  

 

 Source Material (SMaterial) e.g., As, InGaAs  

 Source Material Characteristic  (SMChar) e.g.,(111)B  

 Experiment Parameter (ExP) e.g., total pressure  

 Value of the Experiment parameter (ExPVal) e.g., 50 nm  

 Evaluation Parameter (EvP) e.g., peak energy, FWHMs  

 Value of the Evaluation Parameter (EvPVal) e.g., 1.22eV  

 Manufacturing Method (MMethod) e.g., SA-MOVPE  

 Final Product (TArtifact) e.g., semiconductor  

 

The information in the papers is annotated using XML format. Figure 1 shows an example of an an-

notated paper. 

 
Fig. 1: Example of annotated paper 

We demonstrate the successful formation of <TArtifact> 

<SMChar>ferromagnetic</SMChar> <SMaterial>MnAs</SMaterial> nano-

clusters </TArtifact> self-assembled on <SMaterial> 

GaInAs</SMaterial><SMChar> (1 1 1) B </SMChar> surfaces by <MMe-

thod>metalorganic vapor phase epitaxy 

</MMethod><MMethod>MOVPE</MMethod>). 

The <TArtifact><SMChar>hexagonal</SMChar> <SMate-

rial>MnAs</SMaterial>nanoclusters</TArtifact> show <EvP-

Val>strong</EvPVal> <EvP>ferromagnetic coupling</EvP><ExPVal>at room 

temperature </ExPVal> when the <ExP>external magnetic fields </ExP> are ap-

plied <ExPVal>in a direction parallel to the <SMate-

rial>InP</SMaterial><SMChar>(1 1 1) B</SMChar> wafer planes</ExPVal>. 
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                                                     nanocluster ferromagnetic MnAs 

TArtifact SMaterial SMChar 

Manual annotation of research papers is a time consuming process. Papers were first annotated by 

graduate students in nanodevice development domain. Several experiments and discussions have been 

held to improve the reliability of the corpus by resolving mismatches between different annotators. 

Papers then were corrected manually based on discussion with annotators. So far, we were able to 

complete five fully annotated papers, which can allow us to start our preliminary experiments concern-

ing extracting and utilizing characteristic information in supporting nanodevice development. These 

papers are currently from the same research group (e.g., (Hara et al. 2006)). We also started to collabo-

rate with other research groups to enlarge and include different research topics related to nanodevice 

development. Other information categories can be added to our model as needed along the way of the 

corpus development. Currently this corpus is still under construction, and not yet available. 

2.2   Automatic Annotation Framework 

In order to speed up the annotation process that also require domain expert, we have built an automatic 

annotation framework using the machine learning techniques to annotate the desired categories of in-

formation Dieb et al. (2012).  

There are two main issues to be discussed in this automatic annotation framework: 

(1) Chemical entity recognition: 

In literature related to nanodevice development, most of the source material items are chemical 

compounds. If large training data set is available, the machine might be able to identify source mate-

rial based on the training data only with no need to additional clue. However, since training data size is 

still very small, more clues are needed to identify Source Material. Identifying chemical entities can 

add more clues and will help the machine to recognize Source Material terms. 

A new chemical entity recognizer called SERB-CNER (Syntactically Enhanced Rule-Based CNER) 

is used to enhance the identification of Source Material terms. SERB-CNER is a rule-based chemical 

entity recognizer that uses regular expressions to identify chemical compounds. In addition to that, 

SERB-CNER uses syntactic rules to eliminate some mismatches that might occur between chemical 

entities and general text.  

(2) Overlapped term structure:  

In nanodevice development domain, terms sometimes can overlap within each other, and not always 

simple. This might be a common issue in several other domains. Figure 2 shows an example of term 

overlapping. 

 

 

 

 

 

 
Fig. 2 Example of overlapped term structure 

 

Because of this overlapping between different terms, same chunk of text might have information re-

lated to more than one term at the same time. That makes it difficult for the machine to learn to set the 

correct term information all at once. To tackle this issue, we have separated overlapped term catego-

ries into four groups where terms do not overlap within other terms from the same group. Based on 

these 4 groups, the machine learning process also divided into 4 cascading levels i.e. cascading named 

entity recognition (Kano et al. 2011).  

For the automatic annotation framework, YamCha 0.33 (YamCha) was used, as a machine learning 

based sequence labelling tools. For the features, we use linguistic features like POS tag and orthogonal 

feature. POS tag was generated using rb tagger (rb tagger), which is A Simple Ruby Rule-Based Part 

of Speech Tagger based on the work of Eric Brill. Orthogonal feature was calculated using regular 

expressions. Chemical entity feature (CM) was calculated using SERB-CNER that identifies chemical 

entities as we discussed before. Term group's features were estimated in cascading style. In each level 

of this cascading style, we apply machine-learning technique to estimate the target feature for this 

level using information estimated from previous levels. For example, in cascading level 1, the machine 

will try to estimate term group 1 (TG1) using information of {Word, POS, Orth, CM}. In cascading 

level two, the machine will try to estimate term group 2 (TG2) using information of {Word, POS, 
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Orth, CM}, and TG1 that the machine estimated in cascading level 1. Figure 3 illustrates the cascading 

style annotation on an example of input data in IOB format. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Cascading style annotation on input data for the automatic annotation framework 

 

We have tested this system using only two fully annotated papers with 10 fold cross validation. We 

use two metrics for analysis. One is tight agreement, which takes term category and term boundary 

into consideration and the other one is loose agreement, which checks term categories only. Table 1 

shows the result of the automatic annotation framework. As we can see from the table, some catego-

ries have low recall, for example, EvP and EvPVal that depends on EvP for assessment. 

 

Table 1: Automatic annotation framework performance 

 

3   Usage of Physical Quantities for Parameter Identification 

3.1   Basic Idea 

In the framework we proposed (Dieb et. al, 2012), recall and precision of each categories are evalu-

ated, and recall and precision of “evaluation parameter” (EvP) is lower than average. One of the rea-

sons about this problem is a variety of parameter terms used in the paper. Machine learning based se-

quence labelling tools is good at extracting terms that are also exists in the training data set, but it is 

necessary to extract more generalized clue to identify terms that do not appear in the training data set. 

 Tight 
/precision 

Tight 
/recall 

Loose 
/precision 

Loose 
/recall 

SMaterial 0.99 0.96 0.99 0.96 

SMChar 0.89 0.69 0.89 0.69 

MMethod 0.93 0.86 0.95 0.88 

TArtifact 0.86 0.73 0.93 0.79 

ExP 0.91 0.81 0.97 0.86 

EvP 0.76 0.60 0.87 0.69 

ExPVal 0.72 0.57 0.85 0.67 

EvPVal 0.86 0.60 0.97 0.67 

Overall 0.89 0.76 0.94 0.80 
 

Word POS Orth CM TG1 TG2 TG3 TG4 

hexagonal JJ Lowercase O B-SMChar B-TArtifact O O 

MnAs NNP TwoCaps B-CM B-SMaterial I-TArtifact O O 

nanoclusters NNS Lowercase O O I-TArtifact O O 

show VBP Lowercase O O O O O 

strong JJ Lowercase O O O O B-EvPVal 

ferromagnetic JJ Lowercase O O O B-EvP O 

Note: POS=POS tag, Orth=orthogonal feature, CM=chemical compound, TG1, … TG4=term group. 

 level 1 

 level 2 

 level 3 

 level 4 

Input features Target 

feature 
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Identification of chemical named entity is helpful to extract such clue from the corpus, but it is not 

sufficient. 

As Nakagawa and Mori （2003） discussed, most of the compound nouns are constructed from basic 

noun and identification of terms that contribute to make up compound noun is useful to extract terms. 

Since “experiment parameter” (ExP) represents a control parameter for the experimental equipment 

and “evaluation parameter” (EvP) represents ones measured by measuring devices, most of the terms 

are associated with physical quantities and they contains (a) term(s) that represent(s) its characteristics. 

For example, “density of the nanoclusters” and “height of the nanoclusters” contains physical quantity 

term “density” and “height” respectively. Identification of physical quantities of test data may support 

to extract new terms. For example, identification of "size" as a physical quantity might support identi-

fication of “size of nanoclusters” as a parameter. 

There are two types of parameters exist in this nanodevice development papers corpus; Experiment 

parameter that is used to control the conditions of the experiment like temperature, pressure, gas flow 

rate, and so on; The other type is evaluation parameter that is used to evaluate the quality of the ex-

periment output like smoothness of the surface, conductivity, and so on. In this paper, a list of physical 

quantities is used to support extracting terms of those two types of parameters. 

3.2   Physical Quantities List 

In order to construct a list of physical quantities, we started with a basic list of physical properties of 

matter, collected by Dr. Anne Marie Helmenstine, Ph.D. in biomedical science. 1 This list includes but 

not limited to the physical properties of an object. For example, concentration, density, and so on. In 

addition to this list, we have added several other common parameters that commonly found in nanode-

vice development research papers. For example, height, conductivity, and so on. Additionally, we 

have added several keywords that usually in close relation with parameters like ratio, rate, percentage, 

and so on. We collected these keywords from research papers related to nanodevice development. The 

compiled list then checked by nanodevice researchers as a basic list for physical quantities.  

3.3   Parameter Classification 

In the automatic annotation framework, we proposed (Dieb et al, 2012), experiment and evaluation 

parameters (ExP and EvP) are exclusive categories and identified at the same time. However, in this 

approach, recall and word boundary identification rate of terms is lower than SMaterial and MMethod. 

In order to identify good term boundaries to identify parameter terms, it is better to have large varia-

tion of compound terms for representing parameter. However, since our corpus size is limited, it is 

better to merge two parameter categories into one "Parameter" category to enlarge training example 

for making compound parameter terms. After extracting parameter terms, another machine learning 

classifier is used for categorize each extracted parameter. 

Since two parameter categories (ExP and EvP) represent role of parameter in the paper, it is better 

to include results of dependency analysis and verbs related to the terms. Therefore, in this paper, we 

use SVM with following features to identify its category. 

1. Information about term 

A) Surface description of the term 

B) lemmatized element(s) of the term 

C) (a) term(s) that is (are) identified as physical quantity by a physical quantities list 

2. Dependency structure results 

A) First verb that given parameter terms directly depends 

B) First preposition that given parameter terms directly depends 

C) Lemmas that parameter terms depends. 

Following is example of extracted features for a sentence that contains parameter term “tempera-

ture” 

Figure 4 represents an example of feature extraction. Stanford Core NLP tools are used for generat-

ing dependency analysis results. Features that start with  “1stVB++”, “1stIN++”, “plemma++”, and  

“PAR++” represents 2-A,B,C and 1-C respectively. Other elements correspond to 1-A and 1-B. 

1 This list of physical properties of matter is available online at: http://chemistry.about.com/od/matter/a/Physical-Properties-

List.htm 
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Fig. 4 Example of feature extraction for two parameters from a text 

4   Experiments 

4.1   Setup 

In order to confirm the effectiveness of our proposed framework, we conduct automatic annotation 

experiments by using nanodevice development papers corpus with following three systems.  

 Base line system: we use the automatic annotation framework we previously proposed (Dieb et al. 

2012) without physical quantities list for parameter identification. 

 Suggested system without parameter classification: we integrated the physical quantities list for 

parameter identification component in the automatic annotation framework. This component can-

not separate experiment (ExP) from evaluation parameter (EvP) because that depends on the con-

text, so the CRF will handle this separation based on training data. 

 Suggested system with parameter classification using SVM: after annotating parameters using 

automatic annotation framework with physical quantities for parameter identification component 

integrated, SVM will handle the classification of parameters using statistical data into experiment 

(ExP) and evaluation parameter (EvP). 

All systems use CRF++ (CRFpp) implementation of Conditional Random field (CRF) (John et al. 

2001) as the machine learning system. Additionally, we have added one more level for the cascading 

for the SMChar term category, since we found some cases that caused overlap between SMChar and 

SMaterial that used to be in the same term group. Figure 5 shows an example of the input data in IOB 

format. Since chemical compound and parameters do not overlap between each other, we use the same 

feature column for both (CM is chemical entity feature, and PAR is parameter feature based on the 

physical quantity list). 

For experiment 1: the feature CM/PAR has only CM type of values. 

For experiment 3: the feature TG4 has Param type of values (general parameter replaces ExP, and 

EvP without separation. Classification is done independently with SVM) 

4.2   Results and Discussion 

We have five fully annotated papers. In order to check the performance of these three systems, we use 

five cross fold validation (training on four papers, and testing on the 5th) for each system. We use tight 

and loose agreement metrics for analysis (same as explained in section 2.2). Table 2 shows compara-

tive average results for the three experiments. In this experiment, since it is necessary to identify new 

terms that are only exists in one paper; recall of baseline system is lower than the value in Table 1. 

Statistical significance test is conducted for the difference between value of baseline system and value 

of proposed system. “*” represents difference is statistically significant (P<0.05) in both side test.  

 

Input: The size of the MnAs nanoclusters are controllable 

by optimizing MOVPE growth conditions. 
Experiment parameter (ExP): MOVPE growth conditions 

 
MOVPE__growth__conditions MOVPE growth condition 

plemma++condition plemma++optimize 1stVB++optimize 

plemma++by 1stIN++by plemma++controllable  

PAR++size 
Evaluation parameter (EvP): size of the MnAs nanoclusters  

 
The__size__of__the__MnAs the size of the mna  

plemma++size plemma++controllable 

-> controllable-JJ (root) 
  -> size-NN (nsubj) 
    -> The-DT (det) 
    -> of-IN (prep) 
      -> nanoclusters-NNS (pobj) 
        -> the-DT (det) 
        -> MnAs-NNS (nn) 
  -> are-VBP (cop) 
  -> by-IN (prep) 
    -> optimizing-VBG (pcomp) 
      -> conditions-NNS (dobj) 
        -> MOVPE-NNP (nn) 
        -> growth-NN (nn) 

Dependency analysis results 
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Fig. 5 Example of input data for our suggested system 

 

 Table 2: Performance comparison between base line system and suggested one 

 
From this result, identification of physical quantities may not affect earlier stage of cascading term 

extraction (SMaterial, MMethod, SMChar, and TArtifact). For both ExP and EvP, recall is increased 

when we use physical quantities list, and increase even more when we use SVM classification. Espe-

cially for EvP, improvement of recall for loose agreement of both suggested systems are statistically 

significant at the 5% level.  In addition, improvement of recall for tight agreement of using SVM for 

parameter classification is also statistically significant. These improvements justify usage of physical 

quantities list is good for improving recall of ExP and EvP. In addition, using both examples of ExP 

and EvP for identification of compound word boundary is also helpful. Even though precision of ExP 

and EvP are decreased from baseline system, precision of parameter term (terms that belongs to ExP 

or EvP) identification is almost same as baseline system.  

In order to evaluate detailed behaviour of our proposed system, we check the data whose annotation 

results are different from baseline system and proposed system. We confirm there are some cases in 

which new parameters terms that did not exist in training data are extracted. For example, "tempera-

ture of (MeCp)2Mn" did not exist at all in the training data, and was not able to be annotated by CRF 

in test data before adding physical quantities list. After marking "temperature" as parameter, CRF was 

able to find "temperature of (MeCp)2Mn" by learning compound term construction rule (i.e., PAR of 

CM may be a parameter term). On the other hand, merging parameters into one category then classify-

ing them seems to be effective, because we can get use of a larger training data. For example, "partial 

pressure" (where "pressure" is in the physical quantities list) did not exist in the training data. It was 

not recognized neither by the baseline system nor by the suggested system without parameter classifi-

cation; However, when we merge the parameters into one category (allowing for larger training data 

for the identification of parameter), the suggested system with parameter classification was able to 

identify such entity. Another example, "period of the mask openings" where "period" is in the physical 

 Base line system 
Our system without pa-

rameter classification 

Our system with parameter 

classification using SVM 

 T_pre T_rec L_pre L_rec T_pre T_rec L_pre L_rec T_pre T_rec L_pre L_rec 

SMaterial 0.94 0.92 0.97 0.95 0.94 0.92 0.97 0.95 0.94 0.92 0.97 0.95 

MMethod 0.97 0.70 0.98 0.70 0.98 0.72 0.98 0.72 0.98 0.72 0.98 0.72 

SMChar 0.87 0.68 0.90 0.70 0.87 0.69 0.90 0.71 0.87 0.69 0.90 0.71 

TArtifact 0.88 0.72 0.93 0.76 0.89 0.72 0.93 0.75 0.89 0.72 0.93 0.75 

Param 0.67 0.45 0.86 0.58 0.67 0.49 0.87 0.64 0.66 0.52 0.85 0.67 

ExP 0.85 0.59 0.91 0.63 0.84 0.62 0.91 0.67 0.80 0.63 0.88 0.70 

EvP 0.50 0.32 0.78 0.51 0.50 0.35 0.78 0.55* 0.50 0.38* 0.76 0.57* 

ExPVal 0.67 0.42 0.81 0.53 0.67 0.42 0.80 0.52 0.70 0.43 0.82 0.52 

EvPVal 0.62 0.34 0.79 0.43 0.63 0.37 0.78 0.46 0.62 0.37 0.78 0.46 

overall 0.82 0.63 0.90 0.69 0.82 0.64 0.90 0.71 0.81 0.64 0.89 0.71 

Note: T_pre=Tight precision T_rec=Tight recall, L_pre=Loose, L_rec= Loose recall, param= general parameter resulted from merging 

ExP and EvP 

Word POS Orth CM/PAR TG1 TG2 TG3 TG4 TG5 

V/ NP Other O O O O B-ExP O 

Mn NP InitCap B-CM B-SMaterial O O I-ExP O 

ratio NN Lowercase B-PAR O O O I-ExP O 

were VBD Lowercase O O O O O O 

850 CD DigitNumber O O O O O B-ExPVal 

°C NN Other O O O O O I-ExPVal 

Note: POS=POS tag, Orth=orthogonal feature, CM/PAR=chemical compound/parameter list, TG1, … TG5=term group. 
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quantities list. In this example also, only the suggested system with parameter classification were able 

to identify such entity using physical quantities list. 

Regarding the precision, there are several cases whose parameter types are difficult to identify by 

using sentence information only. For example, "diameter" can be some cases as experiment parameter, 

and can be evaluation parameter in other cases depending on the context. In "the typical diameter of 

the initial circular opening" it is ExP, however, in “diameter of the NCs", it is EvP. Even though both 

texts have similar style, "diameter" can be of different types. In order to improve the quality of pa-

rameter type classification, it is better to use other information that cannot be extracted from one sen-

tence (e.g., description of same parameter in other sentences of the same paper, position of first pa-

rameter term appearance). 

5   Conclusion and Future Development 

In this paper, we proposed to use a basic physical quantities list in combination with machine learning 

technique to improve the extraction of parameter information from research papers related to nanode-

vice development. We confirmed our proposed system improve recall of parameters between 4% and 

7% depending on the type of parameter and analysis metric,  and using both example of Experiment 

parameter and Evaluation parameter for term boundary identification is helpful.  

In future studies, and as further manuscripts are annotated, we plan to make use of a larger corpus 

thus allowing us to evaluate our system on a larger text collection. Additionally, we are planning to 

develop a new POS tagger for the nanodevice development domain. Brill tagger is developed for gen-

eral language POS tagging purposes, and changing it with specialized POS tagger might improve the 

results.  It is beneficial to study the impact of each component of the system (POS tagger, the chemical 

named entity recognizer, or the machine learning system) on the overall performance (Kolluru et al, 

2011) 
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