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Abstract

Automatically evaluating word order of
MT system output at the sentence-level is
challenging. At the sentence-level, ngram
counts are rather sparse which makes it
difficult to measure word order quality ef-
fectively using lexicalized units. Recent
approaches abstract away from lexicaliza-
tion by assigning a score to the permuta-
tion representing how word positions in
system output move around relative to a
reference translation. Metrics over per-
mutations exist (e.g., Kendal tau or Spear-
man Rho) and have been shown to be
useful in earlier work. However, none
of the existing metrics over permutations
groups word positions recursively into
larger phrase-like blocks, which makes it
difficult to account for long-distance re-
ordering phenomena. In this paper we ex-
plore novel metrics computed over Per-
mutation Forests (PEFs), packed charts
of Permutation Trees (PETs), which are
tree decompositions of a permutation into
primitive ordering units. We empirically
compare PEFs metric against five known
reordering metrics on WMT13 data for ten
language pairs. The PEFs metric shows
better correlation with human ranking than
the other metrics almost on all language
pairs. None of the other metrics exhibits
as stable behavior across language pairs.

1 Introduction

Evaluating word order (also reordering) in MT is
one of the main ingredients in automatic MT eval-
uation, e.g., (Papineni et al., 2002; Denkowski

and Lavie, 2011). To monitor progress on eval-
uating reordering, recent work explores dedicated
reordering evaluation metrics, cf. (Birch and Os-
borne, 2011; Isozaki et al., 2010; Talbot et al.,
2011). Existing work computes the correlation be-
tween the ranking of the outputs of different sys-
tems by an evaluation metric to human ranking, on
e.g., the WMT evaluation data.

For evaluating reordering, it is necessary to
word align system output with the correspond-
ing reference translation. For convenience, a 1:1
alignment (a permutation) is induced between the
words on both sides (Birch and Osborne, 2011),
possibly leaving words unaligned on either side.
Existing work then concentrates on defining mea-
sures of reordering over permutations, cf. (Lap-
ata, 2006; Birch and Osborne, 2011; Isozaki et al.,
2010; Talbot et al., 2011). Popular metrics over
permutations are: Kendall’s tau, Spearman, Ham-
ming distance, Ulam and Fuzzy score. These met-
rics treat a permutation as a flat sequence of inte-
gers or blocks, disregarding the possibility of hier-
archical grouping into phrase-like units, making it
difficult to measure long-range order divergence.
Next we will show by example that permutations
also contain latent atomic units that govern the re-
cursive reordering of phrase-like units. Account-
ing for these latent reorderings could actually be
far simpler than the flat view of a permutation.

Isozaki et al. (2010) argue that the conventional
metrics cannot measure well the long distance
reordering between an English reference sentence
“A because B” and a Japanese-English hypothesis
translation “B because A”, where A and B are
blocks of any length with internal monotonic
alignments. In this paper we explore the idea of
factorizing permutations into permutation-trees
(PETs) (Gildea et al., 2006) and defining new
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〈2,4,1,3〉

2 〈1,2〉

4 〈1,2〉

5 6

1 3

Figure 1: A permutation tree for 〈2, 4, 5, 6, 1, 3〉

tree-based reordering metrics which aims at
dealing with this type of long range reorderings.
For the Isozaki et al. (2010) Japanese-English
example, there are two PETs (when leaving A and
B as encapsulated blocks):

〈2,1〉

A 〈2,1〉

because B

〈2,1〉

〈2,1〉

A because

B

Our PET-based metrics interpolate the scores over
the two inversion operators 〈2, 1〉 with the internal
scores for A and B, incorporating a weight
for subtree height. If both A and B are large
blocks, internally monotonically (also known as
straight) aligned, then our measure will not count
every single reordering of a word in A or B,
but will consider this case as block reordering.
From a PET perspective, the distance of the
reordering is far smaller than when looking at a
flat permutation. But does this hierarchical view
of reordering cohere better with human judgement
than string-based metrics?

The example above also shows that a permuta-
tion may factorize into different PETs, each corre-
sponding to a different segmentation of a sentence
pair into phrase-pairs. In this paper we introduce
permutation forests (PEFs); a PEF is a hypergraph
that compactly packs the set of PETs that factorize
a permutation.

There is yet a more profoud reasoning behind
PETs than only accounting for long-range reorder-
ings. The example in Figure 1 gives the flavor of
PETs. Observe how every internal node in this
PET dominates a subtree whose fringe1 is itself a
permutation over an integer sub-range of the orig-
inal permutation. Every node is decorated with a
permutation over the child positions (called oper-
ator). For example 〈4, 5, 6〉 constitutes a contigu-
ous range of integers (corresponding to a phrase
pair), and hence will be grouped into a subtree;

1Ordered sequence of leaf nodes.

which in turn can be internally re-grouped into a
binary branching subtree. Every node in a PET is
minimum branching, i.e., the permutation factor-
izes into a minimum number of adjacent permuta-
tions over integer sub-ranges (Albert and Atkin-
son, 2005). The node operators in a PET are
known to be the atomic building blocks of all per-
mutations (called primal permutations). Because
these are building atomic units of reordering, it
makes sense to want to measure reordering as a
function of the individual cost of these operators.
In this work we propose to compute new reorder-
ing measures that aggregate over the individual
node-permutations in these PETs.

While PETs where exploited rather recently for
extracting features used in the BEER metric sys-
tem description (Stanojević and Sima’an, 2014) in
the official WMT 2014 competition, this work is
the first to propose integral recursive metrics over
PETs and PEFs solely for measuring reordering
(as opposed to individual non-recursive features in
a full metric that measures at the same time both
fluency and adequacy). We empirically show that
a PEF-based evaluation measure correlates better
with human rankings than the string-based mea-
sures on eight of the ten language pairs in WMT13
data. For the 9th language pair it is close to best,
and for the 10th (English-Czech) we find a likely
explanation in the Findings of the 2013 WMT (Bo-
jar et al., 2013). Crucially, the PEF-based mea-
sure shows more stable ranking across language
pairs than any of the other measures. The metric
is available online as free software2.

2 Measures on permutations: Baselines

In (Birch and Osborne, 2010; Birch and Osborne,
2011) Kendall’s tau and Hamming distance are
combined with unigram BLEU (BLEU-1) leading
to LRscore showing better correlation with human
judgment than BLEU-4. Birch et al. (2010) ad-
ditionally tests Ulam distance (longest common
subsequence – LCS – normalized by the permu-
tation length) and the square root of Kendall’s tau.
Isozaki et al. (2010) presents a similar approach
to (Birch and Osborne, 2011) additionally test-
ing Spearman rho as a distance measure. Talbot
et al. (2011) extracts a reordering measure from
METEOR (Denkowski and Lavie, 2011) dubbed
Fuzzy Reordering Score and evaluates it on MT
reordering quality.

2https://github.com/stanojevic/beer
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For an evaluation metric we need a function
which would have the standard behaviour of evalu-
ation metrics - the higher the score the better. Bel-
low we define the baseline metrics that were used
in our experiments.

Baselines A permutation over [1..n] (subrange
of the positive integers where n > 1) is a bijective
function from [1..n] to itself. To represent permu-
tations we will use angle brackets as in 〈2, 4, 3, 1〉.
Given a permutation π over [1..n], the notation πi
(1 ≤ i ≤ n) stands for the integer in the ith posi-
tion in π; π(i) stands for the index of the position
in π where integer i appears; and πji stands for the
(contiguous) sub-sequence of integers πi, . . . πj .

The definitions of five commonly used met-
rics over permutations are shown in Figure 2.
In these definitions, we use LCS to stand for
Longest Common Subsequence, and Kronecker
δ[a] which is 1 if (a == true) else zero, and
An1 = 〈1, · · · , n〉 which is the identity permuta-
tion over [1..n]. We note that all existing metrics

kendall(π) =

∑n−1
i=1

∑n
j=i+1 δ[π(i) < π(j)]
(n2 − n)/2

hamming(π) =
∑n

i=1 δ[πi == i]
n

spearman(π) = 1− 3
∑n

i=1(πi − i)2
n(n2 − 1)

ulam(π) =
LCS(π,An1 )− 1

n− 1

fuzzy(π) = 1− c− 1
n− 1

where c is # of monotone sub-permutations

Figure 2: Five commonly used metrics over per-
mutations

are defined directly over flat string-level permuta-
tions. In the next section we present an alternative
view of permutations are compositional, recursive
tree structures.

3 Measures on Permutation Forests

Existing work, e.g., (Gildea et al., 2006), shows
how to factorize any permutation π over [1..n]
into a canonical permutation tree (PET). Here we
will summarize the relevant aspects and extend

PETs to permutation forests (PEFs).
A non-empty sub-sequence πji of a permutation

π is isomorphic with a permutation over [1..(j −
i + 1)] iff the set {πi, . . . , πj} is a contiguous
range of positive integers. We will use the term
a sub-permutation of π to refer to a subsequence
of π that is isomorphic with a permutation. Note
that not every subsequence of a permutation π is
necessarily isomorphic with a permutation, e.g.,
the subsequence 〈3, 5〉 of 〈1, 2, 3, 5, 4〉 is not a
sub-permutation. One sub-permutation π1 of π is
smaller than another sub-permutation π2 of π iff
every integer in π1 is smaller than all integers in
π2. In this sense we can put a full order on non-
overlapping sub-permutations of π and rank them
from the smallest to the largest.

For every permutation π there is a minimum
number of adjacent sub-permutations it can be fac-
torized into (see e.g., (Gildea et al., 2006)). We
will call this minimum number the arity of π and
denote it with a(π) (or simply a when π is un-
derstood from the context). For example, the arity
of π = 〈5, 7, 4, 6, 3, 1, 2〉 is a = 2 because it can
be split into a minimum of two sub-permutations
(Figure 3), e.g. 〈5, 7, 4, 6, 3〉 and 〈1, 2〉 (but alter-
natively also 〈5, 7, 4, 6〉 and 〈3, 1, 2〉). In contrast,
π = 〈2, 4, 1, 3〉 (also known as the Wu (1997) per-
mutation) cannot be split into less than four sub-
permutations, i.e., a = 4. Factorization can be
applied recursively to the sub-permutations of π,
resulting in a tree structure (see Figure 3) called a
permutation tree (PET) (Gildea et al., 2006; Zhang
and Gildea, 2007; Maillette de Buy Wenniger and
Sima’an, 2011).

Some permutations factorize into multiple alter-
native PETs. For π = 〈4, 3, 2, 1〉 there are five
PETs shown in Figure 3. The alternative PETs
can be packed into an O(n2) permutation forest
(PEF). For many computational purposes, a sin-
gle canonical PET is sufficient, cf. (Gildea et al.,
2006). However, while different PETs of π exhibit
the same reordering pattern, their different binary
branching structures might indicate important dif-
ferences as we show in our experiments.

A permutation forest (akin to a parse forest)
F for π (over [1..n]) is a data structure consisting
of a subset of {[[i, j, Iji , Oji ]] | 0 ≤ i ≤ j ≤ n},
where Iji is a (possibly empty) set of inferences
(sets of split points) for πji+1 and Oji is an oper-
ator shared by all inferences of πji+1. If πji+1 is
a sub-permutation and it has arity a ≤ (j − (i +
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4 〈2,1〉

3 〈2,1〉

2 1

〈2,1〉

4 〈2,1〉

〈2,1〉

3 2

1

〈2,1〉

〈2,1〉

4 3

〈2,1〉

2 1

〈2,1〉

〈2,1〉

〈2,1〉

4 3

2

1

〈2,1〉

〈2,1〉

4 〈2,1〉

3 2

1

Figure 3: A PET for π = 〈5, 7, 4, 6, 3, 1, 2〉. And five different PETs for π = 〈4, 3, 2, 1〉.

1)), then each inference consists of a a − 1-tuple
[l1, . . . , la−1], where for each 1 ≤ x ≤ (a− 1), lx
is a “split point” which is given by the index of the
last integer in the xth sub-permutation in π. The
permutation of the a sub-permutations (“children”
of πji+1) is stored in Oji and it is the same for all
inferences of that span (Zhang et al., 2008).

〈2,1〉

4
3 2 1

〈2,1〉

4 3 2 1

〈2,1〉

4 3 2
1

Figure 4: The factorizations of π = 〈4, 3, 2, 1〉.

Let us exemplify the inferences on π =
〈4, 3, 2, 1〉 (see Figure 4) which factorizes into
pairs of sub-permutations (a = 2): a split point
can be at positions with index l1 ∈ {1, 2, 3}.
Each of these split points (factorizations) of π will
be represented as an inference for the same root
node which covers the whole of π (placed in entry
[0, 4]); the operator of the inference here consists
of the permutation 〈2, 1〉 (swapping the two ranges
covered by the children sub-permutations) and in-
ference consists of a− 1 indexes l1, . . . , la−1 sig-
nifying the split points of π into sub-permutations:
since a = 2 for π, then a single index l1 ∈
{1, 2, 3} is stored with every inference. For the
factorization ((4, 3), (2, 1)) the index l1 = 2 sig-
nifying that the second position is a split point into
〈4, 3〉 (stored in entry [0, 2]) and 〈2, 1〉 (stored in
entry [2, 4]). For the other factorizations of π sim-
ilar inferences are stored in the permutation forest.

Figure 5 shows a simple top-down factorization
algorithm which starts out by computing the ar-
ity a using function a(π). If a = 1, a single leaf
node is stored with an empty set of inferences. If
a > 1 then the algorithm computes all possible
factorizations of π into a sub-permutations (a se-
quence of a− 1 split points) and stores their infer-
ences together as Iji and their operator Oji asso-
ciated with a node in entry [[i, j, Iji , Oji ]]. Subse-
quently, the algorithm applies recursively to each
sub-permutation. Efficiency is a topic beyond

the scope of this paper, but this naive algorithm
has worst case time complexity O(n3), and when
computing only a single canonical PET this can be
O(n) (see e.g., (Zhang and Gildea, 2007)).

Function PEF (i, j, π,F);
# Args: sub-perm. π over [i..j] and forest F
Output: Parse-Forest F(π) for π;

begin
if ([[i, j, ?]] ∈ F) then return F ; #memoization
a := a(π);
if a = 1 return F := F ∪ {[[i, j, ∅]]};
For each set of split points {l1, . . . , la−1} do

Oji := RankListOf(πl1(l0+1), π
l2
(l1+1), . . . , π

la
(la−1+1));

Iji := Iji ∪ [l1, . . . , la−1];
For each πv ∈ {πl1l0+1, π

l2
(l1+1), . . . , π

la
(la−1+1)} do

F := F ∪ PermForest(πv);
F := F ∪ {[[i, j, Iji , Oji ]]};
Return F ;
end;

Figure 5: Pseudo-code of permutation-forest fac-
torization algorithm. Function a(π) returns the ar-
ity of π. Function RankListOf(r1, . . . , rm) re-
turns the list of rank positions (i.e., a permutation)
of sub-permutations r1, . . . , rm after sorting them
smallest first. The top-level call to this algorithm
uses π, i = 0, j = n and F = ∅.

Our measure (PEFscore) uses a function
opScore(p) which assigns a score to a given oper-
ator, which can be instantiated to any of the exist-
ing scoring measures listed in Section 2, but in this
case we opted for a very simple function which
gives score 1 to monotone permutation and score
0 to any other permutation.

Given an inference l ∈ Iji where l =
[l1, . . . , la−1], we will use the notation lx to refer
to split point lx in l where 1 ≤ x ≤ (a − 1), with
the convenient boundary assumption that l0 = i
and la = j.
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PEFscore(π) = φnode(0, n, PEF (π))

φnode(i, j,F) =



if (Iji == ∅) then 1
else if (a(πji+1) = j − i) then opScore(Oji )

else β × opScore(Oji ) + (1− β)×
∑

l∈Ij
i

φinf (l,F ,a(πj
i+1))

|Ij
i |︸ ︷︷ ︸

Avg. inference score over Ij
i

φinf (l,F , a) =
∑a

x=1 δ[lx−lx−1>1]×φnode(l(x−1),lx,F)∑a
x=1 δ[lx−l(x−1)>1]︸ ︷︷ ︸

Avg. score for non-terminal children

opScore(p) =
{

if (p == 〈1, 2〉) then 1
else 0

Figure 6: The PEF Score

The PEF-score, PEFscore(π) in Figure 6,
computes a score for the single root node
[[0, n, In0 , On0 ]]) in the permutation forest. This
score is the average inference score φinf over all
inferences of this node. The score of an inference
φinf interpolates (β) between the opScore of the
operator in the current span and (1− β) the scores
of each child node. The interpolation parameter β
can be tuned on a development set.

The PET-score (single PET) is a simplification
of the PEF-score where the summation over all in-
ferences of a node

∑
l∈Ij

i
in φnode is replaced by

“Select a canonical l ∈ Iji ”.

4 Experimental setting

Data The data that was used for experiments are
human rankings of translations from WMT13 (Bo-
jar et al., 2013). The data covers 10 language pairs
with a diverse set of systems used for translation.
Each human evaluator was presented with 5 differ-
ent translations, source sentence and a reference
translation and asked to rank system translations
by their quality (ties were allowed).3

Meta-evaluation The standard way for doing
meta-evaluation on the sentence level is with
Kendall’s tau correlation coefficient (Callison-
Burch et al., 2012) computed on the number of
times an evaluation metric and a human evaluator
agree (and disagree) on the rankings of pairs of

3We would like to extend our work also to English-
Japanese but we do not have access to such data at the mo-
ment. In any case, the WMT13 data is the largest publicly
available data of this kind.

translations. We extract pairs of translations from
human evaluated data and compute their scores
with all metrics. If the ranking assigned by a met-
ric is the same as the ranking assigned by a hu-
man evaluator then that pair is considered concor-
dant, otherwise it is a discordant pair. All pairs
which have the same score by the metric or are
judged as ties by human evaluators are not used
in meta-evaluation. The formula that was used for
computing Kendall’s tau correlation coefficient is
shown in Equation 1. Note that the formula for
Kendall tau rank correlation coefficient that is used
in meta-evaluation is different from the Kendall
tau similarity function used for evaluating permu-
tations. The values that it returns are in the range
[−1, 1], where −1 means that order is always op-
posite from the human judgment while the value 1
means that metric ranks the system translations in
the same way as humans do.

τ =
#concordant pairs−#discordant pairs

#concordant pairs+#discordant pairs
(1)

Evaluating reordering Since system transla-
tions do not differ only in the word order but also
in lexical choice, we follow Birch and Osborne
(2010) and interpolate the score given by each re-
ordering metric with the same lexical score. For
lexical scoring we use unigram BLEU. The param-
eter that balances the weights for these two metrics
α is chosen to be 0.5 so it would not underesti-
mate the lexical differences between translations
(α � 0.5) but also would not turn the whole met-
ric into unigram BLEU (α � 0.5). The equation

142



for this interpolation is shown in Equation 2.4

FullMetric(ref, sys) = α lexical(ref, sys) +
(1− α)× bp(|ref |, |π|)× ordering(π) (2)

Where π(ref, sys) is the permutation represent-
ing the word alignment from sys to ref . The ef-
fect of α on the German-English evaluation is vis-
ible on Figure 7. The PET and PEF measures have
an extra parameter β that gives importance to the
long distance errors that also needs to be tuned. On
Figure 8 we can see the effect of β on German-
English for α = 0.5. For all language pairs for
β = 0.6 both PETs and PEFs get good results so
we picked that as value for β in our experiments.

Figure 7: Effect of α on German-English evalua-
tion for β = 0.6

Choice of word alignments The issue we did
not discuss so far is how to find a permutation
from system and reference translations. One way
is to first get alignments between the source sen-
tence and the system translation (from a decoder
or by automatically aligning sentences), and also
alignments between the source sentence and the
reference translation (manually or automatically
aligned). Subsequently we must make those align-
ments 1-to-1 and merge them into a permutation.
That is the approach that was followed in previ-
ous work (Birch and Osborne, 2011; Talbot et al.,

4Note that for reordering evaluation it does not make
sense to tune α because that would blur the individual contri-
butions of reordering and adequacy during meta evaluation,
which is confirmed by Figure 7 showing that α � 0.5 leads
to similar performance for all metrics.

Figure 8: Effect of β on German-English evalua-
tion for α = 0.5

2011). Alternatively, we may align system and ref-
erence translations directly. One of the simplest
ways to do that is by finding exact matches be-
tween words and bigrams between system and ref-
erence translation as done in (Isozaki et al., 2010).
The way we align system and reference transla-
tions is by using the aligner supplied with ME-
TEOR (Denkowski and Lavie, 2011) for finding
1-to-1 alignments which are later converted to a
permutation. The advantage of this method is that
it can do non-exact matching by stemming or us-
ing additional sources for semantic similarity such
as WordNets and paraphrase tables. Since we will
not have a perfect permutation as input, because
many words in the reference or system transla-
tions might not be aligned, we introduce a brevity
penalty (bp(·, ·) in Equation 2) for the ordering
component as in (Isozaki et al., 2010). The brevity
penalty is the same as in BLEU with the small
difference that instead of taking the length of sys-
tem and reference translation as its parameters, it
takes the length of the system permutation and the
length of the reference.

5 Empirical results

The results are shown in Table 1 and Table 2.
These scores could be much higher if we used
some more sophisticated measure than unigram
BLEU for the lexical part (for example recall is
very useful in evaluation of the system translations
(Lavie et al., 2004)). However, this is not the issue
here since our goal is merely to compare different
ways to evaluate word order. All metrics that we
tested have the same lexical component, get the
same permutation as their input and have the same
value for α.

143



E
ng

lis
h-

C
ze

ch

E
ng

lis
h-

Sp
an

is
h

E
ng

lis
h-

G
er

m
an

E
ng

lis
h-

R
us

si
an

E
ng

lis
h-

Fr
en

ch

Kendall 0.16 0.170 0.183 0.193 0.218
Spearman 0.157 0.170 0.181 0.192 0.215
Hamming 0.150 0.163 0.168 0.187 0.196
FuzzyScore 0.155 0.166 0.178 0.189 0.215
Ulam 0.159 0.170 0.181 0.189 0.221
PEFs 0.156 0.173 0.185 0.196 0.219
PETs 0.157 0.165 0.182 0.195 0.216

Table 1: Sentence level Kendall tau scores for
translation out of English with α = 0.5 and β =
0.6
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Kendall 0.196 0.265 0.235 0.173 0.223
Spearman 0.199 0.265 0.236 0.173 0.222
Hamming 0.172 0.239 0.215 0.157 0.206
FuzzyScore 0.184 0.263 0.228 0.169 0.216
Ulam 0.188 0.264 0.232 0.171 0.221
PEFs 0.201 0.265 0.237 0.181 0.228
PETs 0.200 0.264 0.234 0.174 0.221

Table 2: Sentence level Kendall tau scores for
translation into English with α = 0.5 and β = 0.6

5.1 Does hierarchical structure improve
evaluation?

The results in Tables 1, 2 and 3 suggest that the
PEFscore which uses hierarchy over permutations
outperforms the string based permutation metrics
in the majority of the language pairs. The main
exception is the English-Czech language pair in
which both PETs and PEFs based metric do not
give good results compared to some other met-
rics. For discussion about English-Czech look at
the section 6.1.

5.2 Do PEFs help over one canonical PET?

From Figures 9 and 10 it is clear that using all
permutation trees instead of only canonical ones
makes the metric more stable in all language pairs.
Not only that it makes results more stable but it

metric avg rank avg Kendall
PEFs 1.6 0.2041
Kendall 2.65 0.2016
Spearman 3.4 0.201
PETs 3.55 0.2008
Ulam 4 0.1996
FuzzyScore 5.8 0.1963
Hamming 7 0.1853

Table 3: Average ranks and average Kendall
scores for each tested metrics over all language
pairs

Figure 9: Plot of scaled Kendall tau correlation for
translation from English

also improves them in all cases except in English-
Czech where both PETs and PEFs perform badly.
The main reason why PEFs outperform PETs is
that they encode all possible phrase segmentations
of monotone and inverted sub-permutations. By
giving the score that considers all segmentations,
PEFs also include the right segmentation (the one
perceived by human evaluators as the right seg-
mentation), while PETs get the right segmentation
only if the right segmentation is the canonical one.

5.3 Is improvement consistent over language
pairs?

Table 3 shows average rank (metric’s position af-
ter sorting all metrics by their correlation for each
language pair) and average Kendall tau correlation
coefficient over the ten language pairs. The table
shows clearly that the PEFs metric outperforms all
other metrics. To make it more visible how met-
rics perform on the different language pairs, Fig-
ures 9 and 10 show Kendall tau correlation co-
efficient scaled between the best scoring metric
for the given language (in most cases PEFs) and
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Figure 10: Plot of scaled Kendall tau correlation
for translation into English

the worst scoring metric (in all cases Hamming
score). We can see that, except in English-Czech,
PEFs are consistently the best or second best (only
in English-French) metric in all language pairs.
PETs are not stable and do not give equally good
results in all language pairs. Hamming distance
is without exception the worst metric for evalua-
tion since it is very strict about positioning of the
words (it does not take relative ordering between
words into account). Kendall tau is the only string
based metric that gives relatively good scores in
all language pairs and in one (English-Czech) it is
the best scoring one.

6 Further experiments and analysis

So far we have shown that PEFs outperform the
existing metrics over the majority of language
pairs. There are two pending issues to discuss.
Why is English-Czech seemingly so difficult?
And does preferring inversion over non-binary
branching correlate better with human judgement.

6.1 The results on English-Czech

The English-Czech language pair turned out to
be the hardest one to evaluate for all metrics.
All metrics that were used in the meta-evaluation
that we conducted give much lower Kendall tau
correlation coefficient compared to the other lan-
guage pairs. The experiments conducted by other
researchers on the same dataset (Macháček and
Bojar, 2013), using full evaluation metrics, also
get far lower Kendall tau correlation coefficient
for English-Czech than for other language pairs.
In the description of WMT13 data that we used
(Bojar et al., 2013), it is shown that annotator-

agreement for English-Czech is a few times lower
than for other languages. English-Russian, which
is linguistically similar to English-Czech, does
not show low numbers in these categories, and is
one of the language pairs where our metrics per-
form the best. The alignment ratio is equally high
between English-Czech and English-Russian (but
that does not rule out the possibility that the align-
ments are of different quality). One seemingly
unlikely explanation is that English-Czech might
be a harder task in general, and might require a
more sophisticated measure. However, the more
plausible explanation is that the WMT13 data for
English-Czech is not of the same quality as other
language pairs. It could be that data filtering, for
example by taking only judgments for which many
evaluators agree, could give more trustworthy re-
sults.

6.2 Is inversion preferred over non-binary
branching?

Since our original version of the scoring function
for PETs and PEFs on the operator level does not
discriminate between kinds of non-monotone op-
erators (all non-monotone get zero as a score) we
also tested whether discriminating between inver-
sion (binary) and non-binary operators make any
difference.

E
ng

lis
h-

C
ze

ch

E
ng

lis
h-

Sp
an

is
h

E
ng

lis
h-

G
er

m
an

E
ng

lis
h-

R
us

si
an

E
ng

lis
h-

Fr
en

ch

PEFs γ = 0.0 0.156 0.173 0.185 0.196 0.219
PEFs γ = 0.5 0.157 0.175 0.183 0.195 0.219
PETs γ = 0.0 0.157 0.165 0.182 0.195 0.216
PETs γ = 0.5 0.158 0.165 0.183 0.195 0.217

Table 4: Sentence level Kendall tau score for
translation out of English different γ with α = 0.5
and β = 0.6

Intuitively, we might expect that inverted binary
operators are preferred by human evaluators over
non-binary ones. So instead of assigning zero as a
score to inverted nodes we give them 0.5, while for
non-binary nodes we remain with zero. The ex-
periments with the inverted operator scored with
0.5 (i.e., γ = 0.5) are shown in Tables 4 and 5.
The results show that there is no clear improve-
ment by distinguishing between the two kinds of
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PEFs γ = 0.0 0.201 0.265 0.237 0.181 0.228
PEFs γ = 0.5 0.201 0.264 0.235 0.179 0.227
PETs γ = 0.0 0.200 0.264 0.234 0.174 0.221
PETs γ = 0.5 0.202 0.263 0.235 0.176 0.224

Table 5: Sentence level Kendall tau score for
translation into English for different γ with α =
0.5 and β = 0.6

non-monotone operators on the nodes.

7 Conclusions

Representing order differences as compact permu-
tation forests provides a good basis for develop-
ing evaluation measures of word order differences.
These hierarchical representations of permutations
bring together two crucial elements (1) grouping
words into blocks, and (2) factorizing reorder-
ing phenomena recursively over these groupings.
Earlier work on MT evaluation metrics has of-
ten stressed the importance of the first ingredient
(grouping into blocks) but employed it merely in a
flat (non-recursive) fashion. In this work we pre-
sented novel metrics based on permutation trees
and forests (the PETscore and PEFscore) where
the second ingredient (factorizing reordering phe-
nomena recursively) plays a major role. Permuta-
tion forests compactly represent all possible block
groupings for a given permutation, whereas per-
mutation trees select a single canonical grouping.
Our experiments with WMT13 data show that our
PEFscore metric outperforms the existing string-
based metrics on the large majority of language
pairs, and in the minority of cases where it is not
ranked first, it ranks high. Crucially, the PEFs-
core is by far the most stable reordering score over
ten language pairs, and works well also for lan-
guage pairs with long range reordering phenom-
ena (English-German, German-English, English-
Russian and Russian-English).
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Matouš Macháček and Ondřej Bojar. 2013. Results
of the WMT13 Metrics Shared Task. In Proceed-
ings of the Eighth Workshop on Statistical Machine
Translation, pages 45–51, Sofia, Bulgaria, August.
Association for Computational Linguistics.

Gideon Maillette de Buy Wenniger and Khalil Sima’an.
2011. Hierarchical Translation Equivalence over
Word Alignments. In ILLC Prepublication Series,
PP-2011-38. University of Amsterdam.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings
of ACL’02, pages 311–318, Philadelphia, PA, USA.
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