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Abstract

This paper presents an encoding of
Generation-TAG (G-TAG) within Abstract
Categorial Grammars (ACG). We show
how the key notions of G-TAG have a nat-
ural interpretation in ACG, allowing us to
use its reversibility property for text gen-
eration. It also offers solutions to several
limitations of G-TAG.

1 Motivations

G-TAG (Danlos, 1998; Danlos, 2000) is a formal-
ism based on the Tree Adjoining Grammar (TAG)
formalism (Joshi et al., 1975; Joshi and Schabes,
1997) dedicated to text generation. It focuses on
providing several notions to support useful data
structures, such as g-derivation trees or lexical
databases, to effectively relate a surface form (a
derived tree or a string) to a conceptual represen-
tation. An actual implementation in ADA was first
provided for French (Meunier, 1997), and it has re-
cently been implemented in the .NET framework
as the EasyText NLG system and is operational
at Kantar Media, a French subsidiary company of
TNS-Sofres (Danlos et al., 2011).

The G-TAG proposal can be seen as a result
of the observation of the mismatch between the
derivation tree notion of TAG and the expected se-
mantic dependencies (Schabes and Shieber, 1994)
from a generation perspective. Several approaches
that extend the derivation tree notion of TAG have
been proposed to overcome this difficulty. Other
approaches showed that the derivation trees still
could be used without additional modifications.
Such approaches rely on unification (Kallmeyer
and Romero, 2004; Kallmeyer and Romero, 2007)
or a functional approach to TAG (Pogodalla, 2004;
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Agence Nationale de la Recherche (ANR-12-CORD-0004).

Pogodalla, 2009)1 based on Abstract Categorial
Grammars (ACG) (de Groote, 2001). The latter
is intrinsically reversible: the grammars and the
algorithms are the same for parsing and for gener-
ation.

We propose then to study G-TAG under the
ACG perspective. We show that the key notion
of g-derivation tree naturally express itself in this
framework. The surface form construction from
a conceptual representation can then use the gen-
eral algorithms of ACG, the very same ones that
can be used in parsing to analyze mildly con-
text sensitive languages (TAG generated language,
LCFRS) (de Groote and Pogodalla, 2004), follow-
ing (Kanazawa, 2007)’s proposal here applied to
give an ACG account of G-TAG. We do not con-
sider here the G-TAG treatment of preferences be-
tween the different realizations of the same input.
Similarly, we do not consider the generation of
pronouns used in G-TAG and we will work on
integrating a theory of generation of referring ex-
pressions.

2 Sketching G-TAG

G-TAG deals with the How to say it? task of gen-
eration. The input is a conceptual representation.
A G-TAG grammar includes elementary trees, as
any TAG grammar. But it also makes g-derivation
trees primary objects, relating them to the elemen-
tary trees and considering them as pivot to the con-
ceptual representation level.

Conceptual Representation G-TAG concep-
tual representation makes use of notions as sec-
ond order relation, first order relation and thing.
Second order relations have two arguments which
are relations (either first or second order ones)
and typically correspond to discourse relations,

1Synchronous approaches (Nesson and Shieber, 2006) are
similar in many respects, as shown in (Storoshenk and Frank,
2012).
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whereas first order relations have things as their
arguments. While (Danlos, 2000) uses reified for-
mulas of a logical conceptual representation lan-
guage as G-TAG inputs, it can also be represented
as a higher-order logical formula (Meunier, 1997)
or as a SDRT-like formula (Danlos et al., 2001).
We follow here this presentation. Equation (1) ex-
emplifies an input that could be realized as Jean
a passé l’aspirateur pour être récompensé par
Marie. Puis il a fait une sieste (John has vacumed
in order to be rewarded by Mary. Then he took a
nap).

SUCCESSION(GOAL(VACUUMING(Jean),

REWARDING(Marie, Jean)),

NAPPING(Jean)) (1)

G-TAG Lexical Database A lexical entry of G-
TAG corresponds to a lemma. For each lexical en-
try (i.e. lemma) there is a set of TAG elementary
trees which corresponds to it. Among the TAG el-
ementary trees that correspond to a given lexical
entry, there is the canonical representative, and all
the other representatives are represented by adding
features to the canonical representative. For exam-
ple, if the lexical entry is to love, then the canon-
ical representative will be the active form of the
verb to love. Then the passive alternation is rep-
resented by adding a feature [+passive] to to love.
Moreover, all the lexical entries attached to a con-
cept (such as SUCCESSION) belong to a same lexi-
cal base. So for a concept, there can be a lexical
entry describing verbal realizations of the concept.
These realizations can correspond to the active or
to the passive forms, etc. There can also be a lex-
ical entry which corresponds to nominal realiza-
tions, etc.

G-Derivation Trees A TAG derivation tree can
be seen as a record of the substitutions and adjunc-
tion occurring during a TAG analysis. The same is
true for g-derivation tree. However, while TAG
derivation trees are considered as a by-product,
with inflected anchors, G-TAG derivation trees are
first class structures that are combined in order to
reflect the conceptual input. To abstract from the
surface form and from the derived tree they can
relate to, they don’t correspond to inflected forms
but bear features that are used in a post-processing
step. Complex g-derivation trees are built by going
through the dynamic selection process of a lexi-
cal item from the set of appropriate candidates for

a given concept. So contrary to TAG derivation
trees, they are not fully instantiated trees: their ar-
guments are represented by variables whose lexi-
calization are not carried out yet.

G-Derived Trees A g-derivation tree defines a
unique g-derived tree corresponding to it. This
correspondance is maintained all along the real-
ization process and a post-processing module out-
puts the surface representation (text) from the g-
derived tree. In addition to inflecting forms using
the feature values it can make some rewriting to
propose different versions of the initial text. In
this particular sense, g-derived tree corresponds
to possibly multiple text outputs generated by the
post-processing module.

3 The G-TAG Generation Process

Let us assume the input of Equation 1. The G-TAG
process starts by lexicalizing relations that have
the widest scope in the conceptual representation:
typically second order relations, then first order re-
lations, and things.2 Back to the example, we first
lexicalize the second order relation SUCCESSION.
Several items are associated with this relation:
après (after), avant (before), ensuite (afterwards),
auparavant (beforehand), puis (then), etc. Each of
them has two arguments, however, some of them
produce texts comprising two or more sentences,
like ensuite(afterwards); some of them can pro-
duce either two sentence texts or one sentence text,
while others produce only one sentence. For in-
stance, Jean a passé l’aspirateur. Ensuite, il a fait
une sieste (John has vacuumed. Afterwards, he
took a nap) is a two sentences text while John a
fait une sieste après avoir passé l’aspirateur (John
took a nap after having vacuumed) is a one sen-
tence text. For this reason, items describing the
arguments or the result of second order relations
have features expressing the following constraints:
(+T,+S) indicates it is a text (two ore more sen-
tences); (+S) indicates it is either a single sen-
tence or a text; (−T,+S) indicates it is a sentence
(not a text). Every second order relation has three
features: one for output, and two for inputs. 3

2Correctness of the process is ensured because the gram-
mars don’t contain auxiliary trees that would reverse the pred-
ication order. (Danlos, 2000) argues such cases don’t occur in
technical texts, the first target of G-TAG. We don’t elaborate
on this point since the ACG approach we propose remove this
constraint for free.

3In G-TAG, any discourse connective has exactly two ar-
guments. A discussion about this point is provided in (Dan-
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Let us assume that the G-TAG g-derivation tree
ensuite(+T,+S) belonging to the lexical database
associated with the concept SUCCESSION is first
chosen, resulting in a text rather than a sentence
(illustrated by the leftmost g-derivation tree of Fig-
ure 1 . The process then tries to realize its two ar-
guments. The first one involves the GOAL relation
that can be realized either by pour (in order to) or
by pour que (so that), as exemplified by the right-
most g-derivation trees of Figure 1. Both have fea-
tures (−T,+S) for the inputs (i.e. arguments) and
return a tree labeled at the root by (−T,+S).

ensuite
(+T,+S)

(1st event)
(+S)

(2nd event)
(+S)

arg1 arg2

pour
(−T,+S)

(ACTION)
(−T,+S)

(PURPOSE)
(−T,+S)

arg1 arg2

pour que
(−T,+S)

(ACTION)
(−T,+S)

(PURPOSE)
(−T,+S)

arg1 arg2

Figure 1: G-derivation trees samples

Despite pour and pour que bearing the same
features, the syntactic trees corresponding to pour
and pour que are quite different. For pour que
S substitution nodes can be substituted by two
tensed sentences, while pour takes a finite sen-
tence and a “sentence” in the infinitive form with-
out any nominal subject. Figure 2 shows the asso-
ciated elementary trees. Selecting one or the other
during the generation process restricts the possible
realizations for the arguments. This is enforced by
a feature associated to the elementary tree, namely
the (+reduc-subj) feature as shown in Fig. 3.
Again, we may assume that G-TAG selects pour,

S

S (arg1) PP

Prep

pour
S

C
que

S(arg2)
(mood:subj)

S

S (arg1) PP

Prep

pour

S(arg2)
(mood:inf)

Figure 2: Elementary trees of pour que (so that)
and pour (in order to)

which will enforce, because of the associated ele-
mentary trees, that the subject of the first and the
second arguments are the same. Afterwards, we
need to lexicalize these two arguments with a com-
mon subject Jean. From a semantic point of view,
the agent of VACUUMING has to be the beneficiary
of REWARDING (the rewardee). VACUUMING can
only be lexicalized as passer-l’aspirateur (run-the-
vacuum-cleaner), while there are several lexical-

los, 2000).

ization options for the REWARDING: récompenser
(to reward), donner-récompense (to give-reward),
and recevoir-récompense (to receive-reward). Let
us notice that donner-récompense does not meet
the constraint on a shared subject as it cannot
have the rewardee as its subject4. The remaining
options are: recevoir-récompense, whose canon-
ical representation has the rewardee as subject;
and récompense whose passive construction has
the rewardee as subject. s Assuming a choice of
récompenser[+passive],5 the lexicalizations of the
arguments of the first order relations remain. As
Marie occurs only once and in subject position,
it can only be lexicalized as Marie. On the other
hand, Jean three times: one will be the implicit
subject of the subordinate, then as argument of
VACUUMING and NAPPING. Therefore it can be ei-
ther lexicalized in both of the cases as Jean, or
Jean and the pronoun il (he). In G-TAG, there
are some post-processing rules that take care of
the generation of referring expressions, but not in
a really principled way so we do not demonstrate
them here. We assume a lexicalization by Jean in
both cases. Figure 3 shows the g-derivation tree
associated with the input of Equation 1 and Fig. 4
show the unique resulting (non-flected) derived
tree. The post-processing modules then outputs:
Jean a passé l’aspirateur pour être récompensé
par Marie. Ensuite, il a fait une sieste. (John
vacuumed in order to be rewarded by Mary. Af-
terwards, he took a nap.)

ensuite

pour
(+reduc-subj)

passer-l’aspirateur

Jean

recompenser
(+reduc-subj,+passive)

Marie ε

faire-la-sieste

Jean

arg1

arg1

arg1

arg2

arg1 arg2

arg2

arg1

Figure 3: Fully instantiated g-derivation tree

4 ACG Definition

Abstract Categorial Grammars
(ACGs) (de Groote, 2001) are a type theo-

4It lacks passivation in French and there is no form equiv-
alent to: John was given a reward by Mary.

5Of course, all these branching points offer several real-
izations of the same entry. But for explanatory purposes, we
describe only one at each step.
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Figure 4: Non-inflected derived tree

retical framework that is able to encode several
grammatical formalisms (de Groote and Pogo-
dalla, 2004). An ACG defines two languages:
the abstract one and the object one. The abstract
level describe the admissible parse structures and
a lexicon maps these structures to the ones we
observe at the object level (strings for surface
forms, logical formulas for semantic forms). In
all cases, the considered languages are sets of
λ-terms that generalize string and tree languages.

Definition. A higher-order linear signature (also
called a vocabulary) is defined to be a triple Σ =
〈A,C, τ〉, where:
• A is a finite set of atomic types (also noted
AΣ),
• C is a finite set of constants (also noted Cσ),
• and τ is a mapping from C to TA the set of

types built on A: TA ::= A|TA → TA (also
noted TΣ).

Given a higher-order linear signature Σ, Λ(Σ) is
the set of λ-terms built on Σ, and for t ∈ Λ(Σ)
and α ∈ TΣ such that t has type α, we note t :Σ α
(the Σ subscript is omitted when obvious from the
context).

Definition. An abstract categorial grammar is a
quadruple G = 〈Σ,Ξ,L, s〉 where:

1. Σ and Ξ are two higher-order linear signa-
tures, which are called the abstract vocabu-
lary and the object vocabulary, respectively;

2. L : Σ −→ Ξ is a lexicon from the abstract
vocabulary to the object vocabulary. It is
a homomorphism that maps types and terms
built on Σ to types and terms built on Ξ as
follows:
• if α → β ∈ TΣ then L(α → β) =

L(α)→ L(β)
• if x ∈ Λ(Σ) (resp. λx.t ∈ Λ(Σ) and
t u ∈ Λ(Σ)) then L(x) = x (resp.
L(λx.t) = λx.L(t) and L(t u) =

L(t) L(u))
It is then enough to define L on the atomic
types and on the constants of Σ to define it
on all types and terms, provided that for any
constant c : α of Σ we have L(c) : L(α).
We note t:=G u if L(t) = u and omit the G
subscript if obvious from the context.

3. s ∈ TΣ is a type of the abstract vocabulary,
which is called the distinguished type of the
grammar.

Table 1 provides an ACG example Gd-ed trees

where the abstract typed constants of Σderθ en-
code the combinatorial properties of the associated
(through the lexicon Ld-ed trees) elementary trees.

Definition. The abstract language of an ACG G =
〈Σ,Ξ,L, s〉 is A(G ) = {t ∈ Λ(Σ) | t :Σ s}

The object language of the grammar O(G ) =
{t ∈ Λ(Ξ) | ∃u ∈ A(G ). t = LG(u)}

For instance, the term Creward IS Iv CMary CJean :
S ∈ Gd-ed trees, and its image, the derived tree for
Marie récompense Jean (Mary rewards John).

It is important to note that, from a purely math-
ematical point of view, there is no structural differ-
ence between the abstract and the object vocabu-
lary: both are higher-order signatures. This allows
for combining ACGs in different ways:
• by having a same abstract vocabulary shared

by several ACGs: this can be used to make
two object terms (for instance a string and
a logical formula) share the same underlying
structure. Gd-ed trees and GLog in Fig. 5 illustrate
such a composition.
• by making the abstract vocabulary of one

ACG the object vocabulary of another ACG,
allowing for the control of the admissible
structures of the former by the latter. Gyield

and Gd-ed trees in Fig. 5 illustrate such a com-
position.

Λ(Σderθ)

Λ(Σtrees)

Gd-ed trees

Λ(Σstring)

Gyield

Λ(ΣLog)

GLog

Figure 5: ACG architecture for TAG
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Crucial to our analysis is that ACG parsing of
a term u amounts to finding an abstract term t
such that t:= u, no matter whether u represents
a string, a tree, or a logical formula. This can be
done in polynomial time for ACGs whose abstract
constant types are at most of order 2: second order
ACGs as (Kanazawa, 2007) shows.6 The result re-
lies on a reduction of the parsing problem to Data-
log querying where the term to be parsed is stored
in a database. Interestingly, this database can rep-
resent a set of terms (Kanazawa, 2011, Section
4.2) and the query reduces to checking whether at
least one of them can be retrieved. This allows the
query associated with a term representing a logical
formula to extend to all the terms that are equiva-
lent modulo the associativity and the commutativ-
ity of the conjunction.

5 ACG Encoding

5.1 TAG as ACG

Because ACG considers both the abstract lan-
guage and the object language, the encoding of
TAG into ACG makes (abstract) terms represent-
ing derivation trees primary. The encoding uses
two ACGs Gd-ed trees = 〈Σderθ,Σtrees,Ld-ed trees,S〉
and Gyield = 〈Σtrees,Σstring,Lyield, τ〉.

We exemplify the encoding7 of a TAG analyz-
ing (2) in Fig. 6.8

(2) Marie
Mary

récompense
rewards

ensuite
then

Jean
John

This sentence is usually analyzed in TAG with a
derivation tree where the adverb adjoins at the v
node.

The three higher-order signatures are:
Σderθ: Its atomic types include S, v, np, SA,

vA. . . where the X types stand for the cate-
gories X of the nodes where a substitution
can occur while the XA types stand for the
categories X of the nodes where an adjunc-
tion can occur. For each elementary tree
γlex. entry it contains a constant Clex. entry whose
type is based on the adjunction and substitu-
tion sites as Table 1 shows. It additionally
contains constants IX : XA that are meant
to provide a fake auxiliary tree on adjunction

6It actually extends this result to almost linear object
terms where variables with atomic type can be duplicated,
as it commonly happens at the semantic level.

7This corresponds to the systematic encoding of (Pogo-
dalla, 2009) of TAG and its semantics into ACG.

8We follow the grammar of (Abeillé, 2002).

sites where no adjunction actually takes place
in a TAG derivation.

Σtrees: Its unique atomic type is τ the type of
trees. Then, for any X of arity n belong-
ing to the ranked alphabet describing the ele-
mentary trees of the TAG, we have a constant

Xn :

n times︷ ︸︸ ︷
τ ( · · ·( τ ( τ

Σstring: Its unique atomic type is σ the type of
strings. The constants are the terminal sym-
bols of the TAG (with type σ), the concatena-
tion + : σ ( σ ( σ and the empty string
ε : σ.

Table 1 illustrates Ld-ed trees.9 Lyield is defined as
follows:
• Lyield(τ) = σ;
• for n > 0, Lyield(Xn) = λx1 · · ·xn.x1 +
· · ·+ xn;
• for n = 0, X0 : τ represents a terminal sym-

bol and Lyield(X0) = X .
Then, the derivation tree, the derived tree, and the
yield of Fig. 6 are represented by:

γreward

γJeanγMarieγthen

(a) Derivation tree

S

np

Jean

v

ensuitev

récompense

np

Marie

(b) Derived tree

Figure 6: Marie récompense ensuite Jean

γ5 = Creward IS (Cv
then IS) CMarie CJean

Ld-ed trees(γ5)

= S3 (np1 Marie)

(v2 (v1 récompense) ensuite) (np1 Jean)

Lyield(Ld-ed trees(γ5)) = Marie + récompense
+ ensuite + Jean

5.2 G-TAG as ACG
In order to model G-TAG in ACG, first we need to
design the abstract signature Σg-derθ in which we
can have entries for G-TAG. This entries will re-
flect the ideology that G-TAG is based on. For
instance, in G-TAG discourse level words like en-
suite can take as its arguments texts and sentences
and produces text. In order to model this, we
introduce types S and T. Then, we can define
DSS

then: S ( S ( T, which means that DSS
then has

takes two arguments of type S and returns a re-
sult of type T. As in G-TAG, ensuite can take two

9With Ld-ed trees(XA) = τ ( τ and for any other type
X , Ld-ed trees(XA) = τ .
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Abstract constants of Σderθ Their images by Ld-ed trees The corresponding TAG trees

CJean : np cJean
: τ
= np1 Jean γJean =

np

Jean

Cv
then : vA ( vA cvthen

: (τ ( τ) ( (τ ( τ)
= λovx.v (v2 xensuite)

γthen = v

ensuitev∗

Creward :
SA ( vA ( np

( np ( S creward
:

(τ ( τ) ( (τ ( τ) ( τ
( τ ( τ

= λoavso.a (S3 s (v (v1 récompense)) o)
γreward = S

npv

récompense

np

IX : XA λx.x : τ ( τ

Table 1: A TAG as an ACG: Ld-ed trees and Llog.sem lexicons

texts as arguments and return text as well, we need
to do have another entry for modeling this fact.
This makes us to introduce another constant DTT

then :
T ( T ( T. For the same kind of reason, we in-
troduce following constants: DST

then: S ( T ( T,
DTS

then and T ( S ( T. Other relations, like au-
paravant is modeled in the same way as ensuite in
Σg-derθ.

Apart from ensuite and auparavant, there are
connectives as avant (before) and après (after) that
need to be modeled differently from ensuite. In-
deed, while ensuite results in a text, placing side
by side a text and a sentence separated with a pe-
riod, avant and après in French combine in a sin-
gle sentence a (full) clause and an infinitive clause
with an implicit subject: the one of the first clause.
It is clear that in order to type avant and après in
the Σg-derθ signature, one should use a type which
schematically looks as . . . ( S. On the other
hand, one needs to give the exact type to them.
Despite that in TAG and G-TAG avant and après
take two sentential arguments (labelled by S), the
second argument bears a feature indicating it lacks
the subject and that the latter has to be shared with
the first sentence. For instance: Jean a fait une
sieste après avoir passé l’aspirateur (John took
a nap after having vacuumed), here the subject
of avoir passé l’aspirateur (having vacuumed) is
Jean, which comes from the sentence Jean a fait
une sieste (John took a nap). So, Jean a fait une
sieste (John took a nap) can be seen as a sentence
whose subject is shared by another sentence as
well. In order to model this point, we use fol-
lowing type: Sws ( Sh ( np ( S. Indeed,
the Sws and the Sh types correspond to the type
of sentences missing a subject. Furthermore, we
need to model pour and pour que, which were in-
troduced in order to lexicalize the GOAL relation in
G-TAG. First, let us have a look at pour que. It can

take as its arguments two complete (from a syntax
point of view) sentences and results in a sentence
as in: Il travaille pour que vous puissiez manger.
So, Dpour que, which is an entry corresponding to
pour que, can be assigned a S ( S ( S type.
The syntactic difference between pour que and
pour was highlighted in Section 3: pour takes
as arguments a complete sentence and an infini-
tive form of a sentence missing a subject whose
subject comes from the first argument. Thus, in
this case, similarly to case of avant and après,
pour has to be modeled as an entry that has type
Sws ( Sinf ( np ( S, where Sinf stands for
the type of an infinitive form of a clause missing a
subject. We also need to deal with encoding differ-
ent forms of a verb. For instance, récompenser has
an active and a passive form. In G-TAG deriva-
tion, both of them can be encountered. In order
to model this fact, two different entries are intro-
duced: one for the passive form and one for the
active form, which is the canonical construction
for récompenser. So, we need to have two distinct
entries Dpassive

recompense and Dactive
recompense, and both of them

have type SA ( vA ( np ( np ( S. More-
over, (Danlos, 2000) poses the problem that G-
TAG cannot handle a text where the adverb adjoin
at the v node rather than on the S node as in: Jean
a passé l’aspirateur. Il a ensuite fait une sieste

(John vacuumed. He then took a nap.) According
to (Danlos, 2000) modelling such text production
requires a formalism more powerful than TAG. In
the ACG framework, this observations translates
into defining an entry Dv

then : S ( (vA ( S) (
T in Σg-derθ which is third order and that is, as such,
beyond the TAC into ACG encoding (that only re-
quires second-order types).10 This also offers a

10Currently, there is no theoretical complexity result for
parsing such ACG fragments. However, in this particu-
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general mechanism for providing constants encod-
ing adverbial connectives with two arguments as
in discourse grammars such as D-STAG (Danlos,
2011), but contrary to D-LTAG where one of the
arguments is anaphorically given from the preced-
ing discourse (Webber, 2004).

G-Derivation Trees to Derivation Trees We
translate terms of Σg-derθ, which correspond to g-
derivation trees, into the TAG derivation tree lan-
guage defined on Σderθ using the lexicon Lder-der

of Table 2. It is interesting to see how to inter-

Lder-der(S) = Lder-der(T) = Lder-der(Sws)
= Lder-der(Sinf) = Lder-der(Sh)
= S

Lder-der(SA) = SA
Lder-der(vA) = vA
Lder-der(np) = np
Lder-der(IS) = IS

Lder-der(Iv) = Iv

Table 2: The Lder-der lexicon

pret Dv
then: S ( (vA ( S) ( T into Σderθ.

For this reason, we introduce in Σderθ the follow-
ing constant: s2 : S ( S ( S that allows
for combining two sentences with a period. Now,
it is possible to translate Dv

then into Σderθ as fol-
lows: Lder-der(D

v
then) = λoS1 S2.s2 S1(S2C

v
then).

It means that Dv
then is interpreted as performing

both the operation of combining two sentences
with a period and the adjunction of ensuite on the
v node of the second sentence.

G-Derived Trees as Interpretation of G-
Derivation Trees As soon as g-derivation trees
as term built on Σg-derθ are interpreted as term
built on Σderθ, we can map them to derived trees.
Thus, by composing the two lexicons Lder-der and
Ld-ed trees we can get directly from G-TAG into de-
rived trees

5.3 From G-TAG to Montague Style
Semantics Using ACGs

(Pogodalla, 2009) defines a signature ΣLog and a
lexicon LLog from Σderθ to ΣLog. The entries in
ΣLog have Montague like semantics. The lexicon
translates a derivation tree into a corresponding
formula. We will use the same kind of semantic
language for conceptual representations. In other
words, our language will produce the formulas

lar case, we could use a second-order—and polynomial—
encoding of multi-component TAG into ACG.

that are used in the conceptual representation of
G-TAG, while we will stick to the Montague style
translations from syntax to semantics.

So, we define a signature Σconrep of conceptual
representation that is similar to the one of (Pogo-
dalla, 2009). Σconrep defines two atomic types e
and t and constants such as: j, m . . . of type e, the
constant REWARD of type e ( e ( t, the con-
stant CLAIM of type e ( t ( t and the constant
SEEM of type t( t. Moreover, we have constants
SUCC, GOAL of type t( t( t.

We are able to translate Σg-derθ into Σconrep

with the help of the lexicon Lder-con. The
lexicon Lder-con is extension of the lexicon
defined in (Pogodalla, 2009), because we
are adding to the domain (i.e. abstract lan-
guage) the constants that are not in the Σderθ.

Lder-con(S) = Lder-con(T) = t
Lder-con(vA) = (e→ t) ( (e→ t)
Lder-con(SA) = t( t
Lder-con(np) = (e→ t) ( t

Lder-con(Djean) = λoP.P (j)
Lder-con(D

ST
then) = Lder-con(D

SS
then)

= Lder-con(D
ST
then)

= Lder-con(D
TS
then)

= Lder-con(D
TT
then )

= λs2s1.SUCC s2 s1

Lder-con(D
ST
bef. ) = Lder-con(D

SS
bef. )

= Lder-con(D
ST
bef. )

= Lder-con(D
TS
bef. )

= Lder-con(D
TT
bef. )

= λo s1s2. SUCC s2 s1

Lder-con(Drewards) = λos a O S.s(S(a(λox.O(λoy.
(REWARD x y))))

Note that the interpretation of np is JnpK =
(e → t) ( t, using a non-linear implication (but
almost linear). Typically, the sharing of the sub-
ject by the two clauses related by pour or avant de
induces non linearity.

The Sinf, Sh, and Sws types all are interpreted
as JnpK ( JSK = ((e → t) ( t) ( t as they
denote clauses lacking a subject. Then we trans-
late the constants Dpour, Daprès, and Davant in
the following way:

Lder-con(Dpour ) =

λos1.λ
os2.λ

oN.N(λx.(GOAL(s1(λP.P x))

(s2(λP.P x))))

Lder-con(Dapres) =

λos1.λ
os2.λ

oN.N(λx.(SUCC(s1(λP.P x))

(s2(λP.P x))))
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Lder-con(Davant) =

λos1.λ
os2.λ

oN.N(λx.(SUCC(s2(λP.P x))

(s1(λP.P x))))

5.4 The G-TAG Process as a Morphism
Composition

We exemplify the whole process using the term
T0 = SUCC(VAC(jean),REWARD(marie, jean))
of type t.11 The terms representing the g-
derivation trees that generate this conceptual rep-
resentation are the antecedents of To by L −1

der-con:
L −1

der-con(T0) = {t1, . . . , t8} that all are of type
T. They are given in Figure 7. Each of these re-
trieved terms t1, . . . , t8 are then mapped to terms
representing TAG derivation trees, i.e. built on
Σderθ via the lexicon Lder-der. They can be can
in turn be interpreted as syntactic derived trees
via the lexicon Ld-ed trees, and the latter can be
interpreted as strings using the lexicon Lyield.
So from T0 we can have eight surface forms:
Lyield(Ld-ed trees(Lder-der(ti))), i ∈ [1, 8]. Let us
show this process on the example of t512. It il-
lustrates the generation of the example (3).13

(3) Jean
John

a passé l’aspirateur.
vacuumed.

Marie
Mary

a récompensé
rewarded

ensuite
afterwards

Jean.
John.

Lder-der(t5) = s2 (CvacISIvCjean)

(CrewardISC
v
thenCmarieCjean)

Ld-ed trees(Lder-der(t5) =

S3 (S2 (np1 Jean)(v1 a passé l’aspirateur))
·

(S3(np1 Marie)(v2 (v1 a récompensé) ensuite)(np1 Jean))

And the surface forms is given by composing the
interpretations:

Lyield(Ld-ed trees(Lder-der(t5)) =

Jean + a passé + l’aspirateur + . +

Marie + a recompensé + ensuite + Jean

11The associated conceptual input is a simplified version of
the conceptual input of Equation 1 without the GOAL concept
and a replacement of the NAP one by the REWARDING one.

12t5 is such that Lder-der(t5) = γ5 and the term γ5 was
used as example at Section 5.1.

13For sake of simplicity we assume the adverb adjoins on
the whole auxiliary+verb phrase rather than only on the aux-
iliary as it would be in French.

t1 = DSS
then(DvacISIvDjean)(DrewardISIvDmarieDjean)

t2 = DSS
then(DvacISIvDjean)(Dpassive

rewardISIvDmarieDjean)
t3 = DSS

bef.(DrewardISIvDmarieDjean)(DvacISIvDjean)

t4 = DSS
bef.(D

passive
rewardISIvDjeanDmarie)(DvacISIvDjean)

t5 = Dv
then(DvacISIvDjean)(λoa.Dreward IS a DmarieDjean)

t6 = Dv
then(DvacISIvDjean)(Dpassive

rewardISIvDjeanDmarie)
t7 = Dafter (D

sws
vacISIv)(Dreceive-rew.ISIvDjean)Dmarie

t8 = Dbef.(D
sws
vacISIv)(Dreceive-rew.ISIvDjean)Dmarie

Figure 7: Antecedents of T0 by Lder-con

6 Related Work

We can only quickly mention two related pieces
of work. On the one hand, (Gardent and Perez-
Beltrachini, 2010) also takes advantage of the
formal properties underlying the tree language
of derivation trees to propose a generation pro-
cess using TAG grammars. On the other hand,
(Nakatsu and White, 2010) also includes discourse
relations in the grammar with Discourse Combi-
natory Categorial Grammar and a type-theoretical
framework to provide a text (rather than sentence)
generation process.

7 Conclusion

This paper shows how G-TAG can be encoded as
ACG. It relies on the fact that both G-TAG and the
encoding of TAG within ACG make the deriva-
tion tree a primary notion. Then we can bene-
fit from the polynomial reversibility of the ACG
framework. It also offers a generalization of the
process to all kinds of adjunctions, including the
predicative ones. It also offers a new insight on
discourse grammars for the adverbial connective
encoding (Danlos, 2011). Note that contrary to an
important part of G-TAG that offers a way (based
on a semantic and a linguistic analysis) to rank the
different realizations of a conceptual representa-
tion, we do not deal here with such preferences.
As syntactic ambiguity treatment is not usually
part of the syntactic formalism, we prefer the “re-
alization ambiguity” treatment not to be part of the
generation formalism. Finally, a crucial perspec-
tive is to integrate a theory of generation of re-
ferring expressions relying on type-theoretical ap-
proaches to dynamics semantics (de Groote, 2006;
de Groote and Lebedeva, 2010) that would ensure
a large compatibility with the ACG framework.
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