An easy method to make dialogue systems incremental

Hatim KHOUZAIMI Romain LAROCHE Fabrice LEFEVRE
Orange Labs Orange Labs, Laboratoire Informatique d’ Avignon,
Laboratoire Informatique d’ Avignon Issy-les-Moulineaux, Avignon, France
hatim.khouzaimi@orange.com France fabrice.lefevre@univ-avignon. fr

romain.laroche@orange.com

Abstract

Incrementality as a way of managing the
interactions between a dialogue system
and its users has been shown to have
concrete advantages over the traditional
turn-taking frame. Incremental systems
are more reactive, more human-like, of-
fer a better user experience and allow the
user to correct errors faster, hence avoid-
ing desynchronisations. Several incremen-
tal models have been proposed, however,
their core underlying architecture is dif-
ferent from the classical dialogue systems.
As a result, they have to be implemented
from scratch. In this paper, we propose a
method to transform traditional dialogue
systems into incremental ones. A new
module, called the Scheduler is inserted
between the client and the service so that
from the client’s point of view, the sys-
tem behaves incrementally, even though
the service does not.

1 Introduction

An incremental compiler (Lock, 1965) processes
each instruction irrespectively from the others so
that local modifications of the source code do not
affect the global result. This idea of incrementality
has been adapted to the field of natural language
analysis (Wirén, 1992): instead of feeding mod-
ules with full utterances, the input signal is deliv-
ered and processed chunk by chunk (word by word
for example) and each new piece engenders a new
output hypothesis.

Human beings behave similarly when interact-
ing with each other (Levelt, 1989; Clark, 1996).
They understand each other gradually when they
speak, they can interrupt each other and the lis-
tener is able to predict the end of an utterance be-
fore it is fully pronounced by the speaker (Tanen-
haus et al., 1995; Brown-Schmidt and Hanna,

98

2011; DeVault et al., 2011). Reading is also a task
that we perform incrementally (Ilkin and Sturt,
2011).

Traditional dialogue systems' work in a turn-
taking manner. The user pronounces his request
and after a silence is detected, the systems starts
processing the utterance and planning an answer.
Some systems can even allow the user to barge in
on them, however, they do not take the timing of
the interruption into account nor try to link it with
the system’s utterance. On the other hand, incre-
mental dialogue systems process the user’s request
chunk by chunk as the latter is divided in several
incremental units (IU) (Schlangen and Skantze,
2011). They keep a hypothetical user request that
evolves as new IUs arrive as input. The response
to this hypothesis can be used to make live feed-
back to the user using voice or other modalities if
available. As opposed to traditional systems, when
the user interrupts the system, the content and the
timing of its utterance are taken into account (Mat-
suyama et al., 2009; Selfridge et al., 2013) to de-
termine how to act on it. Therefore, incremental
systems have been shown to be more reactive, to
offer a more human-like experience (Edlund et al.,
2008) and to correct errors faster hence achieving
better results in terms of user experience (Skantze
and Schlangen, 2009; Baumann and Schlangen,
2013; El Asri et al., 2014) and task completion
(Matthias, 2008; El Asri et al., 2014).

Many incremental architectures have already
been proposed. Nevertheless, designing systems
based on them requires an implementation from
scratch as they are fundamentally different from
traditional dialogue systems. The objective of this
paper is to propose a method of transforming a tra-
ditional system into an incremental one at minimal
cost. A new module called the Scheduler is in-
serted between the client and the service so that

"We will use the expression traditional dialogue systems
to talk about non incremental ones.

Proceedings of the SIGDIAL 2014 Conference, pages 98—107,
Philadelphia, U.S.A., 18-20 June 2014. (©2014 Association for Computational Linguistics

from the client’s point of view, the system behaves
incrementally, even though the service works in a
traditional way.

Section 2 draws a state-of-the-art concerning in-
cremental dialogue systems. The architecture pro-
posed here and the role of the Scheduler are pre-
sented in Section 3. In Section 4, two implemen-
tations of our method are presented: CFAsST and
DictaNum. Then, a discussion is held in Section
5 before concluding the paper and presenting our
next objectives in Section 6.

2 Related work

Dialogue systems can be split into four groups
according to how they integrate incrementality
in their behaviour. Traditional dialogue systems
(Laroche et al., 2011) form the first category
whereas the second one refers to systems that
propose some incremental strategies among tra-
ditional others (El Asri et al.,, 2014). The ar-
chitecture presented in this paper belongs to the
third group which contains incremental systems
based on a traditional inner behaviour (Hastie et
al., 2013; Selfridge et al., 2012). The fourth cate-
gory contains incremental systems where internal
modules work incrementally (Dohsaka and Shi-
mazu, 1997; Allen et al., 2001; Schlangen and
Skantze, 2011). Figure 1 discussed later provides
a list of the features that are available in each cat-
egory.

Several dialogue strategies have been imple-
mented in NASTIA (El Asri et al., 2014), a dia-
logue system helping the user to find a date and
a time for an appointment with a technician (com-
pleting the work made during the European project
CLASSIC (Laroche and Putois, 2010)). Among
them, List of Availabilities is an incremental strat-
egy where the system enumerates a list of alterna-
tives for the appointment. The user is supposed to
interrupt this enumeration when he hears an op-
tion that is convenient for him. An experiment
showed that List of Availabilities produced better
results than other traditional strategies in terms of
task completion and user satisfaction.

PARLANCE (Hastie et al., 2013) is an exam-
ple of a third category system (it was developed
in the European project PARLANCE). Its archi-
tecture is similar to the traditional ones but it inte-
grates a new module, called MIM (Micro-turn In-
teraction Manager), which decides when the sys-
tem should speak, listen to the user and when it

99

should generate back-channels. The closest ap-
proach to the method introduced in this paper is
presented in (Selfridge et al., 2012) : the IIM (In-
cremental Interaction Manager) is an intermediate
module between an incremental ASR and a TTS
on the one hand and the service on the other hand.
Instead of replicating the dialogue context as it is
suggested in this paper, different instances of the
service are run. Moreover, the IIM is introduced as
preliminary work in order to simulate incremen-
tal dialogue whereas in this paper, the Scheduler
approach is fully studied and placed into the con-
text of the current state-of-the-art concerning in-
cremental dialogue. It is also viewed as a new
layer that can be extended later on, into a smart
turn-taking manager.

The architecture proposed in (Dohsaka and Shi-
mazu, 1997) contains eight modules that work in
parallel: the Speech Recognizer, the Response
Analyzer, the Dialogue Controller, the Problem
Solver, the Utterance Planner, the Utterance Con-
troller, the Speech Synthesizer and the Pause Mon-
itor. The user asks the system to solve a problem.
Then, his request is submitted incrementally to the
Speech Recognizer which sends its output text to
the Response Analyzer that figures out concepts to
be sent to the Dialogue Controller. The latter in-
teracts with the Problem Solver and the Utterance
Planner in order to compute a solution that is com-
municated to the user through the Utterance Con-
troller then the Speech Synthesizer. This system
belongs to the fourth category as all its modules
behave incrementally in order to start suggesting
a solution to the user’s problem before it is to-
tally computed. In the same category, (Allen et al.,
2001) proposes another architectures split in three
main modules: the Interpretation Manager, the Be-
havioral Agent and the Generation Manager. The
first module catches the user’s request and broad-
casts it incrementally inside the system. The sec-
ond one manages the system’s action plan and the
third is in charge of the response delivery.

A general and abstract model is introduced in
(Schlangen and Skantze, 2011). A dialogue sys-
tem can be viewed as a chain of modules. Each
module has a Left Buffer (LB) where its inputs are
pushed, an Internal State (IS) and a Right Buffer
(RB) where it makes its outputs available. Data
(audio, text, concepts...) flows through these mod-
ules in the form of Incremental Units (IU). When
an IU is put in the LB of a module, it can be pro-

cessed immediately hence modifying its RB. For
example, every 500 ms, a new IU in the form of
a chunk of audio signal can be put into the LB
of the ASR which can modify its output accord-
ing to what the user said during this time window.
All dialogue systems from the four categories can
be viewed as instances of this general model: we
can now see that a non-incremental system can be
characterised as a special case of an incremental
system, namely one where IUs are always maxi-
mally complete [...] and where all modules update
in one go.

In this paper, we introduce an architecture that
belongs to the third category. In comparison with
the first two categories, these systems behave in-
crementally during the whole dialogue. On the
other hand, they can be built at a lower cost than
the systems from the fourth category.

3 Architecture

Traditional dialogue systems are generally com-
posed of a client on the user’s terminal and a ser-
vice that is deployed on a remote machine. They
work in a turn-taking manner as when the user
speaks, the system waits until the end of his re-
quest before processing it and vice versa (except
for some systems where the user can interrupt the
system). To make such a system incremental, we
suggest inserting a new module between the client
and the service: the Scheduler (this denomination
is taken from (Laroche, 2010)). This new archi-
tecture can be cast as an instance of the general
abstract model of (Schlangen and Skantze, 2011).
The client, the Scheduler and the service are the
three modules that compose the system. The first
two ones are incremental but the last one is not.
We will not use the notions of LB and RB and
will consider that these modules interact with each
other through some channel (network in the case
of our implementation, see Section 4).

3.1 The traditional architecture

In a traditional architecture, the client receives a
stream of data (audio signal, string...). If it is not
the case (a web interface where each button rep-
resents a request for example), it does not make
sense to transform such a system in an incremen-
tal one, so they are out of the scope of this paper.
The end of a request is determined by a condition
EndTurnCond. It can be a long enough silence
(Raux and Eskenazi, 2008; Wlodarczak and Wag-

100

ner, 2013) in the case of vocal services or a car-
riage return for text systems. A dialogue turn is
the time interval during which the user sends a re-
quest to the system and gets a response. These
turns will be called 7, T2, ..., T*... and each one
of them can be split into a user furn T*V and a
system turn T*5: TF = T®U TS During the
user turn, a request Reg® is sent and during the
system turn, the corresponding response Resp” is
received. The instant when a condition goes from
false to true will be called its activation time. As
a consequence, TkU ends at the activation time
of EndTurnCond and T** is finished when the
system gives the floor to the user.

The service is made up of three parts: the inter-
nal interface, the internal context and the external
interface. The internal interface manages the inter-
actions between the service and the client. The in-
ternal context handles the way the client’s requests
should be acted on and the external interface is in
charge of the interactions with the external world
(database, remote device...).

3.2 Incrementality integration

The way the client sends the user’s request to the
service should be modified in order to make the
system incremental. A new sending condition is
defined: EndMicroTurnCond and it is less re-
strictive than EndTurnCond (which makes the
latter imply the former). Therefore, the new client
sends requests more frequently than the traditional
one. A user micro-turn is the time interval between
two activation times of EndMicroTurnCond so
the user turn 7%Y can be divided into n*V user
micro-turns uTik’U: ™V = f:kl MTik’U. We
also define the p** sub-turn of the user turn 75V
as: T;“U [/LTik’U. The union symbol is
used as we concatenate time intervals. In gen-
eral, EndMicroTurnCond can be activated at
a constant frequency or at each new input made
by the user. Moreover, when EndTurnCond is
activated, the Scheduler is informed by the client
thanks to a dedicated signal: signal_ETC. At each
T*5, the user makes a new request but at the
micro-turn ,uTZ-k’S with i < n*U | the complete re-
quest is not available yet. Consequently, a tempo-
rary request which we will call sub-request (Reqf)
is sent. Sending the whole request from the begin-
ning of the turn at each micro-turn is called restart
incremental processing (Schlangen and Skantze,
2011). Let us notice that if i1 < iz then Reql

is not necessarily a prefix of Reqﬁ“2 (in spoken di-
alogue, a new input in the ASR can modify the
whole or a big part of the output).

The Scheduler is an intermediate module be-
tween the client and the service whose aim is to
make the combination {Scheduler + Service} be-
have incrementally from the client’s point of view.
We define Service ReqC'ond as the condition con-
straining the Scheduler to send a request to the sys-
tem or not. At each user micro-turn MTik’S, it re-
ceives a sub-request Reqf . If ServiceReqCond
is true, the latter is sent to the system and the
corresponding response Respf is stored so that
the client can ask for it later. For example,
ServiceReqCond can be constantly true which
makes the Scheduler send all the sub-requests that
it receives or it can be activated only if the new
sub-request is different from the previous one (if
the client already behaves the same way through
EndMicroTurnCond it is redundant to do so in
ServiceReqCond t00).

The end of a turn is determined by the Sched-
uler. This module decides when to validate the
current sub-request and to no longer wait for new
information to complete it. It engages the di-
alogue in the direction of this hypothesis as it
is considered as the user’s intent. The Sched-
uler is said to commit the sub-request (Schlangen
and Skantze, 2011) (this notion is described in
Section 3.3). We define CommitCond as the
condition for the Scheduler to commit a hy-
pothesis. For example, in the case of a sys-
tem that asks for a 10 digits phone number,
CommitCond = (length(num) == 10) where
length(num) is the number of digits in each sub-
request. Hence, a user turn ends at the activa-
tion time of C'ommitCond and not when a sig-
nal_ETC is received. However, EndTurnCond
implies CommitCond.

The client is made of two threads: the send-
ing thread and the recuperation thread. The first
one is in charge of sending sub-requests at each
micro-turn and the second one gets the last re-
sponse hypothesis available in the Scheduler. The
recuperation thread is activated at the same fre-
quency as micro-turns so that the client is always
up to date. In the case of vocal services, it is the
Scheduler’s task to decide which intermediate re-
sponses should be pronounced by the system and
which ones should be ignored. Therefore, a flag
in the message must be set by this module to de-

101

clare whether it has to be outputted or not. When
the recuperation thread gets new messages from
the Scheduler, it decides whether to send it to the
Text-To-Speech module or not based on the value
of this flag.

The service in our architecture is kept un-
changed (apart from some changes at the ap-
plicative level, see Section 4.2). The only func-
tional modification is that the context is dupli-
cated: the simulation context (see Section 3.3) is
added. When a new sub-request is received by
the Scheduler and Service ReqCond is true, an
incomplete request (sub-request) is sent to the ser-
vice. Therefore, the system knows what would be
the response of a sub-request if it has to be com-
mitted. As the service is not incremental and can-
not process the request chunk by chunk, all the in-
crements from the beginning of the turn have to
be sent and that is what justifies the choice of the
restart incremental mode.

The service can also order the Scheduler
to commit. This behaviour is described in
(Schlangen and Skantze, 2011) where the IUs in
the RB of a module are grounded in the ones in
the LB that generated them. Consequently, when
a module decides to commit to an output IU, all
the IUs that it is grounded in must be committed.
In our architecture, when the service commits to
the result of a request (if it already started deliv-
ering the response to the user for example), this
request has to be committed by the Scheduler.

On the other hand, as we defined the user
micro-turn, we can introduce the system micro-
turn. In traditional systems, the service’s re-
sponse is played by the TTS during the system turn
T*5. In incremental dialogue, this turn can be di-

vided into nf system micro-turns uTik’S: TS =

U?El ,uTik’S. Their duration depends on the way
the service decides to chunk its response (for ex-
ample, every item in an enumeration can be con-
sidered as a chunk). When the user interrupts the
system, the timing of his interruption is given by
the micro-turn during which he reacted. Moreover,
when the user barges in, a new tour is started. Only
vocal systems are concerned with this behaviour as
textual systems cannot be interrupted (the whole
service response is displayed instantly).

3.3 Commit, rollback and double context

The request hypothesis fluctuates as long as new
increments are taken into account. However, at

some point, the system has to take an action that
is based on the last hypothesis and visible by the
user. For example, a response may be sent to the
TTS or a database can be modified. At that point,
the system is said to commit to its last hypothe-
sis which means that it engages the dialogue ac-
cording to its understanding of the request at that
moment. It no longer waits for other incremental
units to complete the request as it can no longer
change it. On the contrary, the system can decide
to forget its last hypothesis and come back to the
state it was in at the moment of the last commit.
This operation is called rollback (both terms are
taken from the database terminology).

Most of the requests sent by the Scheduler to the
service are aimed to know what would the latter
respond if the current hypothesis contains all the
information about the user’s intent. Consequently,
these requests should not modify the current con-
text of the dialogue. We suggest that the service
maintains two contexts: the real context and the
simulation context. The first one plays the same
role as the classical context whereas the second
one is a buffer that can be modified by partial re-
quests.

In our architecture, committing to a hypothesis
will be made by copying the content of the sim-
ulation context (generated by the current request
hypothesis) into the real context. On the opposite,
a rollback is performed by copying the real con-
text into the simulation one, hence going back to
the state the system was in right after the last com-
mit.

Every user micro-turn, the client sends to the
Scheduler the whole user’s sub-request since the
last commit. This incomplete request is then
sent to the service and the answer is stored in
the Scheduler. If during the next micro-turn, the
Scheduler does not ask for a commit but needs to
send a new sub-request instead, a rollback signal is
sent first as the system works in a restart incremen-
tal way (in this paper, rollbacks are only performed
in this case). Figures A.1 and A.2 represent the
way our three modules interact and how the dou-
ble context is handled. In Figure A.1, the con-
ditions EndTurnCond, EndMicroTurnCond,
ServiceReqCond and CommitCond are written
on the left of the streams they generate. On the left
of the figure, the times where the sending thread of
the client is active and inactive are represented and
dashed arrows represent streams that are received

102

by the recuperation thread. They are not synchro-
nized with the rest of the streams, even though
they are in this figure (for more clarity). Also, the
commit decision has been taken by the Scheduler
after it received a signal_ETC which is not always
the case.

We call ctat(T*) the real context at the end of
T* (ctzt(TC) being the initial context at the begin-
ning of the dialogue). The context is not modified
during the system turn, hence, we may notice that
ctxt(THY) = ctat(T*). During the commit at the
end of 7%V, the simulated context is copied into
the real context: ctat(T*) = ctat(TF 1 + T:k({/)

4 Implementations

We implemented our method in the case of two
dialogue systems developed at Orange Labs. The
first one is a text service where the client is a web
interface and the second one is a vocal service de-
signed to record numbers. With only a few modifi-
cations, these two systems have been made incre-
mental, showing that our solution is easy to im-
plement, and demonstrating the incremental be-
haviour of the transformed systems, in the limit
of the implemented strategies and according to
the modalities that have been used (text and vocal
modes).

4.1 CFAST: Content Finder AssitanT

CFAsT is an application developed at Orange Labs
and which can be used to generate textual dialogue
systems and whose objective is to help the user
search for some specific content in a database.

The client is a web page with a text-box where
the user can type a request using natural language
(validated by a carriage return or by clicking on
the validate button). This page also contains
buttons representing keywords or content sugges-
tions. In this implementation, the content base
chosen is the list of accepted papers at the NIPS
2013 conference. A list of keywords is maintained
through the interaction. It is initially empty and for
each new request, if new keywords are detected,
they are added to the list. The interaction ends
when the user selects a unique content.

In our implementation?, the client is made of
two screens. The first one contains the same
view as the classical system and the second
one fluctuates incrementally. When the user is
typing a request, the second view is updated

*http://dialogue.orange-labs.fr/CFAsTIncrEng/

each time the space button is hit: it shows
the answer that the service would have given
in case of a carriage return at that moment.
When a request is validated, a commit is per-
formed and the two views are identical. In this
case: EndMicroTurnCond is activated when
the space button is hit (Service ReqCond does
not filtrate any sub-request) and EndTurnCond
is true if a carriage return is detected. In addition,
CommitCond = EndTurnCond.

4.2 DictaNum

The second implementation is a vocal system
called DictaNum and inspired by NUMBERS di-
alogue system (Skantze and Schlangen, 2009). It
asks the user to dictate a number and then gives
a feedback to confirm that it has been well un-
derstood. The client is an HTML web page that
interacts with the Scheduler using AJAX3. It uses
the Google web API for both the ASR and TTS
tasks. Other existing systems ask the user to dic-
tate a number (telephone, credit card...) such as
How may I help you? (Langkilde et al., 1999).
Here is an example of an interaction with the tra-
ditional version of DictaNum:

System: Welcome to the DictaNum service. Please dictate
your number.

User: 01456579 98.

System: The dictated number is: 01 45 67 79 98. Is that
correct?

User: No.

System: Sorry. Let us try again. Please dictate your number.
User: 0145 6579 98.

System: The dictated number is: 01 47 65 79 98. Is that
correct?

No.

System: Sorry. Let us try again. Please dictate your number.
System: The dictated number is: 01 45 65 79 98. Is that
correct?

User:

User: Yes.

System: Thank you for using DictaNum. Bye.

If the user’s request has not been understood
correctly in one shot, he has to dictate it again.
This is not an optimal strategy. DictaNum has
been modified to support chunk by chunk dicta-
tion as in the following example:

3http://dialogue.orange-labs.fr/DictaNumEng/

103

System: Welcome to the DictaNum service. Please dictate
your number.

User: 0145

System: 01 45

User: 6579

System: 67 79

User: No, 6579

System: Sorry, 65 79

User: 98

System: 98

User: ...

System: The dictated number is: 01 45 65 79 98. Is that
correct?

Yes.

System: Thank you for using DictaNum. Bye.

User:

In order to generate feedbacks, the service has
been modified at the applicative level. It maintains
a string that is supposed to contain the complete
number at the end of the interaction. Initially, this
string is empty. When a silence is detected af-
ter a chunk is dictated, the system repeats the lat-
ter as a feedback to the user and concatenates it
at the end of the number string. If the user be-
gins a new chunk with No, the system understands
that it has to correct the last one (starting the next
feedback with Sorry...), otherwise, it keeps it and
moves forward in the dictation. Finally, if after
a feedback a silence is detected with nothing dic-
tated, the system understands that the dictation is
over and makes a general feedback over the whole
number.

These modifications are not enough for the sys-
tem to be used in an incremental way. It is not
optimal for the user to insert silences in his dic-
tation. Of course, he can, but it is not convenient
nor natural. The client has been modified so that it
no longer waits for a silence to send the user’s re-
quest, instead, it sends a partial request every 500
ms (EndMicroTurnCond). The partial request
is sent on a restart incremental mode.

Also, DictaNum can detect silences in a micro-
turn level. We call A, the silence threshold used
to determine the end of a request in the tradi-
tional system and we introduce a new threshold
0, such as 6 < Ag. A silence whose duration is
greater than dg is called micro-silence. The sys-
tem has been modified in order to detect these
shorter silences during the dictation, to commit
(EndTurnCond = CommitCond) and deliver
a feedback right after. Additionally, our system’s

response time is very short, the feedback message
is available before the end of the micro-silence, so
it is fed to the TTS without any delay. If 65 = Ag,
it is more convenient to dictate the number in one
shot. Therefore, moving s between zero and A,
creates a continuum between traditional systems
and incremental ones. One may argue that these
modifications are enough and no incremental be-
haviour is required, but the response delay will be
higher, hence, the user will not wait for any feed-
back and will try to dictate his number in one shot.

If the user manifests a silence that is longer than
Ay right after a feedback, the dictation ends and
a general feedback is made to confirm the whole
number. In our system, silences are determined by
the number micro-turns during which there is no
new input from the ASR but we could have used
the VAD (Voice Activity Detection) (Breslin et al.,
2013).

We set EndMicroTurnCond to be activated
by a 2 Hz clock and at every micro-turn, the
Scheduler checks whether the new request is dif-
ferent from the previous one (Service ReqCond).
If that is the case, a rollback signal is sent followed
by all the digits in the current number fragment.
When a micro-silence is detected, a string silence
is sent to the Scheduler (as signal_ETC) and that is
when the Scheduler decides to commit. The recu-
peration thread requests the last message from the
service with the same frequency as micro-turns, so
when CommitCond is activated, the feedback is
already available and is delivered instantly to the
TTS.

Finally, it is also possible for the user to in-
terrupt the system during the final feedback. To
do so, the service sends a feedback message in
the following format: The dictated number is: 01
<sep> 45 <sep> 65 <sep> 79 <sep> 98. Is that
correct?. The <sep> is a separator that is used to
delimit the system micro-turns ,uTik’S. They are
pronounced one after another by the TTS. As a re-
sult, a dictation may end like this:

System: The dictated number is: 01 45 67 ...

User: No, 65.

System: Sorry. The dictated number is: 01 45 65 79 98. Is
that correct?

User: Yes.

System: Thank you for using DictaNum. Bye.

After the interruption, a message sent to the ser-

104

vice under the following format: {part of the re-
quest that has been pronounced so far | barge-in
content}. In our example, this message is {The
dictated number is: 01 45 67 | No, 65} which
makes the service know how to perform the cor-
rection (or not, if the interruption is just a confir-
mation for example).

5 Discussion

Incremental dialogue systems present new fea-
tures compared to traditional ones. In this section,
we analyse the abilities of these systems given the
way they integrate incrementality. To do so, we
classify them as suggested in Section 2. Figure
1 summarizes the features discussed. These fea-
tures are specific to incremental dialogue systems,
so they do not exist in the first category. On the
contrary, they have all been implemented in sys-
tems from the fourth category.

To interact with the NASTIA service, the user
has to call a vocal platform which handles the ASR
and TTS tasks. It has been configured in order to
interrupt the TTS when activity is detected in the
ASR. When using the List of Availabilities strat-
egy, each item during an enumeration is a dialogue
turn where the timeout duration is set to a low
value (time to declare that the user did not answer)
so that if he does not barge-in, the system moves to
the next item of the list. If the user speaks, the TTS
is stopped by the vocal platform and the user’s ut-
terance and its timing are communicated to the ser-
vice. The latter can ignore the barge-in (if the user
says No for example) or select an item in the list
according to this input. Some traditional systems
allow the user to interrupt them but they do not
take the content of the utterance into account nor
its timing (in order to make the link with the utter-
ance of the TTS). Hence, these two features can be
implemented in a dialogue system provided that
it is permanently listening to the user and that it
catches his utterance and its timing. These condi-
tions are true for systems from the third category
which make it possible for them to integrate these
features.

Incremental dialogue systems can sometimes
detect desynchronisations before the user has fin-
ished his utterance. Therefore, the dialogue would
take less time if the system can interrupt the user
asking him to repeat his request. Feedbacks are
also a form of interrupt as it is the case for Dic-
taNum because they are uttered after a short si-

Features Category 1 | Category 2 | Category 3 | Category 4
TTS interruption after input analysis - + + +
Link interruption time with TTS - + + +
User interruption by the system - - + +
Better reactivity - - + +
Optimal processing cost - - - +

Figure 1: Available features for dialogue systems given the way they integrate incrementality

lence (micro-silence). These features can only be
implemented in systems from the third and the
fourth group, as for the the first two ones, the sys-
tem is only requested at the end of a user’s utter-
ance.

As far as reactivity is concerned, systems from
the third and the fourth category process the user’s
request every time that a new increment is pushed
into the system. Therefore, when the end of the
request is detected (long enough silence), the ser-
vice’s response is already ready and can be de-
livered immediately. On the other hand, systems
from group 1 and 2 wait until the end of the user’s
utterance to send the request to the service, hence,
being less reactive. However, systems from the
third group work on a restart incremental, repro-
cessing the whole request at each new increment.
On the contrary, systems from the fourth cate-
gory can process the request increment by incre-
ment hence optimizing the processing cost. Some-
times, a new increment can modify the whole re-
quest (or a part of it) and those systems are de-
signed to handle this too by canceling some pre-
vious processing (revoke mechanism (Schlangen
and Skantze, 2011)). While integrating incremen-
tality in CFAsT and DictaNum, we noticed that
the system responded so quickly that no efforts are
necessary to optimise the processing time. How-
ever, systems from the fourth group can make the
difference if the system needs to process tasks that
create a delay (slow access to a remote database
for example).

In our method, the service is not modified in a
functional level (except from the double context
management). However, as it is the case for Dic-
taNum, some modifications at the applicative level
might be compulsory. The Scheduler is not sup-
posed to generate messages by himself or to per-
form traditional dialogue management tasks. As
a consequence, when one needs to add some new
feedback messages at the micro-turn level or the
possibility to correct an utterance, these features

105

must be implemented in the service.

Finally, in order for the Scheduler to decide
when to commit and when to take the floor in
an optimal way, it might need information com-
ing from the back-end modules. Once again, this
should be handled in the applicative level. A fu-
ture paper, focused on how to implement systems
using the Scheduler, will cover the ideas briefly
described in the last two paragraphs.

6 Conclusion and future work

This paper describes a method for transforming
a traditional dialogue system into an incremen-
tal one. The Scheduler is an intermediate mod-
ule that is inserted between the client and the ser-
vice. From the client’s point of view, the system’s
behaviour is incremental despite the fact that the
service works in a traditional turn-taking manner.
Most requests that are sent by the Scheduler to the
service are aimed to see what would be the answer
if the current request hypothesis is the final one.
In this case, the service’s context should not be
modified. Therefore, two context have to be main-
tained: the real context and the simulated one.

This solution has been implemented in the case
of a textual dialogue system generated by the
CFAST application. It helps the user navigate
through the NIPS 2013 proceedings titles. It has
also been used to make a vocal system incremen-
tal: DictaNum. This service asks the users to dic-
tate a number and confirms that it has been well
understood.

In the future, we will explore how to make the
Scheduler learn when to commit the current re-
quest hypothesis and when to take the floor. We
will use reinforcement learning to figure out the
optimal strategies.

References

James Allen, George Ferguson, and Amanda Stent.
2001. An architecture for more realistic conversa-
tional systems. In 6th international conference on
Intelligent user interfaces.

Timo Baumann and David Schlangen. 2013. Open-
ended, extensible system utterances are preferred,
even if they require filled pauses. In Proceedings
of the SIGDIAL 2013 Conference.

Catherine Breslin, Milica Gasic, Matthew Henderson,
Dongho Kim, Martin Szummer, Blaise Thomson,
Pirros Tsiakoulis, and Steve Young. 2013. Con-
tinuous asr for flexible incremental dialogue. In
ICASSP, pages 8362—-8366.

Sarah Brown-Schmidt and Joy E. Hanna. 2011.
Talking in another person’s shoes: Incremental
perspective-taking in language processing. Dia-
logue and Discourse, 2:11-33.

Herbert H. Clark. 1996. Using Language. Cambridge
University Press.

David DeVault, Kenji Sagae, and David Traum. 2011.
Incremental interpretation and prediction of utter-
ance meaning for interactive dialogue. Dialogue
and Discourse, 2:143-170.

Kohji Dohsaka and Akira Shimazu. 1997. A system
architecture for spoken utterance production in col-
laborative dialogue. In IJCAI

Jens Edlund, Joakim Gustafson, Mattias Heldner, and
Anna Hjalmarsson. 2008. Towards human-like

spoken dialogue systems. Speech Communication,
50:630-645.

Layla El Asri, Remi Lemonnier, Romain Laroche,
Olivier Pietquin, and Hatim Khouzaimi. 2014.
NASTIA: Negotiating Appointment Setting Inter-
face. In Proceedings of LREC.

Helen Hastie, Marie-Aude Aufaure, et al. 2013.
Demonstration of the parlance system: a data-driven
incremental, spoken dialogue system for interactive
search. In Proceedings of the SIGDIAL 2013 Con-
ference.

Zeynep llkin and Patrick Sturt. 2011. Active predic-
tion of syntactic information during sentence pro-
cessing. Dialogue and Discourse, 2:35-58.

Irene Langkilde, Marilyn Anne Walker, Jerry Wright,
Allen Gorin, and Diane Litman. 1999. Auto-
matic prediction of problematic human-computer di-
alogues in how may i help you? In ASRU99.

R. Laroche and G. Putois. 2010. DS5.5: Advanced
appointment-scheduling system “system 4”. Proto-
type D5.5, CLASSIC Project.

R. Laroche, G. Putois, et al. 2011. D6.4: Final evalua-
tion of classic towninfo and appointment scheduling
systems. Report D6.4, CLASSIC Project.

106

Romain Laroche. 2010. Raisonnement sur les incerti-
tudes et apprentissage pour les systemes de dialogue
conventionnels. Ph.D. thesis, Paris VI University.

Willem J. M. Levelt. 1989. Speaking: From Intention
to Articulation. Cambridge, MA: MIT Press.

Kenneth Lock. 1965. Structuring programs for mul-
tiprogram time-sharing on-line applications. In
AFIPS ’65 (Fall, part I) Proceedings of the Novem-
ber 30-December 1, 1965, fall joint computer con-
ference, part I.

Kyoko Matsuyama, Kazunori Komatani, Tetsuya
Ogata, and Hiroshi G. Okuno. 2009. Enabling a
user to specify an item at any time during system
enumeration — item identification for barge-in-able
conversational dialogue systems — In Proceedings
of the INTERSPEECH 2009 Conference.

Gary M. Matthias. 2008. Incremental speech un-
derstanding in a multimodal web-based spoken di-
alogue system. Master’s thesis, Massachusetts Insti-
tute of Technology.

Antoine Raux and Maxine Eskenazi. 2008. Optimiz-
ing endpointing thresholds using dialogue features
in a spoken dialogue system. In SIGDIAL.

David Schlangen and Gabriel Skantze. 2011. A gen-
eral, abstract model of incremental dialogue pro-
cessing. Dialogue and Discourse, 2:83—111.

Ethan O. Selfridge, Iker Arizmendi, Peter A. Heeman,
and Jason D. Williams. 2012. Integrating incremen-
tal speech recognition and pomdp-based dialogue
systems. In Proceedings of the 13th Annual Meet-
ing of the Special Interest Group on Discourse and
Dialogue, July.

Ethan Selfridge, Iker Arizmendi, Peter Heeman, and
Jason Williams. 2013. Continuously predicting and
processing barge-in during a live spoken dialogue
task. In Proceedings of the SIGDIAL 2013 Confer-
ence.

Gabriel Skantze and David Schlangen. 2009. Incre-
mental dialogue processing in a micro-domain. In
ACL.

Michael K. Tanenhaus, Michael J. Spivey-Knowlton,
Kathleen M. Eberhard, and Julie C. Sedivy. 1995.
Integration of visual and linguistic information
in spoken language comprehension. Science,
268:1632-1634.

Mats Wirén. 1992. Studies in Incremental Natural
Language Analysis. Ph.D. thesis, Linkoping Uni-
versity, Linkoping, Sweden.

Marcin Wlodarczak and Petra Wagner. 2013. Effects
of talk-spurt silence boundary thresholds on distri-
bution of gaps and overlaps. In INTERSPEECH
Proceedings.

Client Scheduler Service

| | |
| | |
| |
EndMicroTurnCond H Req(L,1) 3 i
i Req(1,1) i
% ServiceRegCond — W D brocessing Resp(L)
! Resp(1,1)

EndMicroTurnCond W T Reqt

rollback + Req(1,2)

i
|
|
|
|
| |
' ServiceReqCond »
i q Resp(1.2) (D Processing Resp(1,2)
| Resp(1,2) }
_________________ |
i |
EndTurnCond W signal_ETC !
I . |
1 CommitCond commit |
|
L Resp(1,2) U
] | |
| i |
| |
EndMicroTurnCond ﬂ Req(2.1) 1 3
| ServiceReqCond Req(2,1) !
1 ServiceReqCon ‘
i q Resp(2,1) /‘ D Processing Resp(2,1)
i Resp(2,1) i
EndMicroTurnCond Req(2,2) 3
i rollback + Req(2,2) i
% ServiceReqCond Resp(22) W | D Processing Resp(2,2)
i Resp(2,2)

EndMicroTurnCond Ff _____ Req23) | |

Figure A.1: The scheduler sub-requests management (The streams in dashed lines are received by the
recuperation thread of the client).

Turn | User sub-turn | Input | Real context | Simulation context

T! Y Req! ctxt(T°) etxt(T0 4 17°Y)
Y Reg} ctxt(T°) etxt(T0 4+ T'Y)

ctxt(7°)
Tif{] Req}lw ctxt(T) ctxt(TY + TT};{{]

COMMIT: ctat(T") = ctat(TO +T4Y,)

T2 v Reg? ctx(Th) ctxt(T" + T7Y)
ctxt(Th)

Figure A.2: A double context: the real context and the simulation context.

107

