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Abstract

In this work, we address the problem
of spelling correction in the Arabic lan-
guage utilizing the new corpus provided
by QALB (Qatar Arabic Language Bank)
project which is an annotated corpus of
sentences with errors and their corrections.
The corpus contains edit, add before, split,
merge, add after, move and other error
types. We are concerned with the first four
error types as they contribute more than
90% of the spelling errors in the corpus.
The proposed system has many models to
address each error type on its own and then
integrating all the models to provide an
efficient and robust system that achieves
an overall recall of 0.59, precision of 0.58
and F1 score of 0.58 including all the error
types on the development set. Our system
participated in the QALB 2014 shared task
”Automatic Arabic Error Correction” and
achieved an F1 score of 0.6, earning the
sixth place out of nine participants.

1 Introduction

The Arabic language is a highly inflected natural
language that has an enormous number of possi-
ble words (Othman et al., 2003). And although it
is the native language of over 300 million people,
it suffers from the lack of useful resources as op-
posed to other languages, specially English and
until now there are no systems that cover the wide
range of possible spelling errors. Fortunately the
QALB corpus (Zaghouani et al., 2014) will help
enrich the resources for Arabic language generally
and the spelling correction specifically by provid-
ing an annotated corpus with corrected sentences
from user comments, native student essays, non-
native data and machine translation data. In this
work, we are trying to use this corpus to build an

error correction system that can cover a range of
spelling errors.

This paper is a system description paper that is
submitted in the EMNLP 2014 conference shared
task ”Automatic Arabic Error Correction” (Mohit
et al., 2014) in the Arabic NLP workshop. The
challenges that faced us while working on this sys-
tem was the shortage of contribution in the area
of spelling correction in the Arabic language. But
hopefully the papers and the work in this shared
task specifically and in the workshop generally
will enrich this area and flourish it.

Our system targets four types of spelling errors,
edit errors, add before errors, merge errors and
split errors. For each error type, A model is built
to correct erroneous words detected by the error
detection technique. Edit errors and add before
errors are corrected using classifiers with contex-
tual features, while the merge and split errors are
corrected by inserting or omitting a space between
words and choosing the best candidate based on
the language model score of each candidate.

The rest of this paper is structured as follows.
In section 2, we give a brief background on re-
lated work in spelling correction. In section 3, we
introduce our system for spelling correction with
the description of the efficient models used in the
system. In section 4, we list some experimental re-
sults on the development set. In section 5, we give
some concluding remarks.

2 Related Work

The work in the field of spelling correction in the
Arabic language is not yet mature and no sys-
tem achieved a great error correction efficiency.
Even Microsoft Word, the most widely used Ara-
bic spelling correction system, does not achieve
good results. Our work was inspired by a num-
ber of papers. (Shaalan et al., 2012) addressed
the problem of Arabic Word Generation for spell
checking and they produced an open source and
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large coverage word list for Arabic containing 9
million fully inflected surface words and applied
language models and Noisy Channel Model and
knowledge-based rules for error correction. This
word list is used in our work besides using lan-
guage models and Noisy Channel Model.

(Shaalan et al., 2010) proposed another sys-
tem for cases in which the candidate genera-
tion using edit algorithm only was not enough,
in which candidates were generated based on
transformation rules and errors are detected using
BAMA (Buckwalter Arabic Morphological Ana-
lyzer)(Buckwalter, 2002).

(Khalifa et al., 2011) proposed a system for text
segmentation. The system discriminates between
waw wasl and waw fasl, and depending on this
it can predict if the sentence to be segmented at
this position or not, they claim that they achieved
97.95% accuracy. The features used in this work
inspired us with the add before errors correction.

(Schaback, 2007) proposed a system for the En-
glish spelling correction, that is addressing the edit
errors on various levels: on the phonetic level us-
ing Soundex algorithm, on the character level us-
ing edit algorithm with one operation away, on the
word level using bigram language model, on the
syntactic level using collocation model to deter-
mine how fit the candidate is in this position and
on the semantic level using co-occurrence model
to determine how likely a candidate occurs within
the given context, using all the models output of
candidate word as features and using SVM model
to classify the candidates, they claim reaching re-
call ranging from 90% for first candidate and 97%
for all five candidates presented and outperform-
ing MS Word, Aspell, Hunspell, FST and Google.

3 Proposed System

We propose a system for detecting and correct-
ing various spelling errors, including edit, split,
merge, and add before errors. The system consists
of two steps: error detection and error correction.
Each word is tested for correctness. If the word
is deemed incorrect, it is passed to the correction
step, otherwise it remains unchanged. The correc-
tion step contains specific handling for each type
of error, as detailed in subsection 3.3.

3.1 Resources

Dictionary: Arabic wordlist for spell checking1

is a free dictionary containing 9 million Ara-
bic words. The words are automatically generated
from the AraComLex2 open-source finite state
transducer.

The dictionary is used in the generation
of candidates and using a special version of
MADAMIRA3 (Pasha et al., 2014) created for the
QALB shared task using a morphological database
based on BAMA 1.2.14 (Buckwalter, 2002). Fea-
tures are extracted for each word of the dictionary
to help in the proposed system in order that each
candidate has features just like the words in the
corpus.

Stoplist: Using stop words list available on
sourceforge.net5. This is used in the collocation
algorithm described later.

Language Model: We use SRILM (Stolcke,
2002) to build a language model using the Ajdir
Corpora6 as a corpus with the vocabulary from
the dictionary stated above. We train a language
model containing unigrams, bigrams, and trigrams
using modified Kneser-Ney smoothing (James,
2000).

QALB Corpus: QALB shared task offers a
new corpus for spelling correction. The corpus
contains a large dataset of manually corrected Ara-
bic sentences. Using this corpus, we were able
to implement a spelling correction system that
targets the most frequently occurring error types
which are (a) edit errors where a word is replaced
by another word, (b) add before errors where
a word was removed, (c) merge errors where a
space was inserted mistakenly and finally (d) split
errors where a space was removed mistakenly.
The corpus provided also has three other error
types but they occur much less frequently happen
which are (e) add after errors which is like the
add before but the token removed should be put af-
ter the word, (f) move errors where a word should
be moved to other place within the sentence and
(g) other errors where any other error that does

1http://sourceforge.net/projects/
arabic-wordlist/

2http://aracomlex.sourceforge.net/
3MADAMIRA-release-20140702-1.0
4AraMorph 1.2.1 - http://sourceforge.net/

projects/aramorph/
5http://sourceforge.net/projects/

arabicstopwords/
6http://aracorpus.e3rab.com/

argistestsrv.nmsu.edu/AraCorpus/
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not lie in the six others is labeled by it.

3.2 Error Detection

The training set, development set and test set pro-
vided by QALB project come with the ”columns
file” and contains very helpful features generated
by MADAMIRA. Using the Buckwalter morpho-
logical analysis (Buckwalter, 2002) feature, we
determine if a word is correct or not. If the word
has no analysis, we consider the word as incorrect
and pass it through the correction process.

3.3 Edit Errors Correction

The edit errors has the highest portion of total er-
rors in the corpus. It amounts to more than 55% of
the total errors. To correct this type of errors, we
train a classifier with features like the error model
probability, collocation and co-occurrence as fol-
lows:

Undiacriticized word preprocessed: Utilizing
the MADAMIRA features of each word, the undi-
acriticized word fixes some errors like hamzas, the
pair of haa and taa marboutah and the pair of yaa
and alif maqsoura.

We apply some preprocessing on the undiacrit-
icized word to make it more useful and fix the is-
sues associated with it. For example we remove
the incorrect redundant characters from the word
e.g (È@@ @ Ag. QË @ → ÈAg. QË @, AlrjAAAAl → AlrjAl).
We also replace the Roman punctuation marks by
the Arabic ones e.g (? → ?).

Language Model: For each candidate, A un-
igram, bigram and trigram values from the lan-
guage model trained are retrieved. In addition to a
feature that is the product of the unigram, bigram
and trigram values.

Likelihood Model: The likelihood model is
trained by iterating over the training sentences
counting the occurrences of each edit with the
characters being edited and the type of edit. The
output of this is called a confusion matrix.

The candidate score is based on the Noisy
Channel Model (Kernighan et al., 1990) which is
the multiplication of probabilty of the proposed
edit using the confusion matrix trained which is
called the error model, and the language model
score of that word. The language model used is
unigram, bigram and trigram with equal weights.
Add-1 smoothing is used for both models in the
counts.

Score = p(x|w).p(w)

where x is the wrong word and w is the candidate
correction.

For substitution edit candidates, we give higher
score for substitution of a character that is close on
the keyboard or the substitution pair belongs to the
same group of letter groups (Shaalan et al., 2012)
by multiplying the score by a constant greater than
one.
,(h. , h , p) ,(H. , �H , �H , 	à , ø
 ) ,(@ ,



@ , @
 ,

�
@)

,(  , 	 ) ,(� , 	�) ,(� , ��) ,(P , 	P) ,(X , 	X)
.(ø
 , ø) ,(ð , 
ð) ,( è , �è) ,( 	¬ , ��) ,(¨ , 	̈ )

(|, < , >, A), (y, n, v, t, b), (x, H, j), (*, d), (z, r),
($, s), (D, S), (Z, T), (g, E), (q, f), (p h), (&, w),
(Y, y)

For each candidate , the likelihood score is com-
puted and added to the feature vector of the candi-
date.

Collocation: The collocation model targets the
likelihood of the candidate inside the sentence.
This is done using the lemma of the word and the
POS tags of words in the sentence.

We use the algorithm in (Schaback, 2007) for
training the collocation model. Specifically, by re-
trieving the 5,000 most occurring lemmas in the
training corpus and put it in list L. For each lemma
in L, three lists are created, each record in the list
is a sequence of three POS tags around the target
lemma. For training, we shift a window of three
POS tags over the training sentence. If a lemma
belongs to L, we add the surrounding POS tags to
the equivalent list of the target lemma depending
on the position of the target lemma within the three
POS tags.

Given a misspelled word in a sentence, for each
candidate correction, if it is in the L list, we count
the number of occurrences of the surrounding POS
tags in each list of the three depending on the po-
sition of of the candidate.

The three likelihoods are stored in the feature
vector of the candidate in addition to the product
of them.

Co-occurrence: Co-occurrence is used to mea-
sure how likely a word fits inside a context. Where
L is the same list of most frequent lemmata from
collocation.

We use the co-occurrence algorithm in (Sch-
aback, 2007). Before training the model, we trans-
form each word of our training sentence into its
lemma form and remove stop-words. For exam-
ple, consider the original text:
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Aî 	E


@ AÖß. �éJ
ËAmÌ'@ �éÓñºmÌ'@ð PAÒª�J�B@ 	á�
K. ��Q 	̄ 


B �IJ
k
Hyv l>frq byn AlAstEmAr wAlHkwmp

AlHAlyp bmA >nhA

After removing stop-words and replacing the
remaining words by their lemma form we end up
with:

ú
ÍAg �éÓñºk PAÒª�J�@ ��Q 	̄ 
@
>frq AstEmAr Hkwmp HAly

which forms C.
From that C, we get all lemmata that appear in

the radius of 10 words around the target lemma
b where b belongs to L. We count the number of
occurrences of each lemma in that context C.

By using the above model, three distances are
calculated for target lemma b: d1, the ratio of ac-
tually found context words in C and possibly find-
able context words. This describes how similar the
trained context and the given context are for can-
didate b; d2 considers how significant the found
context lemmata are by summing the normalized
frequencies of the context lemmata. As a third fea-
ture; d3(b) that simply measures how big the vec-
tor space model for lemma b is.

For each candidate, the model is applied and the
three distances are calculated and added to the fea-
ture vector of that candidate.

The Classifier: After generating the candidate
corrections within 1 and 2 edit operations (insert,
delete, replace and transpose) distance measured
by Levenshtein distance (Levenshtein, 1966), we
run them through a Naive-Bayes classifier using
python NLTK’s implementation to find out which
one is the most likely to be the correction for the
incorrect word.

The classifier is trained using the training set
provided by QALB project. For each edit correc-
tion in the training set, all candidates are gener-
ated for the incorrect word and a feature vector
(as shown in table1) is calculated using the tech-
niques aforementioned. If the candidate is the cor-
rect one, the label for the training feature vector is
correct else it is incorrect.

Then using the trained classifier, the same is
done on the development set or the test set where
we replace the incorrect word with the word sug-
gested by the classifier.

3.4 Add before Errors Correction

The add before errors are mostly punctuation er-
rors. A classifier is trained on the QALB training

Table 1: The feature set used by the edit errors
classifier.

Feature name
Likelihood model probability
unigram probability
previous bigram probability
next bigram probability
trigram probability
language model product
collocation left
collocation right
collocation mid
collocation product
cooccurrence distance 1
cooccurrence distance 2
cooccurrence distance 3
previous gender
previous number
next gender
next number

corpus. A classifier is implemented with contex-
tual features C. C is a 4-gram around the token be-
ing investigated. Each word of these four has the
two features: The token itself and Part-of-speech
tag and for the next word only pregloss because
if the word’s pregloss is ”and” it is more prob-
able that a new sentence began. Those features
are available thanks to MADAMIRA features pro-
vided with the corpus and the generated for dictio-
nary words.

The classifier is trained on the QALB training
set. We iterate over all the training sentences word
by word and getting the aforementioned features
(as shown in table 2) and label the training with
the added before token if there was a matching add
before correction for this word or the label will be
an empty string.

For applying the model, the same is done on the
QALB development sentences after removing all
punctuations as they are probably not correct and
the output of the classifier is either empty or sug-
gested token to add before current word.

3.5 Merge Errors Correction

The merge errors occurs due to the insertion of
a space between two words by mistake. The ap-
proach is simply trying to attach every word with
its successor word and checking if it is a valid
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Table 2: The feature set used by the add before
errors classifier.

Feature name
before previous word
before previous word POS tag
previous word
previous word POS tag
next word
next word POS tag
next word pregloss
after next word
after next POS tag

Arabic word and rank it with the language model
score.

3.6 Split Errors Correction

The split errors occurs due to the deletion of a
space between two words. The approach is sim-
ply getting all the valid partitions of the word and
try to correct both partitions and give them a rank
using the language model score. The partition is at
least two characters long.

4 Experimental Results

In order to know the contribution of each error
type models to the overall system performance, we
adopted an incremental approach of the models.
We implemented the system using python7 and
NLTK8 (Loper and Bird, 2002) toolkit. The mod-
els are trained on the QALB corpus training set
and the results are obtained by applying the trained
models on the development set. Our goal was to
achieve high recall but without losing too much
precision. The models were evaluated using M2
scorer (Dahlmeier and Ng, 2012).

First, we start with only the preprocessed un-
diacriticized word, then we added our edit error
classifier. Adding the add before classifier was a
great addition to the system as the system was able
to increase the number of corrected errors signif-
icantly, notably the add before classifier proposed
too many incorrect suggestions that decreased the
precision. Then we added the merging correction
technique. Finally we added the split error cor-
rection technique. The system corrects 9860 errors
versus 16659 golden error corrections and pro-

7https://www.python.org/
8http://www.nltk.org/

posed 17057 correction resulting in the final sys-
tem recall of 0.5919, precision of 0.5781 and F1
score of 0.5849. Details are shown in Table 3.

Table 3: The incremental results after adding each
error type model and applying them on the devel-
opment set.

Model name Recall Precision F1 score
Undiacriticized 0.32 0.833 0.4715
+ Edit 0.3515 0.7930 0.5723
+ Add before 0.5476 0.5658 0.5567
+ Merge 0.5855 0.5816 0.5836
+ Split 0.5919 0.5781 0.5849

We tried other combinations of the models by
removing one or more of the components to get the
best results possible. Noting that all the systems
results are using the undiacriticized word. Details
are shown in Table 4

Table 4: The results of some combinations of the
models and applying them on the development set.
The models are abbreviated as Edit E, Merge M,
Split S, and Add before A.

Model name Precision Recall F1 score
M Only 0.8441 0.3724 0.5167
S Only 0.7838 0.338 0.5167
A Only 0.6008 0.4887 0.539
E Only 0.8143 0.3472 0.4868
M & S 0.8121 0.3814 0.5191
E & S 0.62 0.3542 0.4508
M & E 0.6184 0.5403 0.5767
S & M & A 0.6114 0.5396 0.5733
M & E & A 0.6186 0.5404 0.5768
E & S & A 0.5955 0.507 0.5477
E & S & M 0.6477 0.3969 0.4922
E & S & M & A 0.5919 0.5781 0.5849

5 Conclusion and Future Work

We propose an all-in-one system for error detec-
tion and correction. The system addresses four
types of spelling errors (edit, add before, merge
and split errors). The system achieved promis-
ing results by successfully getting corrections for
about 60% of the spelling errors in the develop-
ment set. Also, There is still a big room for im-
provements in all types of error correction models.

We are planning to improve the current system
by incorporating more intelligent techniques and
models for split and merge. Also, the add before
classifier needs much work to improve the cov-
erage as the errors are mostly missing punctua-
tion marks. For the edit classifier, real-word errors
need to be addressed.
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