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Dzmitry Bahdanau∗
Jacobs University Bremen, Germany

Yoshua Bengio
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Abstract

Neural machine translation is a relatively
new approach to statistical machine trans-
lation based purely on neural networks.
The neural machine translation models of-
ten consist of an encoder and a decoder.
The encoder extracts a fixed-length repre-
sentation from a variable-length input sen-
tence, and the decoder generates a correct
translation from this representation. In this
paper, we focus on analyzing the proper-
ties of the neural machine translation us-
ing two models; RNN Encoder–Decoder
and a newly proposed gated recursive con-
volutional neural network. We show that
the neural machine translation performs
relatively well on short sentences without
unknown words, but its performance de-
grades rapidly as the length of the sentence
and the number of unknown words in-
crease. Furthermore, we find that the pro-
posed gated recursive convolutional net-
work learns a grammatical structure of a
sentence automatically.

1 Introduction

A new approach for statistical machine transla-
tion based purely on neural networks has recently
been proposed (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014). This new approach, which
we refer to as neural machine translation, is in-
spired by the recent trend of deep representational
learning. All the neural network models used in
(Sutskever et al., 2014; Cho et al., 2014) consist of
an encoder and a decoder. The encoder extracts a
fixed-length vector representation from a variable-
length input sentence, and from this representation
the decoder generates a correct, variable-length
target translation.

∗ Research done while visiting Université de Montréal

The emergence of the neural machine transla-
tion is highly significant, both practically and the-
oretically. Neural machine translation models re-
quire only a fraction of the memory needed by
traditional statistical machine translation (SMT)
models. The models we trained for this paper
require only 500MB of memory in total. This
stands in stark contrast with existing SMT sys-
tems, which often require tens of gigabytes of
memory. This makes the neural machine trans-
lation appealing in practice. Furthermore, un-
like conventional translation systems, each and ev-
ery component of the neural translation model is
trained jointly to maximize the translation perfor-
mance.

As this approach is relatively new, there has not
been much work on analyzing the properties and
behavior of these models. For instance: What
are the properties of sentences on which this ap-
proach performs better? How does the choice of
source/target vocabulary affect the performance?
In which cases does the neural machine translation
fail?

It is crucial to understand the properties and be-
havior of this new neural machine translation ap-
proach in order to determine future research di-
rections. Also, understanding the weaknesses and
strengths of neural machine translation might lead
to better ways of integrating SMT and neural ma-
chine translation systems.

In this paper, we analyze two neural machine
translation models. One of them is the RNN
Encoder–Decoder that was proposed recently in
(Cho et al., 2014). The other model replaces the
encoder in the RNN Encoder–Decoder model with
a novel neural network, which we call a gated
recursive convolutional neural network (grConv).
We evaluate these two models on the task of trans-
lation from French to English.

Our analysis shows that the performance of
the neural machine translation model degrades

103



quickly as the length of a source sentence in-
creases. Furthermore, we find that the vocabulary
size has a high impact on the translation perfor-
mance. Nonetheless, qualitatively we find that the
both models are able to generate correct transla-
tions most of the time. Furthermore, the newly
proposed grConv model is able to learn, without
supervision, a kind of syntactic structure over the
source language.

2 Neural Networks for Variable-Length
Sequences

In this section, we describe two types of neural
networks that are able to process variable-length
sequences. These are the recurrent neural net-
work and the proposed gated recursive convolu-
tional neural network.

2.1 Recurrent Neural Network with Gated
Hidden Neurons

z

rh h
~ x

(a) (b)

Figure 1: The graphical illustration of (a) the re-
current neural network and (b) the hidden unit that
adaptively forgets and remembers.

A recurrent neural network (RNN, Fig. 1 (a))
works on a variable-length sequence x =
(x1,x2, · · · ,xT ) by maintaining a hidden state h
over time. At each timestep t, the hidden state h(t)

is updated by

h(t) = f
(
h(t−1),xt

)
,

where f is an activation function. Often f is as
simple as performing a linear transformation on
the input vectors, summing them, and applying an
element-wise logistic sigmoid function.

An RNN can be used effectively to learn a dis-
tribution over a variable-length sequence by learn-
ing the distribution over the next input p(xt+1 |
xt, · · · ,x1). For instance, in the case of a se-
quence of 1-of-K vectors, the distribution can be
learned by an RNN which has as an output

p(xt,j = 1 | xt−1, . . . ,x1) =
exp

(
wjh〈t〉

)∑K
j′=1 exp

(
wj′h〈t〉

) ,

for all possible symbols j = 1, . . . ,K, where wj

are the rows of a weight matrix W. This results in
the joint distribution

p(x) =
T∏

t=1

p(xt | xt−1, . . . , x1).

Recently, in (Cho et al., 2014) a new activation
function for RNNs was proposed. The new activa-
tion function augments the usual logistic sigmoid
activation function with two gating units called re-
set, r, and update, z, gates. Each gate depends on
the previous hidden state h(t−1), and the current
input xt controls the flow of information. This is
reminiscent of long short-term memory (LSTM)
units (Hochreiter and Schmidhuber, 1997). For
details about this unit, we refer the reader to (Cho
et al., 2014) and Fig. 1 (b). For the remainder of
this paper, we always use this new activation func-
tion.

2.2 Gated Recursive Convolutional Neural
Network

Besides RNNs, another natural approach to deal-
ing with variable-length sequences is to use a re-
cursive convolutional neural network where the
parameters at each level are shared through the
whole network (see Fig. 2 (a)). In this section, we
introduce a binary convolutional neural network
whose weights are recursively applied to the input
sequence until it outputs a single fixed-length vec-
tor. In addition to a usual convolutional architec-
ture, we propose to use the previously mentioned
gating mechanism, which allows the recursive net-
work to learn the structure of the source sentences
on the fly.

Let x = (x1,x2, · · · ,xT ) be an input sequence,
where xt ∈ Rd. The proposed gated recursive
convolutional neural network (grConv) consists of
four weight matrices Wl, Wr, Gl and Gr. At
each recursion level t ∈ [1, T − 1], the activation
of the j-th hidden unit h(t)

j is computed by

h
(t)
j = ωch̃

(t)
j + ωlh

(t−1)
j−1 + ωrh

(t−1)
j , (1)

where ωc, ωl and ωr are the values of a gater that
sum to 1. The hidden unit is initialized as

h
(0)
j = Uxj ,

where U projects the input into a hidden space.
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Figure 2: The graphical illustration of (a) the recursive convolutional neural network and (b) the proposed
gated unit for the recursive convolutional neural network. (c–d) The example structures that may be
learned with the proposed gated unit.

The new activation h̃(t)
j is computed as usual:

h̃
(t)
j = φ

(
Wlh

(t)
j−1 + Wrh

(t)
j

)
,

where φ is an element-wise nonlinearity.
The gating coefficients ω’s are computed by ωc

ωl

ωr

 =
1
Z

exp
(
Glh

(t)
j−1 + Grh

(t)
j

)
,

where Gl,Gr ∈ R3×d and

Z =
3∑

k=1

[
exp

(
Glh

(t)
j−1 + Grh

(t)
j

)]
k
.

According to this activation, one can think of
the activation of a single node at recursion level t
as a choice between either a new activation com-
puted from both left and right children, the acti-
vation from the left child, or the activation from
the right child. This choice allows the overall
structure of the recursive convolution to change
adaptively with respect to an input sample. See
Fig. 2 (b) for an illustration.

In this respect, we may even consider the pro-
posed grConv as doing a kind of unsupervised
parsing. If we consider the case where the gat-
ing unit makes a hard decision, i.e., ω follows an
1-of-K coding, it is easy to see that the network
adapts to the input and forms a tree-like structure
(See Fig. 2 (c–d)). However, we leave the further
investigation of the structure learned by this model
for future research.

3 Purely Neural Machine Translation

3.1 Encoder–Decoder Approach
The task of translation can be understood from the
perspective of machine learning as learning the

Economic growth has slowed down in recent years .

La croissance économique a ralenti ces dernières années .

[z  ,z  , ... ,z  ]1 2 d

Encode

Decode

Figure 3: The encoder–decoder architecture

conditional distribution p(f | e) of a target sen-
tence (translation) f given a source sentence e.
Once the conditional distribution is learned by a
model, one can use the model to directly sample
a target sentence given a source sentence, either
by actual sampling or by using a (approximate)
search algorithm to find the maximum of the dis-
tribution.

A number of recent papers have proposed to
use neural networks to directly learn the condi-
tional distribution from a bilingual, parallel cor-
pus (Kalchbrenner and Blunsom, 2013; Cho et al.,
2014; Sutskever et al., 2014). For instance, the au-
thors of (Kalchbrenner and Blunsom, 2013) pro-
posed an approach involving a convolutional n-
gram model to extract a vector of a source sen-
tence which is decoded with an inverse convolu-
tional n-gram model augmented with an RNN. In
(Sutskever et al., 2014), an RNN with LSTM units
was used to encode a source sentence and starting
from the last hidden state, to decode a target sen-
tence. Similarly, the authors of (Cho et al., 2014)
proposed to use an RNN to encode and decode a
pair of source and target phrases.

At the core of all these recent works lies an
encoder–decoder architecture (see Fig. 3). The
encoder processes a variable-length input (source
sentence) and builds a fixed-length vector repre-
sentation (denoted as z in Fig. 3). Conditioned on
the encoded representation, the decoder generates
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a variable-length sequence (target sentence).
Before (Sutskever et al., 2014) this encoder–

decoder approach was used mainly as a part of the
existing statistical machine translation (SMT) sys-
tem. This approach was used to re-rank the n-best
list generated by the SMT system in (Kalchbren-
ner and Blunsom, 2013), and the authors of (Cho
et al., 2014) used this approach to provide an ad-
ditional score for the existing phrase table.

In this paper, we concentrate on analyzing the
direct translation performance, as in (Sutskever et
al., 2014), with two model configurations. In both
models, we use an RNN with the gated hidden
unit (Cho et al., 2014), as this is one of the only
options that does not require a non-trivial way to
determine the target length. The first model will
use the same RNN with the gated hidden unit as
an encoder, as in (Cho et al., 2014), and the second
one will use the proposed gated recursive convo-
lutional neural network (grConv). We aim to un-
derstand the inductive bias of the encoder–decoder
approach on the translation performance measured
by BLEU.

4 Experiment Settings

4.1 Dataset

We evaluate the encoder–decoder models on the
task of English-to-French translation. We use the
bilingual, parallel corpus which is a set of 348M
selected by the method in (Axelrod et al., 2011)
from a combination of Europarl (61M words),
news commentary (5.5M), UN (421M) and two
crawled corpora of 90M and 780M words respec-
tively.1 We did not use separate monolingual data.
The performance of the neural machien transla-
tion models was measured on the news-test2012,
news-test2013 and news-test2014 sets ( 3000 lines
each). When comparing to the SMT system, we
use news-test2012 and news-test2013 as our de-
velopment set for tuning the SMT system, and
news-test2014 as our test set.

Among all the sentence pairs in the prepared
parallel corpus, for reasons of computational ef-
ficiency we only use the pairs where both English
and French sentences are at most 30 words long to
train neural networks. Furthermore, we use only
the 30,000 most frequent words for both English
and French. All the other rare words are consid-

1All the data can be downloaded from http:
//www-lium.univ-lemans.fr/˜schwenk/cslm_
joint_paper/.

ered unknown and are mapped to a special token
([UNK]).

4.2 Models

We train two models: The RNN Encoder–
Decoder (RNNenc)(Cho et al., 2014) and the
newly proposed gated recursive convolutional
neural network (grConv). Note that both models
use an RNN with gated hidden units as a decoder
(see Sec. 2.1).

We use minibatch stochastic gradient descent
with AdaDelta (Zeiler, 2012) to train our two mod-
els. We initialize the square weight matrix (transi-
tion matrix) as an orthogonal matrix with its spec-
tral radius set to 1 in the case of the RNNenc and
0.4 in the case of the grConv. tanh and a rectifier
(max(0, x)) are used as the element-wise nonlin-
ear functions for the RNNenc and grConv respec-
tively.

The grConv has 2000 hidden neurons, whereas
the RNNenc has 1000 hidden neurons. The word
embeddings are 620-dimensional in both cases.2

Both models were trained for approximately 110
hours, which is equivalent to 296,144 updates and
846,322 updates for the grConv and RNNenc, re-
spectively.

4.2.1 Translation using Beam-Search
We use a basic form of beam-search to find a trans-
lation that maximizes the conditional probability
given by a specific model (in this case, either the
RNNenc or the grConv). At each time step of
the decoder, we keep the s translation candidates
with the highest log-probability, where s = 10
is the beam-width. During the beam-search, we
exclude any hypothesis that includes an unknown
word. For each end-of-sequence symbol that is se-
lected among the highest scoring candidates the
beam-width is reduced by one, until the beam-
width reaches zero.

The beam-search to (approximately) find a se-
quence of maximum log-probability under RNN
was proposed and used successfully in (Graves,
2012) and (Boulanger-Lewandowski et al., 2013).
Recently, the authors of (Sutskever et al., 2014)
found this approach to be effective in purely neu-
ral machine translation based on LSTM units.

2In all cases, we train the whole network including the
word embedding matrix. The embedding dimensionality was
chosen to be quite large, as the preliminary experiments
with 155-dimensional embeddings showed rather poor per-
formance.
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Model Development Test
A

ll
RNNenc 13.15 13.92
grConv 9.97 9.97
Moses 30.64 33.30

Moses+RNNenc? 31.48 34.64
Moses+LSTM◦ 32 35.65

N
o

U
N

K RNNenc 21.01 23.45
grConv 17.19 18.22
Moses 32.77 35.63

Model Development Test

A
ll

RNNenc 19.12 20.99
grConv 16.60 17.50
Moses 28.92 32.00

N
o

U
N

K RNNenc 24.73 27.03
grConv 21.74 22.94
Moses 32.20 35.40

(a) All Lengths (b) 10–20 Words

Table 1: BLEU scores computed on the development and test sets. The top three rows show the scores on
all the sentences, and the bottom three rows on the sentences having no unknown words. (?) The result
reported in (Cho et al., 2014) where the RNNenc was used to score phrase pairs in the phrase table. (◦)
The result reported in (Sutskever et al., 2014) where an encoder–decoder with LSTM units was used to
re-rank the n-best list generated by Moses.

When we use the beam-search to find the k best
translations, we do not use a usual log-probability
but one normalized with respect to the length of
the translation. This prevents the RNN decoder
from favoring shorter translations, behavior which
was observed earlier in, e.g., (Graves, 2013).

5 Results and Analysis

5.1 Quantitative Analysis

In this paper, we are interested in the properties
of the neural machine translation models. Specif-
ically, the translation quality with respect to the
length of source and/or target sentences and with
respect to the number of words unknown to the
model in each source/target sentence.

First, we look at how the BLEU score, reflect-
ing the translation performance, changes with re-
spect to the length of the sentences (see Fig. 4 (a)–
(b)). Clearly, both models perform relatively well
on short sentences, but suffer significantly as the
length of the sentences increases.

We observe a similar trend with the number of
unknown words, in Fig. 4 (c). As expected, the
performance degrades rapidly as the number of
unknown words increases. This suggests that it
will be an important challenge to increase the size
of vocabularies used by the neural machine trans-
lation system in the future. Although we only
present the result with the RNNenc, we observed
similar behavior for the grConv as well.

In Table 1 (a), we present the translation perfor-
mances obtained using the two models along with

the baseline phrase-based SMT system.3 Clearly
the phrase-based SMT system still shows the su-
perior performance over the proposed purely neu-
ral machine translation system, but we can see that
under certain conditions (no unknown words in
both source and reference sentences), the differ-
ence diminishes quite significantly. Furthermore,
if we consider only short sentences (10–20 words
per sentence), the difference further decreases (see
Table 1 (b).

Furthermore, it is possible to use the neural ma-
chine translation models together with the existing
phrase-based system, which was found recently in
(Cho et al., 2014; Sutskever et al., 2014) to im-
prove the overall translation performance (see Ta-
ble 1 (a)).

This analysis suggests that that the current neu-
ral translation approach has its weakness in han-
dling long sentences. The most obvious explana-
tory hypothesis is that the fixed-length vector rep-
resentation does not have enough capacity to en-
code a long sentence with complicated structure
and meaning. In order to encode a variable-length
sequence, a neural network may “sacrifice” some
of the important topics in the input sentence in or-
der to remember others.

This is in stark contrast to the conventional
phrase-based machine translation system (Koehn
et al., 2003). As we can see from Fig. 5, the
conventional system trained on the same dataset
(with additional monolingual data for the language
model) tends to get a higher BLEU score on longer

3We used Moses as a baseline, trained with additional
monolingual data for a 4-gram language model.
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Source She explained her new position of foreign affairs and security policy representative as a reply to a
question: ”Who is the European Union? Which phone number should I call?”; i.e. as an important step
to unification and better clarity of Union’s policy towards countries such as China or India.

Reference Elle a expliqué le nouveau poste de la Haute représentante pour les affaires étrangères et la politique de
défense dans le cadre d’une réponse à la question: ”Qui est qui à l’Union européenne?” ”A quel numéro
de téléphone dois-je appeler?”, donc comme un pas important vers l’unicité et une plus grande lisibilité
de la politique de l’Union face aux états, comme est la Chine ou bien l’Inde.

RNNEnc Elle a décrit sa position en matière de politique étrangère et de sécurité ainsi que la politique de l’Union
européenne en matière de gouvernance et de démocratie .

grConv Elle a expliqué sa nouvelle politique étrangère et de sécurité en réponse à un certain nombre de questions
: ”Qu’est-ce que l’Union européenne ? ” .

Moses Elle a expliqué son nouveau poste des affaires étrangères et la politique de sécurité représentant en
réponse à une question: ”Qui est l’Union européenne? Quel numéro de téléphone dois-je appeler?”;
c’est comme une étape importante de l’unification et une meilleure lisibilité de la politique de l’Union
à des pays comme la Chine ou l’Inde .

Source The investigation should be complete by the end of the year when the findings will be presented to
Deutsche Bank’s board of managing directors - with recommendations for action.

Reference L’examen doit être terminé d’ici la fin de l’année, ensuite les résultats du conseil d’administration de la
Deutsche Bank doivent être présentés - avec recommandation, d’ habitude.

RNNEnc L’étude devrait être terminée à la fin de l’ année, lorsque les conclusions seront présentées au conseil
d’administration de la Deutsche Bank, conseil d’association avec des mesures.

grConv L’enquête devrait être terminée à la fin de l’année où les conclusions seront présentées par le conseil
d’administration de la BCE à la direction des recommandations.

Moses L’enquête devrait être terminé d’ici la fin de l’année lorsque les résultats seront présentés à la Deutsche
Bank conseil des directeurs généraux - avec des recommandations .

Source And there are thorny mechanical questions that must be resolved during that time, like how to bal-
ance the state’s mandate of ”adequate access” to licensed marijuana with its prohibitions on cannabis
businesses within 1,000 feet of a school, park, playground or child care center.

Reference Pendant ce temps, des questions pratiques restent en suspens: comment équilibrer le mandat de l’état
qui garantit un accès approprié à la marijuana agréée et interdit l’installation de commerces de vente de
cannabis dans un rayon de 30 km autour d’une école, d’un parc, d’un terrain de jeu ou d’une crèche.

RNNEnc Il y a des questions préventives qui se posent quant à l’équilibre des droits de l’enfant dans les limites
d’une entreprise de collecte de sang.

grConv De façon générale, il y a des raisons de sécurité pour que les entreprises aient accès à des milliers de
centres de pêche, d’eau ou de recherche.

Moses Et il y a des problèmes mécaniques complexes qui doivent être résolues au cours de cette période,
comme la manière d’équilibrer le mandat de ”l’accès adéquat” permis de marijuana avec l’interdiction
du cannabis aux entreprises de 1000 pieds d’une école de jeu ou de parc, le service de garde.

(a) Long Sentences

Source There is still no agreement as to which election rules to follow.
Reference Toutefois il n’existe toujours pas d’accord selon quel règlement de vote il faut procéder.
RNNEnc Il n’y a pas encore d’accord sur les règles électorales.
grConv Il n’y a pas encore d’accord sur la question des élections à suivre.
Moses Il y a toujours pas d’accord sur l’élection des règles à suivre.

Source Many of these ideas may have been creative, but they didn’t necessarily work.
Reference Beaucoup de ces idées étaient créatives mais elles n’ont pas forcément fonctionné.
RNNEnc Bon nombre de ces idées ont peut-être été créatrices, mais elles ne s’appliquaient pas nécessairement.
grConv Beaucoup de ces idées peuvent être créatives, mais elles n’ont pas fonctionné.
Moses Beaucoup de ces idées ont pu être créatif, mais ils n’ont pas nécessairement.

Source There is a lot of consensus between the Left and the Right on this subject.
Reference C’est qu’il y a sur ce sujet un assez large consensus entre gauche et droite.
RNNEnc Il existe beaucoup de consensus entre la gauche et le droit à la question.
grConv Il y a un consensus entre la gauche et le droit sur cette question.
Moses Il y a beaucoup de consensus entre la gauche et la droite sur ce sujet.

Source According to them, one can find any weapon at a low price right now.
Reference Selon eux, on peut trouver aujourd’hui à Moscou n’importe quelle arme pour un prix raisonnable.
RNNEnc Selon eux, on peut se trouver de l’arme à un prix trop bas.
grConv En tout cas, ils peuvent trouver une arme à un prix très bas à la fois.
Moses Selon eux, on trouve une arme à bas prix pour l’instant.

(b) Short Sentences

Table 2: The sample translations along with the source sentences and the reference translations.
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Figure 4: The BLEU scores achieved by (a) the RNNenc and (b) the grConv for sentences of a given
length. The plot is smoothed by taking a window of size 10. (c) The BLEU scores achieved by the RNN
model for sentences with less than a given number of unknown words.

sentences.
In fact, if we limit the lengths of both the source

sentence and the reference translation to be be-
tween 10 and 20 words and use only the sentences
with no unknown words, the BLEU scores on the
test set are 27.81 and 33.08 for the RNNenc and
Moses, respectively.

Note that we observed a similar trend even
when we used sentences of up to 50 words to train
these models.

5.2 Qualitative Analysis

Although BLEU score is used as a de-facto stan-
dard metric for evaluating the performance of a
machine translation system, it is not the perfect
metric (see, e.g., (Song et al., 2013; Liu et al.,
2011)). Hence, here we present some of the ac-
tual translations generated from the two models,
RNNenc and grConv.

In Table. 2 (a)–(b), we show the translations of
some randomly selected sentences from the de-
velopment and test sets. We chose the ones that
have no unknown words. (a) lists long sentences
(longer than 30 words), and (b) short sentences
(shorter than 10 words). We can see that, despite
the difference in the BLEU scores, all three mod-
els (RNNenc, grConv and Moses) do a decent job
at translating, especially, short sentences. When
the source sentences are long, however, we no-
tice the performance degradation of the neural ma-
chine translation models.

Additionally, we present here what type of
structure the proposed gated recursive convolu-
tional network learns to represent. With a sample
sentence “Obama is the President of the United
States”, we present the parsing structure learned
by the grConv encoder and the generated transla-
tions, in Fig. 6. The figure suggests that the gr-
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Figure 5: The BLEU scores achieved by an SMT
system for sentences of a given length. The plot
is smoothed by taking a window of size 10. We
use the solid, dotted and dashed lines to show the
effect of different lengths of source, reference or
both of them, respectively.

Conv extracts the vector representation of the sen-
tence by first merging “of the United States” to-
gether with “is the President of” and finally com-
bining this with “Obama is” and “.”, which is
well correlated with our intuition. Note, however,
that the structure learned by the grConv is differ-
ent from existing parsing approaches in the sense
that it returns soft parsing.

Despite the lower performance the grConv
showed compared to the RNN Encoder–Decoder,4

we find this property of the grConv learning a
grammar structure automatically interesting and
believe further investigation is needed.

4However, it should be noted that the number of gradient
updates used to train the grConv was a third of that used to
train the RNNenc. Longer training may change the result,
but for a fair comparison we chose to compare models which
were trained for an equal amount of time. Neither model was
trained to convergence.
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Obama is the President of the United States .

++++++++

+++++++

++++++

+++++

++++

+++

++

+ Translations
Obama est le Président des États-Unis . (2.06)
Obama est le président des États-Unis . (2.09)
Obama est le président des Etats-Unis . (2.61)
Obama est le Président des Etats-Unis . (3.33)
Barack Obama est le président des États-Unis . (4.41)
Barack Obama est le Président des États-Unis . (4.48)
Barack Obama est le président des Etats-Unis . (4.54)
L’Obama est le Président des États-Unis . (4.59)
L’Obama est le président des États-Unis . (4.67)
Obama est président du Congrès des États-Unis .(5.09)

(a) (b)

Figure 6: (a) The visualization of the grConv structure when the input is “Obama is the President of
the United States.”. Only edges with gating coefficient ω higher than 0.1 are shown. (b) The top-10
translations generated by the grConv. The numbers in parentheses are the negative log-probability.

6 Conclusion and Discussion

In this paper, we have investigated the property
of a recently introduced family of machine trans-
lation system based purely on neural networks.
We focused on evaluating an encoder–decoder ap-
proach, proposed recently in (Kalchbrenner and
Blunsom, 2013; Cho et al., 2014; Sutskever et al.,
2014), on the task of sentence-to-sentence trans-
lation. Among many possible encoder–decoder
models we specifically chose two models that dif-
fer in the choice of the encoder; (1) RNN with
gated hidden units and (2) the newly proposed
gated recursive convolutional neural network.

After training those two models on pairs of
English and French sentences, we analyzed their
performance using BLEU scores with respect to
the lengths of sentences and the existence of un-
known/rare words in sentences. Our analysis re-
vealed that the performance of the neural machine
translation suffers significantly from the length of
sentences. However, qualitatively, we found that
the both models are able to generate correct trans-
lations very well.

These analyses suggest a number of future re-
search directions in machine translation purely
based on neural networks.

Firstly, it is important to find a way to scale up
training a neural network both in terms of com-
putation and memory so that much larger vocabu-
laries for both source and target languages can be
used. Especially, when it comes to languages with

rich morphology, we may be required to come up
with a radically different approach in dealing with
words.

Secondly, more research is needed to prevent
the neural machine translation system from under-
performing with long sentences. Lastly, we need
to explore different neural architectures, especially
for the decoder. Despite the radical difference in
the architecture between RNN and grConv which
were used as an encoder, both models suffer from
the curse of sentence length. This suggests that it
may be due to the lack of representational power
in the decoder. Further investigation and research
are required.

In addition to the property of a general neural
machine translation system, we observed one in-
teresting property of the proposed gated recursive
convolutional neural network (grConv). The gr-
Conv was found to mimic the grammatical struc-
ture of an input sentence without any supervision
on syntactic structure of language. We believe this
property makes it appropriate for natural language
processing applications other than machine trans-
lation.
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