
Proceedings of the SIGDIAL 2014 Conference, pages 51–59,
Philadelphia, U.S.A., 18-20 June 2014. c©2014 Association for Computational Linguistics

Probabilistic Human-Computer Trust Handling

Florian Nothdurft?, Felix Richter† and Wolfgang Minker?

?Institute of Communications Engineering
†Institute of Artificial Intelligence

Ulm University
Ulm, Germany

florian.nothdurft, felix.richter, wolfgang.minker@uni-ulm.de

Abstract

Human-computer trust has shown to be a
critical factor in influencing the complex-
ity and frequency of interaction in techni-
cal systems. Particularly incomprehensi-
ble situations in human-computer interac-
tion may lead to a reduced users trust in the
system and by that influence the style of
interaction. Analogous to human-human
interaction, explaining these situations can
help to remedy negative effects. In this pa-
per we present our approach of augment-
ing task-oriented dialogs with selected ex-
planation dialogs to foster the human-
computer trust relationship in those kinds
of situations. We have conducted a web-
based study testing the effects of different
goals of explanations on the components
of human-computer trust. Subsequently,
we show how these results can be used in
our probabilistic trust handling architec-
ture to augment pre-defined task-oriented
dialogs.

1 Introduction

Human-computer interaction (HCI) has evolved in
the past decades from classic stationary interaction
paradigms featuring only human and computer to-
wards intelligent agent-based paradigms featuring
multiple devices and sensors in intelligent envi-
ronments. For example, ubiquitous computing no
longer seems to be a vision of future HCI, but has
become reality, at least in research labs and pro-
totypical environments. Additionally, the tasks a
technical system has to solve cooperatively with
the user have become increasingly complex. How-
ever, this change from simple task solver to intel-
ligent assistant requires the acceptance of and the
trust in the technical system as dialogue partner
and not only as ordinary service device.

Especially trust has shown to be a crucial part in
the interaction between human and technical sys-
tem. If the user does not trust the system and its
actions, advices or instructions the way of interac-
tion may change up to complete abortion of future
interaction (Parasuraman and Riley, 1997). Espe-
cially those situations in which the user does not
understand the system or does not expect the way
how the system acts are critical to have a negative
impact on the human-computer trust (HCT) rela-
tionship (Muir, 1992). Those situations do occur
usually due to incongruent models of the system:
During interaction the user builds a mental model
of the system and its underlying processes deter-
mining system actions and output. However, if
this perceived mental model and the actual system
model do not match the HCT relationship may be
influenced negatively (Muir, 1992). This may, for
example, be due to a mismatch in the expected and
the actual system action and output.

For example, if a technical system would assist
the user in having his day scheduled in a time ef-
fective manner, the user would be in a vulnerable
situation of relying on the reasoning capabilities of
the system. However, when the user-expected time
schedule does not match the system-generated, the
question arises if the user will trust the system, de-
spite lacking the knowledge if the schedule is cor-
rect. If the user trusts the automated day schedul-
ing capability of the system, he will probably at-
tend the appointments exactly as scheduled. How-
ever, if he does not trust this automated outcome
he won’t rely on it and will question the plan.

Therefore, the goal should be to detect those
critical situations in HCI and to react appropri-
ately. If we take a look at how humans detect
and handle critical situations, we can conclude that
they use contextual information combined with in-
terpreted multimodal body analysis (e.g., facial
expression, body posture, speech prosody) for de-
tection and usually some sort of explanation to
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Goals Details
Transparency How was the systems answer reached?
Justification Explain the motives of the answer?
Relevance Why is the answer a relevant answer?

Conceptualization Clarify the meaning of concepts
Learning Learn something about the domain

Table 1: Goals of explanation after (Sørmo and
Cassens, 2004). These goals subsume different
kinds of explanation as e.g., why, why-not, what-
if, how-to explanations

clarify the process of reasoning (i.e. increasing
transparency and understandability). As even hu-
mans are sometimes insecure about judging the di-
alog partner and to decide whether and which type
of reaction would be appropriate, it seems valid
that a technical system will not overcome this is-
sue of uncertainty. Therefore, we assume that the
transfer of this problem to a technical system can
only be handled effectively by incorporating un-
certainty and thus using a probabilistic model. In
the remainder of this paper, we will first elaborate
how to react to not understandable situations and
secondly present how to incorporate these findings
into a multimodal dialogue system using a proba-
bilistic model.

2 Coping with Incomprehensible
Situations

Analogous to human-human interaction provid-
ing explanations in not understandable situations
in HCI can reduce the loss of trust (Glass et al.,
2008). However, HCT is not a one-dimensional
simple concept. It may be devided into several
components, which all have to be well-functioning
to have the user trust a technical system. Exis-
tent studies concentrated on showing that explana-
tions or different kinds of explanations can influ-
ence HCT in general (Lim et al., 2009). So, what
is lacking currently is which explanations do influ-
ence which bases of human-computer trust.

2.1 Explanations
In general, explanations are given to clarify,
change or impart knowledge. Usually the implicit
idea consists of aligning the mental models of the
participating parties. The mental model is the per-
ceived representation of the real world, or in our
case of the technical system and its underlying
processes. In this context explanations try to es-
tablish a common ground between the parties in
the sense that the technical system tries to clar-
ify its actual model to the user. This is the at-

tempt of aligning the user’s mental model to the
actual system. However, explanations do not al-
ways have the goal of aligning mental models, but
can be used for other purposes as well. Analogous
to human-human interaction, in human-computer
interaction the sender of the explanation pursues a
certain goal, with respect to the addressee, which
should be achieved. The question remains, how
these different goals of explanation (see table 1)
map to HCT, meaning, how they influence HCT
or components of it.

2.2 Human-Computer Trust

Mayer et al. (1995) define trust in human-human
interaction to be ”the extent to which one party is
willing to depend on somebody or something, in
a given situation with a feeling of relative secu-
rity, even though negative consequences are pos-
sible”. For HCI trust can be defined as ”the atti-
tude that an agent will help achieve an individual’s
goals in a situation characterized by uncertainty
and vulnerability” (Lee and See, 2004). Techni-
cal Systems which serve as intelligent assistants
with the purpose of helping the user in complex as
well as in critical situations seem to be very de-
pendent on an intact HCT relationship. However,
trust is multi-dimensional and consists of several
bases. For human relationships, Mayer et al. de-
fined three levels that build the bases of trust: abil-
ity, integrity and benevolence. The same holds for
HCI, where HCT is a composite of several bases.
For human-computer trust Madsen and Gregor
(2000) constructed a hierarchical model (see fig-
ure 1) resulting in five basic constructs or so-called
bases of trust, which can be divided in two general
components, namely cognitive-based and affect-
based bases. In short-term human-computer in-
teraction, cognitive-based HCT components seem
to be more important, because it will be easier to
influence those. Perceived understandability can
be seen in the sense that the human supervisor
or observer can form a mental model and predict
future system behavior. The perceived reliabil-
ity of the system, in the usual sense of repeated,
consistent functioning. And technical competence
means that the system is perceived to perform the
tasks accurately and correctly based on the input
information. In this context it is important to men-
tion, that as Mayer already stated, the bases of
trust are separable, yet related to one another. All
bases must be perceived highly for the trustee to be
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Figure 1: Human-computer trust model: Personal
attachment and faith build the bases for affect-
based trust. Rerceived understandability, techni-
cal competence and reliability for cognition-based
trust.

deemed trustworthy. If any of the bases does not
fulfill this requirement, the overall trustworthiness
can suffer (Madsen and Gregor, 2000).

3 Related Work

Previous work on handling trust in technical sys-
tems was done for example by Glass et al. (2008).
They investigated factors that may change the
level of trust users are willing to place in adaptive
agents. Among these verified findings were state-
ments like “provide the user with the information
provenance for sources used by the system”, “in-
telligently modulating the granularity of feedback
based on context- and user-modeling” or “supply
the user with access to information about the in-
ternal workings of the system”. However, what is
missing in Glass et al.’s work is the idea of rat-
ing the different methods to uphold HCT in gen-
eral and the use of a complex HCT model. Other
related work was for example done by Lim et al.
(2009) on how different kinds of explanations can
improve the intelligibility of context-aware intel-
ligent systems. They concentrate on the effect of
Why, Why-not, How-to and What-if explanations
on trust and understanding system’s actions or re-
actions. The results showed that Why and Why-
not explanations were the best kind of explanation
to increase the user’s understanding of the sys-
tem, though trust was only increase by providing
Why explanations. Drawbacks of this study were
that they did only concentrate on understanding
the system and trusting the system in general and
did not consider that HCT is on the one hand not
only influenced by the user’s understanding of the
system and on the other hand that if one base of

trust is flawed, the HCT in general will be dam-
aged (Mayer et al., 1995).

Regarding the issue of trusting a technical sys-
tem or its actions and reactions related work ex-
ists for example on “credibility” (Fogg and Tseng,
1999). However, this term developed in the web
community focusing on the believability of exter-
nal sources. The term trust is used in the web
research community as well as in work on “trust
in automation”. However, as Fogg stated himself
later (Tseng and Fogg, 1999) credibility should be
called believability and trust-in-automation should
be called dependability to reduce the missunder-
standings. In this work we use the term human-
computer trust and its model by Madsen and Gre-
gor (2000) subsuming both terms.

4 Experiment on Explanation
Effectiveness

The insight that human-computer trust is not a
simple but complex construct and the lack of di-
rected methods to influence components of HCT
motivated us to conduct an experiment which tried
to overcome some of these issues. The use of ex-
planations to influence HCT bases in a directed
and not arbitrary way, depends on whether an
effective mapping of explanation goals to HCT
bases can be found. This means, that we have
to identify which goal of explanation influences
which base of trust in the most effective way.
Therefore, the goal was to change undirected
strategies to handle HCT issues into directed and
well-founded ones, substantiating the choice and
goal of explanation.

For that we conducted a web-based study in-
ducing events to create not understandable or not
expected situations and then compared the effects
of the different goals of explanations on the HCT-
bases. For our experiment we concentrated on jus-
tification and transparency explanations. Justifica-
tions are the most obvious goal an explanation can
pursue. The main idea of this goal is to provide
support for and increase confidence in given sys-
tem advices or actions. The goal of transparency
is to increase the users understanding in how the
system works and reasons. This can help the user
to change his perception of the system from a
black-box to a system the user can comprehend.
Thereby, the user can build a mental model of the
system and its underlying reasoning processes.

The participants in the experiment where ac-
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quired by using flyers in the university as well as
through facebook. The age of the participants was
in a range from 14 to 61, with the mean being 24,1.
Gender wise, the distribution was 59% (male) to
41% (female), with most of the participants be-
ing students. For the participation the students did
receive a five euro voucher for a famous online
store. However, this was only granted when fin-
ishing the complete experiment. Therefore, partic-
ipants dropping out of the experiment would waive
the right on the voucher.

4.1 Set-Up

The main objective of the participants to organize
four parties for friends or relatives in a web-based
environment. This means that they had to use the
browser at home or the university to organize for
example, the music, select the type and amount of
food or order drinks. Each party was described
by an initial screen depicting the key data for the
party. This included which tasks had to be accom-
plished and how many people were expected to
join (see figure 2). Each task was implemented
as a single web-page, with the goal to organize
one part of the party (i.e., dinner, drinks, or cham-
pagne reception). The user had to choose from
several drop-down menus which item should be
ordered for the party and in what number. For ex-
ample, the user had to order the components of
the dinner (see figure 3). When an entry inside
a drop-down menu was chosen, the system gave
an advice on how much of this would be needed
to satisfy the needs of one guest. Additionally, be-
fore the participant could move on to the next task,
the orders were checked by the system. The sys-
tem would output whether the user had selected
too much, too little or the right amount and only if
everything was alright could proceed to the next
task. The experiment consisted in total of four
rounds. The first two rounds were meant to go
smoothly and were supposed to get the subject
used to the system and by that building a men-
tal model of it. After the first two rounds a HCT
questionnaire was presented to the user. As ex-
pected the user has built a relationship with the
system by gaining an understanding of the systems
processes. The next two rounds were meant to
influence the HCT-relationship negative with un-
expected external events. These unexpected, and
incongruent to the user’s mental model, system
events were influencing pro-actively the decisions

Figure 2: General information on the party. How
many people plan to attend the event and what type
of tasks have to be accomplished.

and solutions the user made to solve the task. This
means, without warning, the user was overruled
by the system and either simply informed by this
change, or was presented an additional justifica-
tion or transparency explanation as seen in figure
3. In this figure we can see that the user’s order
(’Bestellungsliste’) was changed pro-actively be-
cause of an external event. Here the attendance of
some participants was cancelled in the reservation
system, thus the system did intervene. This pro-
active change was explained at the bottom of the
web-page by, in this case, providing a justification
(’The order was changed by the system, because
the number of attending persons decreased’). The
matching transparency explanation would not only
provide a reason, but explain how the system an-
swer was reached (’Due to recent events the or-
der was changed by the system. The order vol-
ume has been reduced, because several persons
canceled their attendance in the registration sys-
tem.’). Events like this occurred several times in
the rounds 3 and 4 of the party planning.

4.2 Results

139 starting participants were distributed among
the three test groups (no explanation, transparency,
justifications). 98 accomplished round 2, reach-
ing the point until the external events were in-
duced and 59 participants completed the experi-
ment. The first main result was that 47% from
the group receiving no explanations quit during

54



Figure 3: This screenshot shows one of the tasks the user has to accomplish. In this case dinner (’Haupt-
gerichte’) including entree (’Vorspeisen’) and desserts has to be ordered.

the critical rounds 3 and 4. However, if expla-
nations were presented only 33% (justifications)
and 35% (transparency) did quit. This means that
eventhough the participants would encounter neg-
ative consequences of losing the reward money,
they did drop out of the experiment. Therefore,
we can state that the use of explanations in incom-
prehensible and not expected situations can help
to keep the human-computer interaction running.
The main results from the HCT-questionnaires can
be seen in figure 4. The data states that providing
no explanations in rounds three and four resulted
in a decrease in several bases of trust. Therefore,
we can conclude that the external events did in-
deed result in our planned negative change in trust.
Perceived understandability diminished on aver-
age over the people questioned by 1.2 on a Lik-
ert scale with a range from 1 to 5 when providing
no explanation at all compared to only 0.4 when
providing transparency explanations (no explana-
tion vs. transparency t(34)=-3.557 p<0.001), and
on average by 0.5 with justifications (no expla-
nation vs. justifications t(36)=-2.023 p<0.045).
Omitting explanations resulted in an average de-
crease of 0.9 for the perceived reliability, with
transparency explanations in a decrease of 0.4 and
for justifications in a decrease of 0.6 (no explana-
tion vs. transparency t(34)=-2.55 p<0.015).

These results support our hypotheses that trans-
parency explanations can help to reduce the neg-
ative effects of trust loss regarding the user’s per-
ceived understandability and reliability of the sys-

tem in incomprehensible and unexpected situa-
tions. Especially for the base of understandability,
meaning the prediction of future outcomes, trans-
parency explanations fulfill their purpose in a good
way. Additionally, they seem to help with the per-
ception of a reliable, consistent system. The re-
sults show that it is worthwhile to augment ongo-
ing dialogs with explanations to maintain HCT.

While analyzing the data we did not find any
statistically significant differences between pro-
viding transparency and justification explanations.
However, this could be due to limited differences
in the goals of explanation. Usually, the trans-
parency explanations in the experiment were in-
cluding more information on what happened in-
side the system, and how the system did recognize
the external event (e.g., the reduction of attend-
ing persons). In future experiments we will try to
distinguish those two goals of explanations more
from each other. For example, the justification for
reduce attendance to an event can be changed to
something like ’The order was changed by the sys-
tem, because otherwise you would have too much
food’ instead of ’The order was changed by the
system, because the number of attending persons
decreased’ and by that making it more different
from the transparency explanation (’Due to recent
events the order was changed by the system. The
order volume has been reduced, because several
persons canceled their attendance in the registra-
tion system.’). In the following, we will describe
how this is used in our developed explanation aug-
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Figure 4: This figure shows the changes of HCT bases from round 2 to round 4. The scale was a 5 point
likert scale with e. g., 1 the system being not understandable at all and 5 the opposite.

mentation architecture (see figure 5).

5 Implementation

The augmentation of the dialog is done using two
different kinds of dialog models. On the one hand
we are using a classic dialog model based on a
finite-state machine approach for the task-oriented
part of the dialog. On the other hand a planner
(Müller et al., 2012) is used to generate from a
POMDP a decision tree. This POMDP is used
only for the augmentation of the task-oriented part
of the dialog with explanations. The communi-
cation between each module of the architecture
is controlled by a XML-based message-oriented
middleware (Schröder, 2010), using a publish-
subscribe system to distribute the XML-messages.
In order to decide when to induce additional ex-
planations, on one hand critical situations in HCI
have to be recognized and on the other hand, if
necessary the appropriate type of explanation has
to be given. Obviously, recognizing those situa-
tions cannot be done solely by using information
coming from interaction and its history. Multi-
modal input as speech recognition accuracy, fa-
cial expressions or any other sensor information
can help to improve the accuracy of recognizing
critical moments in HCI. However, mapping sen-
sor input to semantic information is usually done
by classifiers and those classifiers convey a certain
amount of probabilistic inaccuracy which has to
be handled. Therefore, a decision model has to be
able to handle probabilistic information in a suit-
able manner.

5.1 Probabilistic Decision Model

For the problem representation when and how to
react, a so-called partially observable Markov de-

cision process (POMDP) was chosen and formal-
ized in the Relational Dynamic Influence Dia-
gram Language (RDDL) (Sanner, 2010). RDDL
is a uniform language which allows an efficient
description of POMDPs by representing its con-
stituents (actions, observations, belief state) with
variables. Formally, a POMDP consists of a set
S of world states, a set A of system actions, and
a set O of possible observations the system can
make. Further, transition probabilities P (s′|s, a)
describe the dynamics of the environment, i.e., the
probability of the successor world state being s′

when action a is executed in state s. The obser-
vation probabilities P (o|s′, a) represent the sen-
sors of the system in terms of the probability of
making observation o when executing a resulted
in successor world state s′. Each time the system
executes an action a, it receives a reward R(s, a)
which depends on the world state s the action was
executed in. The overall goal of the system is to
maximize the accumulated reward it receives over
a fixed number of time steps. (For more informa-
tion on POMDPs, see Kaelbling et al. (1998).)

A POMDP is then used by a planner (Silver and
Veness, 2010; Müller et al., 2012) to search for a
policy that determines the system’s behavior. This
policy is, e.g., represented as a decision tree that
recommends the most suitable action based on the
system’s previous actions and observations. For
example, a policy for a POMDP that models HCI
with respect to HCT, can thus represent a decision
tree which represents a guideline for a dialog flow
which ensures an intact HCT-relationship.

The RDDL model is a probabilistic representa-
tion of the domain, which determines when and
how to augment the dialog with explanations at
run-time. Each observation o consists of the du-
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Figure 5: The architecture consists of two dialog models, a fission and fusion engine, sensors as well as
the multimodal interface representation to interact with the user. The dialog models can be seperated in
a task-oriented FSM-dialog model and into a POMDP-based decision tree for explanation augmentation.
This decision tree is generated from a POMDP-model by a planner.

ration of interaction for each dialog step as well as
the semantic information of the input (i.e., which
action in the interface was triggered by speech,
touch or point-and-click interaction). Those types
of interaction can bring along uncertainty (e.g.,
speech recognition rate). The state s in terms of
HCT is modeled by its respective bases, namely
understandability, technical-competence, reliabil-
ity, faith and personal attachment. The system
actions A are the dialogs presented to the user.
These are the different goals of explanations (jus-
tification, transparency, conceptualization, rele-
vance and learning) as well as the task-oriented
part of the dialog represented by a so-called com-
municative function(c) with c from set C (e.g.,
question, inform, answer, offer, request, instruct).
This means, that in the POMDP only the com-
municative function of the task-oriented dialogs is
represented without the specific content.

The transition probabilities are defined as con-
ditional probability functions (CPFs) and model
user behavior dependent on the system’s actions
and the user’s current HCT values. Basically, con-
ditional functions are defined using if else for all
wanted cases. For example, we defined that the
user’s understanding in s′ will probably be high
if a transparency explanation was the last system
action. When the user’s understanding is indeed
high in s′, the observation will probably be that
the user clicked okay, and the time he took for the
interaction was around his usual amount taken for

explanations. From this observation, a planner can
infer that the transparency explanation indeed in-
creased the user’s understanding.

Now, the quest is to define the reward func-
tion R(s, a) in a way that it leads to an optimal
flow of actions. I.e., the system should receive a
penalty when the bases of trust do not remain in-
tact, and actions should incur a cost so that the sys-
tem only executes them when trust is endangered.
However, because POMDPs tend to be become
very quick very complex, we chose to seperate
the task-oriented dialog from the additional dialog
augmentation with explanations when needed.

5.2 Dialog Augmentation Process

The task-oriented dialog is modeled as a classic
finite-state machine (FSM). Each dialog action has
several interaction possibilities, each leading to
another specified dialog action. Each of those di-
alog action is represented as POMDP action a as
part of C (communicative function(c)). As already
mentioned, only the communicative function is
modeled to reduce the complexity in the POMDP.

The HCI is started using the FSM-based di-
alog model approach and uses the POMDP to
check whether the user’s trust or components of
the user’s trust are endangered. At run-time the
next action in the FSM is compared to the one
determined by the POMDP (see figure 6). This
means, that if the next action in the FSM is not the
same as the one planned by the POMDP, the dia-
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Figure 6: This figure shows the comparison of
FSM to Decision Tree. The next action m3 in the
FSM does not correspond to the one endorsed by
the POMDP Decision Tree. Therefore, the dialog
will be augmented by explanation action mE .

log flow is interrupted, and the ongoing dialog is
augmented by the proposed explanation. For ex-
ample, if the user is presented currently a commu-
nicative function of type inform and the decision
tree recommends to provide a transparency expla-
nation, because the understanding and reliability
are probably false, the originally next step in the
FSM is postponed and first the explanation is pre-
sented. The other way around, if the next action in
the FSM is subsumed by the one scheduled by the
POMDP, the system does not need to intervene.
For example, if the next FSM-action is to instruct
the user about how to connect amplifier and re-
ceiver and the POMDP would recommend an ac-
tion of type communicative function instruct, no
dialog augmentation is needed.

6 Dialog Interface

Each dialog action in the FSM as well as the ex-
planation dialogs are represented by a so-called di-
alog goal, which is allocated on the one hand a
type of communicative function c. On the other
hand the dialog content is composed of multiple
information objects referencing so-called informa-

Figure 7: A typical output presentation of the fis-
sion component of a dialog goal. Here the user
gets instruction on how to connect the BluRay-
Player with an HDMI cable.

tion IDs in the information model. Each informa-
tion object can consist of different types (e.g., text,
audio, and pictures). For interface presentation
the dialog goal is passed to the fission which se-
lects and combines the information objects at run-
time by a fission sub-component to compose the
user interface in a user- and situation-adaptive way
(Honold et al., 2012). In figure 7 we can see a typi-
cal interface for a transmitted dialog goal in which
the user can interact via speech, touch or GUI.

7 Conclusion and Future Work

In this paper we showed the necessity to deal with
critical situations in HCI in a probabilistic ap-
proach. The advantage of our approach is that
the designer still can define a FSM-based task-
oriented dialog. Usually most commercial sys-
tems are still based on such approaches. However,
expanding the dialog by a probabilistic decision
model seems to be a valuable choice. Our experi-
ment on the influence of explanations on HCT has
clearly shown, that it is worthwhile to augment the
ongoing dialog by transparency or justification ex-
planations for an intact HCT relationship. In the
future we will run experiments on how effective
the hybrid FSM-POMDP approach is compared to
classic as well as POMDP dialog systems.
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