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Abstract

High-quality parallel data is crucial for a
range of multilingual applications, from
tuning and evaluating machine translation
systems to cross-lingual annotation pro-
jection. Unfortunately, automatically ob-
tained parallel data (which is available
in relative abundance) tends to be quite
noisy. To obtain high-quality parallel data,
we introduce a crowdsourcing paradigm
in which workers with only basic bilin-
gual proficiency identify translations from
an automatically extracted corpus of par-
allel microblog messages. For less than
$350, we obtained over 5000 parallel seg-
ments in five language pairs. Evaluated
against expert annotations, the quality of
the crowdsourced corpus is significantly
better than existing automatic methods:
it obtains an performance comparable to
expert annotations when used in MERT
tuning of a microblog MT system; and
training a parallel sentence classifier with
it leads also to improved results. The
crowdsourced corpora will be made avail-
able in http://www.cs.cmu.edu/
~lingwang/microtopia/.

1 Introduction

High-quality parallel data is essential for tun-
ing and evaluating statistical MT systems, and
it plays a role in a wide range of multilingual
NLP applications, such as word sense disambigua-
tion (Gale et al., 1992; Ng et al., 2003; Specia
et al., 2005), paraphrasing (Bannard and Callison-
burch, 2005; Ganitkevitch et al., 2012), annota-
tion projection (Das and Petrov, 2011), and other
language-specific applications (Schwarck et al.,

∗ A sample of the crowdsourced corpora and the inter-
faces used are available as supplementary material.

2010; Liu et al., 2011). While large amounts
of parallel data can be easily obtained by mining
the web (Resnik and Smith, 2003), comparable
corpora (Munteanu and Marcu, 2005), and even
social media sites (Ling et al., 2013), automati-
cally extracted parallel tends to be noisy, and, as a
result, “evaluation-quality” parallel corpora have
generally been produced at considerable expense
by targeted translation efforts (Bojar et al., 2013,
inter alia). Unfortunately, in some domains such
as microblogs, the only corpora that are available
are automatically extracted and noisy.

While phrase-based translation models can ef-
fectively learn translation rules from noisy parallel
data (Goutte et al., 2012), having a subset of high-
quality parallel segments is nevertheless crucial.
Firstly, the automatic parallel data extraction sys-
tem’s parameters can be tuned by optimizing on
the gold standard data. Secondly, even though the
parallel data used to train MT systems can contain
a considerable amount of noise, it is conventional
to use human annotated parallel data to tune and
evaluate the system. Finally, other NLP applica-
tions may not be as noise-robust as MT.

We introduce a new crowdsourcing protocol for
obtaining high-quality parallel data from noisy,
automatically extracted parallel data (§3), focus-
ing on the challenging case of identifying par-
allel data in microblog messages (Ling et al.,
2013). In contrast to previous attempts to use
crowdsourcing to obtain parallel data, in which
workers performed translation (Ambati and Vo-
gel, 2010; Zaidan and Callison-Burch, 2011; Post
et al., 2012; Ambati et al., 2012), our approach
only requires that they identify whether a candi-
date message contains a translation, and if so, what
the spans of the translated segments are. This is
a much simpler task than translation, and one that
can often be completed by workers with only a ba-
sic proficiency in the source and target languages.

For evaluation (§4), we use our protocol to build
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parallel datasets on a Chinese-English corpus orig-
inally extracted from Sina Weibo and for which we
have expert annotations. This lets us quantify the
effectiveness of our method under different task
variations. We also show that the crowdsourced
corpus performs as well as expert annotation (and
better than the automatically extracted corpus) for
tuning an MT system with MERT. We next apply
our method on a corpus of five language pairs (en-
ar, en-ja, en-ko, en-ru, en-zh) extracted from Twit-
ter (§5), for which we have no gold-standard data.
Using this data in a cross-validation setup, we train
and evaluate a maxent classifier for detecting par-
allel data (§6), and then we conclude (§7).

2 Related Work

Our work crosses crowdsourcing techniques and
automatic parallel data extraction from mi-
croblogs. In this section, we shall provide back-
ground information and analysis of the work per-
formed in these two fields.

2.1 Parallel Data Extraction from Microblogs

Many sources of parallel data exist on the
web. The most popular choice are parallel web
pages (Resnik and Smith, 2003), while other
work have looked at specific domains with large
amounts of data, such as Wikipedia (Smith et
al., 2010). Microblogs, such as Twitter and Sina
Weibo, represent a subdomain of the Web. Some
of its characteristics is the informal language used
and the short nature of the messages that are
posted. Due to its large size and growing pop-
ularity, work has been done on parallel data ex-
traction from this domain. Ling et al. (2013) at-
tempt to find naturally occurring parallel data from
Sina Weibo and Twitter. Some examples of what
is found are illustrated in Figure 1. The extrac-
tion process starts by finding the parallel segments
within the same message and the word alignments
between those segments that maximize a hand-
tuned model score.

Another method (Jehl et al., 2012) leverages
CLIR (Cross Lingual Information Retrieval) tech-
niques to find pairs of tweets that are translations.
The main challenge in this approach is the large
amount of pairs of tweets that must be considered,
which raises some scalability issues when process-
ing billions of tweets.

Our crowdsourcing method can be applied to
annotate data from any naturally occurring source.

In this paper, we will use the corpus developed
by Ling et al. (2013), since it is publicly available
and has parallel data for 6 languages from Twitter,
and for 10 languages from Sina Weibo.

2.2 Parallel Data using Crowdsourcing

Most of the work done in building parallel data
using crowdsourcing (Ambati and Vogel, 2010;
Zaidan and Callison-Burch, 2011; Post et al.,
2012; Ambati et al., 2012) relies on using crowd-
sourcing workers to translate. These methods
must address the fact that workers may produce
poor and sometimes incorrect translations. Thus,
in order to find good translations, subsequent
postediting and/or ranking is generally necessary.

In contrast, in our work, crowdsourcing is used
for data extraction rather than translation, a sub-
stantially simpler task than translation (in particu-
lar, translation of informal text) that requires less
expertise in the language pair (basic proficiency in
the two languages is generally sufficient to suc-
cessfully complete the task). Furthermore, assess-
ing whether a worker performed the task correctly
and combining the outputs of different workers is
simpler. The time spent per item is also reduced:
our annotation interface only requires the worker
to make a few clicks on the tweet to complete
each annotation, meaning that tasks are completed
faster and with less effort, allowing us to obtain
translations at lower cost. On the other hand,
the main drawback of our method is that it can
only obtain parallel data from translations that ex-
ist, which corresponds to the amount of posts that
have been translated and posted. This limits the
potential coverage of our method. Furthermore,
the resulting datasets may not be fully representa-
tive of the Twitter domain, since not all types of
content are translated and follow the same distri-
bution as the data in Twitter.

3 Proposed Crowdsourcing Protocol

As discussed above, automatically extracted par-
allel is often noisy. The sources of error range
from language detection errors, to errors determin-
ing if material is actually translation, and errors in
extracting the appropriate spans of the translated
material. Consider the fragment of the microblog
parallel corpus mined by Ling et al. (2013), which
is shown in Figure 1. In the Korean-English mes-
sage, the system may incorrectly added the un-
translated word Hahah in the English segment,
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and missed the translated word Weather. At a high
level, the task faced by annotators will be to iden-
tify and resolve such errors.

3.1 Overview

We separate the tasks of identifying the parallel
posts, which we shall denote by identification,
and of locating the parallel segments, which we
will call location. The justification for this is that
the majority of the tweets are not parallel, as re-
ported by Ling et al. (2013), and the location of
the parallel data is only applicable if the tweet
actually contains parallel data. This is also de-
sirable because the identification task is simpler
than the location task. Firstly, identifying whether
a tweet contains translations requires much less
proficiency in the respective languages than locat-
ing the parallel segments, since it only requires
the worker to understand parts of the message.
This means we can have more potential workers
capable of performing this task. Secondly, the
first task is a binary decision, and each annota-
tion can be completed with only one action, which
means that the average required time for this task
is much lower than the second task and the pay-
ment required for each hit will naturally be lower
as well. Finally, combining worker results for a
binary decision is simpler than combining transla-
tions, since the space of possible answers is sev-
eral orders of magnitude lower.

As crowdsourcing platform, we use Amazon’s
Mechanical Turk. In this platform, the requesters
can submit tasks, where one can define the num-
ber of workers n that will complete each task and
what is the payment p for each task submission,
henceforth denoted as job. In our work, we had to
consider the following components:

• Interface - To submit a task, an interface
must be provided, which workers will be us-
ing to complete the job.

• Worker Quality Prediction - After submit-
ting a job, the requester can accept and pay
the agreed fee or reject the task. It is cru-
cial to have a method to automatically pre-
dict whether workers have performed the job
properly, and reject them otherwise.

• Result Combination - It is common for mul-
tiple workers to complete the same task with
different results. Thus, a method must be im-

plemented to combine multiple responses for
correctly predicting the desired response.

We structured each of our tasks as a series of q
questions, which include a small number of refer-
ences r, for which we know the answers. Thus,
the amount of answers we obtain for each dollar is
given by q−r

np , where n is the number of workers
per task and p is the payment for each task. In or-
der to maximize this quotient, we can either reduce
the number of reference question r, the number of
workers per task n, or the payment p. However,
reducing r will also limit our capability of esti-
mating the quality of the worker results, since we
will have less data to make such prediction. For
the same reason, reducing n will limit our abil-
ity to combine results properly. As for the pay-
ment p, while there is no direct effect on our task,
it has been noted that workers will perform the
task faster for higher payments (Post et al., 2012).
In our work, we will propose methods to predict
quality and combine results that will minimize the
requirements for n and r, while maximizing the
quality of the final results.

3.2 Parallel Post Identification
In the identification task, for each question, we
will show a post, and solicit the worker to detect if
it contains translations in a given language pair.

Interface The interface for this task is straight-
forward. We present to the worker each tweet in-
dividually, together with a checkbox to be checked
in case the tweet contains parallel data. The navi-
gation between tweets is done by adding next and
previous buttons, allowing the user to go back and
review previous answers. Finally, the worker can
only submit the HIT after traversing all 25 ques-
tions. Unlike the work in crowdsourcing transla-
tion (Zaidan and Callison-Burch, 2011), where au-
tomatic translation systems are discouraged, since
it produces poor output, we allow its usage as long
as this leads to correct annotations. In fact, we add
a button to automatically translate the tweet into
English from the non-English language.

Worker Quality Prediction We accept the job
if it answers enough reference questions correctly.
We consider two different approaches to select ref-
erences. A random sampler that selects tweets
randomly and a balanced sampler that selects
the same number of positive and negative sam-
ples. As notation, we will denote as acceptor
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Figure 1: Parallel microblog posts in 5 language pairs. Shaded backgrounds mark the parallel segments
(annotated manually), non shaded parts do not have translations.

accept(rand, c, r) a setup where the worker’s job
is accepted if c out of r randomly sampled refer-
ences are correctly answered. Likewise, acceptor
accept(bal, c, r) denotes the same setup using bal-
anced reference questions.

Result Combination Given n jobs with answers
for a question that can be either positive or nega-
tive, we calculate the weighted ratio of positive an-
swers, given by

∑
i=1..n δp(i)w(i)∑

i=1..n w(i) , where δp is one if
answer i is positive and 0 otherwise, and w(i) is
the weight of the worker. w(i) is defined as the
ratio of correct answers from job i in the reference
set. If the weighted ratio is higher than 0.5, we la-
bel the tweet as positive and otherwise as negative.

3.3 Parallel Data Location

In the location task, we also present one tweet per
question, where the worker will be asked to iden-
tify the parallel segments. The worker can also
define that there are no translations in the tweet.

Interface The interface for this task presents the
user with one tweet at a time, and allows the user
to break the tweet into segments, by clicking be-
tween characters. Each segment can then be clas-
sified as English, the non-English language (Ex:
Mandarin), or non-parallel, which is the default
option. To understand the concept of non-parallel
segments, notice that when we are locating par-
allel data in tweets, we are essentially breaking
the tweet into the structure “Nleft Pleft Nmiddle

Pright Nright", where Pleft and Pright are the par-
allel segments and Nleft, Nmiddle and Nright are
textual segments that are non-parallel. These may
not exist, for instance, the Arabic tweet in Fig-
ure 1 (line 1) does not contain any non-parallel text
and does not require any non-parallel segments

to delineate the parallel data. The Korean tweet
(line 2), on the other hand, has an Nmiddle corre-
sponding to내가좋아하는파아란하늘ˆˆ* and an
Nright corresponding to Hahah and requires two
non-parallel segments to locate the parallel data.

Thus, if the worker does not commit any errors,
each question can be answered with at most four
clicks, when all five segments exist, and two op-
tion choices for identifying the parallel segments.
In the easiest case, when only the parallel seg-
ments exist, only one click and two option choices
are needed. If there are no translations, the button
no translations can be clicked.

For instance, to annotate the Korean tweet in
Figure 1, the worker must click immediately be-
fore내가, then before Weather and finally before
Hahah. Then on the drop-down box of the first
and and third segments, the worker must choose
Korean and English, respectively. The interface
after these operations is show in Figure 2.

Work Quality Prediction To score the worker’s
jobs, we use the scoring function devised in (Ling
et al., 2013), which measures the word overlap
between the reference parallel segments segments
and the predicted segments. However, setting the
score threshold to accept a job is a challenge, since
scores are bound to change for different language-
pairs and domains. Moreover, some tweets are
harder to annotate than others. Learning this
threshold automatically requires annotated data,
which we do not have for all language pairs and
domains. Thus, we propose a method to generate
thresholds specifically for each sample.

We consider a “smart but lazy" pseudo worker,
who will complete the same jobs automatically
and generate scores that the real worker’s jobs
must beat to be accepted. We say he is “smart",
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Figure 2: Location Interface (After the annotation is performed)

since he knows the reference annotation, and
“lazy" because he will only define a new non-
parallel segment if it is significant, otherwise it
will just be left in the parallel segments. By sig-
nificant, we will define whether it is at least 20%
larger (in number of characters) than the parallel
segments. For instance, in the Korean example in
Figure 1, Hahah would be left in the English par-
allel segment, while 내가좋아하는파아란하
늘 ˆˆ* would not be in the Korean segment. We
will accept a job if the average of the scores in the
reference set is higher or equal than the pseudo
worker’s scores. This acceptor shall be denoted as
accept(lazy, a), where a is the number of refer-
ences used.

Another option is to use the automatic system’s
output as a baseline that workers must improve to
be accepted. We will also test this option and call
this acceptor accept(auto, a).

Result Combination Unlike the identification
task, where the result is binary and combining
multiple decisions is straightforward, the range of
results from this task is larger and combining them
is a challenge. Thus, we score each job based on
the WER on the reference set and use annotations
of the highest scoring job.

4 Experiments

To obtain results on the effectiveness of the meth-
ods described in Section 3, we will first perform
experiments using pre-annotated data. We use the
annotated dataset with tweets in Mandarin-English
from Sina Weibo created in (Ling et al., 2013).
It consists of approximately 4000 tweets crawled
from Sina Weibo that were annotated on whether
they contained parallel data and the location of the
parallel segments. In our experiment, we sample
1000 tweets from this dataset, where 602 tweets
were parallel and 398 were not.1

We will not submit the same tasks using differ-
ent setups, since we would have to pay the cost of
the tasks multiple times. Furthermore, we know
the answers for all the questions in this controlled
experiment, the quality of a job can be evalu-
ated precisely by using all questions as references.
Thus, we will perform the task once, with a larger
number of workers and accepting and rejecting
jobs based on their real quality. Then, we will use
the resulting datasets and simulate the conditions
using different setups.
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Acceptor avg(a) avg(r) d

accept(rand, 2, 2) 0.44 0.00 0.44
accept(rand, 3, 4) 0.44 0.00 0.44
accept(rand, 4, 4) 0.55 0.04 0.51
accept(bal, 2, 2) 0.69 0.09 0.60
accept(bal, 3, 4) 0.64 0.03 0.61
accept(bal, 4, 4) 0.76 0.15 0.61

Table 1: Agreement with the expert annotations
for different acceptors.

4.1 Identification Task

The 1000 tweets were distributed into 40 tasks
with 25 questions each (q = 25). Each task is
to be performed by 5 workers (n = 5) and upon
acceptance, a worker would be rewarded with 6
cents (p = 0.06). As we know the answers for
all the questions in this case, we will calculate the
Cohen’s Kappa between the responses of each job
and the expert annotator, and accept a job if it is
higher than 0.5. We decided to use Cohen’s kappa
to evaluate a job, rather than accuracy, since each
set of 25 questions does not contain the same num-
ber of positive and negative samples. For instance,
in a set of 20 negative samples, a worker would
achieve an accuracy of 80% if he simply answers
negatively to all questions, which is not an ade-
quate assessment of the job’s quality. On the other
hand, the Cohen’s Kappa balances the positive and
negative question in each task by using their prior
probabilities. In total, there were 566 jobs, where
200 where accepted and 366 were rejected.

Next, we pretended that we only have access to
4 references, which will be used for quality es-
timation and simulate the acceptances and rejec-
tions for each strategy. Table 1 shows the aver-
ages of the real Kappa values of accepted (col-
umn avg(a)) and rejected jobs (column avg(r))
using different acceptors. Our goal is to maximize
the number of acceptances with high Kappa val-
ues and minimize those that have low Kappa val-
ues. Thus, we define d as the difference between
avg(a) and avg(r). From the results, we observe
that using a balanced reference yields a much bet-
ter estimation of the jobs quality using our metric
d. Similar conclusions can be reached by compar-
ing accept(rand, 3, 4) with accept(bal, 3, 4) and
accept(rand, 4, 4) with accept(bal, 4, 4). Quality
predictors that use balanced reference sets achieve

1We wished to annotate a sample where the number of
parallel posts is high, so that we would have enough samples
to perform the location task.

Acceptor prec recall F1 acc κ

Automatic 0.87 0.69 0.77 0.75 0.51
All jobs 0.75 0.84 0.8 0.74 0.44

accept(rand, 2, 2) 0.85 0.92 0.88 0.86 0.69
accept(rand, 3, 4) 0.84 0.93 0.88 0.85 0.68
accept(rand, 4, 4) 0.91 0.95 0.93 0.92 0.82
accept(bal, 2, 2) 0.94 0.94 0.94 0.92 0.84
accept(bal, 3, 4) 0.93 0.95 0.94 0.93 0.85
accept(bal, 4, 4) 0.94 0.93 0.93 0.92 0.84

Table 2: Parallel post prediction scores using dif-
ferent acceptors.

approximately the same results for d. However,
the setup accept(bal, 3, 4) has a lower Kappas for
both avg(a) and avg(r), which means that it is
less likely to reject good jobs at the cost of accept-
ing more bad jobs. This is desirable from an ethi-
cal perspective, since workers are not responsible
for errors in our quality prediction. Furthermore,
rejecting good jobs has a negative impact on the
progress of the task, since good workers may be
discouraged to perform more tasks.

Results on the identification task, obtained for
n = 3, are shown in Table 2. Naturally, us-
ing a balanced reference set yields better results,
since these have a higher d value. We can also
see the importance of quality prediction, since not
performing quality estimation (row All jobs) will
yield worse results than the automatic system.

Next, we will compare results using different
numbers of workers. We fix the quality predic-
tion methodology to accept(bal, 3, 4) and results
are shown in Table 3. We observe that in gen-
eral, using more workers will generate better re-
sults, but score gains from adding another worker
becomes lower as n increases. One problem for
n = 2 is the fact that there are many cases where
two workers with the same weight chose a posi-
tive and a negative answer, in which case, no de-
cision can be made, and we simply choose false
by default. This explains the high recall and low
precision values. However, this problem seems to
occur much less with higher values of n.

4.2 Location Task

For the location task, we used the predicted par-
allel posts the identification task with the setup
accept(bal, 3, 4) and n = 5. We preferred to use
this rather than using the expert annotations, since
it would not contain false positives, which does not
simulate a real situation. Then, we used 500 out of
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# workers prec recall F1 acc κ

Automatic 0.87 0.69 0.77 0.75 0.51
1 0.86 0.85 0.85 0.82 0.64
2 0.85 0.95 0.90 0.87 0.72
3 0.93 0.95 0.94 0.93 0.85
4 0.94 0.96 0.95 0.94 0.87
5 0.96 0.96 0.96 0.95 0.90

Table 3: Identification scores for different n.

the 607 identified positive samples. This makes
20 tasks in total, with 25 questions (q = 25), and
each task would be run until 5 jobs are accepted
(n = 5). For this task, we set a payment of 30
cents (p = 0.3), since it is a more complex task.
Again, since we have the expert annotations for all
questions, we calculated the average WER on all
answers and rejected jobs scoring less than 0.62.

This task is mainly focused on the quality pre-
diction of the workers, as the result combination
is done by finding the job with the highest score
in the reference set. This means, for an arbitrary
large n, all quality estimation methods will pro-
duce the same result, since we will find the best
job on the references eventually. However, bet-
ter quality estimation will allow us to find the best
jobs with lower n, which makes the task less ex-
pensive. Table 4 shows results using different se-
tups. In these results, we set aside 4 questions to
be used as references. We can see that for low n
(1 or 2), if we simply accept all jobs, the quality
of the results will be lower than the automatic sys-
tem. For n = 4, this approach can achieve a WER
score of 0.06. However, if we use the automatic
system as a baseline that jobs must surpass, we can
achieve this WER score with only two jobs, which
reduces the cost of this task by half. Yet, this is
strongly dependent on the automatic system, as a
worse system will be easier to match for the work-
ers. On the other hand, using the smart but lazy
pseudo worker, where we degrade the reference
annotations slightly, we can see that we can obtain
the 0.06 WER score using only the first worker. At
n = 2, we can see that the WER improves to 0.05,
which is lost for n = 3. This is because the pre-
diction of the quality of the job using the workers
is not always precise.

4.3 Machine Translation Results

Finally, we will perform an extrinsic test to see
how the improvements obtained by using crowd-

2Determined empirically

Number of jobs 1 2 3 4 5
Automatic 0.16 0.16 0.16 0.16 0.16
All Jobs 0.23 0.21 0.07 0.06 0.06

accept(auto, 4) 0.09 0.06 0.06 0.06 0.06
accept(lazy, 4) 0.06 0.05 0.06 0.06 0.06

Table 4: Parallel data location scores for different
acceptors (rows) and different numbers of work-
ers. Each cell denotes the WER for that setup.

Auto (Pos) Crowd Expert Auto (All)
Size 483 479 483 908

EN-ZH 10.21 10.49 10.51 10.71
ZH-EN 7.59 7.87 7.82 8.02

Table 5: BLEU score comparison using different
corpora for MERT tuning. The Size row denotes
the number of sentences of each corpus, and the
EN-ZH and ZH-EN rows denote the BLEU scores
of the respective language pair and tuning dataset.

sourcing map to Machine Translations. We will
build an out of domain MT system using the FBIS
dataset (LDC2003E14), a corpus of 300K sen-
tence pairs from the news domain in the Chinese-
English pair using the Moses (Koehn et al., 2007)
pipeline. Due to the small size of our crowd-
sourced corpus, we will use it in the MERT tun-
ing (Och, 2003), and test its effects compared to
automatically extracted parallel data and the ex-
perts judgements. As the test set, we will use
1,500 sentence pairs from the Weibo gold standard
from Ling et al. (2013), that were not used in our
crowdsourcing experiment to prevent data over-
lap. For reordering, we use the MSD reordering
model (Axelrod et al., 2005) and as the language
model, we use a 5-gram model with Kneser-Ney
smoothing (Heafield, 2011). Finally, results are
presented with BLEU-4 (Papineni et al., 2002).

We build 3 tuning corpora, the automatically ex-
tracted corpus (denoted Auto), the crowdsourced
corpus (denoted Crowd) and the corpus annotated
by the expert (denoted Expert). This is done by
taking the 1000 tweets used in this experiment, se-
lect those that were identified as parallel accord-
ing to each criteria. For the automatic extraction,
the authors in (Ling et al., 2013) simply use all
tweets as parallel, which may influence the tun-
ing results. Thus, we test two versions of this cor-
pus, one where we take all samples as parallel (de-
noted Auto (All)), and one where we use the ex-
pert’s decision for the identification task only (de-
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Pair Parallel Avg(en) cost(I) cost(L) total
en-ar 1512 8.3 $35.7 $43.2 $76.2
en-zh 1302 8.7 $35.7 $37.2 $70.2
en-ja 1155 7.9 $35.7 $33.0 $68.7
en-ko 1008 7.1 $35.7 $28.8 $64.5
en-ru 798 6.3 $35.7 $22.8 $58.5

all 5775 – $178.5 $165.0 $343.5

Table 7: AMT costs for crowdsourced corpora
from Twitter.

noted Auto (Pos)). In the crowdsourcing case, we
use the accept(bal, 3, 4) setup, with n = 5, for the
identification task and the accept(lazy, 4) setup,
with n = 2, for the location task. From the re-
sulting parallel tweets, we also remove all tweets
that were used as reference in the accept(lazy, 4)
quality estimator, as this would give an unfair ad-
vantage to the crowdsourced corpora.

Results are shown in Table 5, where each cell
contains the average BLEU score in 5 MERT runs,
using a different tuning dataset. Surprisingly, us-
ing the whole set of automatically extracted cor-
pora actually achieves better results than using
carefully selected data that are parallel. We be-
lieve that is because many non-parallel segments
actually contain comparable information that can
be used to improve the weights during MERT tun-
ing. However, this does not mean that the qual-
ity of the automatically crawled corpus is better
than the crowdsourced and expert annotated cor-
pus. When using a similar number of parallel sen-
tences, we observe that using the crowdsourced
corpus yields better scores than the automatically
extracted corpora, comparable to experts annota-
tions. While results are not significantly better
than automatically extracted corpora, this suggests
that the crowdsourced corpora has a better overall
quality than automatically extracted corpora.

5 Five Language Twitter Parallel Corpus

Now that we have established the effectiveness of
our technique for extracting high-quality parallel
data in a scenario where we have gold standard
annotations, we apply it to creating parallel cor-
pora in five languages on Twitter, for which we
have no gold-standard parallel data: Arabic, Man-
darin, Japanese, Korean and Russian. Once again,
we use the extracted automatically Twitter cor-
pus from Ling et al. (2013) and deploy the task
in Mechanical Turk. We use the setup that ob-
tained the best results in Section 4. For the identi-

fication task, we used the accept(bal, 3, 4) setup,
with n = 5. The payment for each task was
0.06 dollars. Thus, for this task, each dollar spent
yields 70 annotated tweets. For the location task,
we used the accept(lazy, 4) setup, with n = 2
and each task was rewarded with 0.3 dollars. To
obtain the tweet sample, we filtered the corpora
in Ling et al. (2013) for tweets with alignment
scores higher than 0.1. Then, we uniformly ex-
tracted 2500 tweets for each language. To gener-
ate gold standard references, the authors manually
annotated 40 samples for each pair.

Table 7 contains information about the result-
ing corpora. The number of parallel sentences ex-
tracted from the 2500 tweets in each language pair
is shown in column Parallel and we can see that
this differs given the language pair. We can also
see in column Avg(en) that the average number of
English words is much smaller than what is seen
in more formal domains. Finally, Arabic parallel
data seems more predominant from our samples
followed by Mandarin, while Russian parallel data
seem scarcer.

6 Discriminative Parallel Data Detection

While the work in (Ling et al., 2013) used a linear
combination of three models, the alignment, lan-
guage and segment features, these weights were
determined manually. However, using the crowd-
sourced corpus (in Section 5), we will apply previ-
ously proposed methods that learn a classifier with
machine learning techniques as in related work
on finding parallel data (Resnik and Smith, 2003;
Munteanu and Marcu, 2005). In our work, we use
a max entropy classifier model, similar to that pre-
sented by Munteanu and Marcu (2005) to detect
parallel data in tweets. Our features are:

• Alignment feature - The baseline feature is
the alignment score from the work in (Ling et
al., 2013), and measures how well the paral-
lel segments align, which is derived from the
content-based matching methods for detect-
ing parallel data (Resnik and Smith, 2003).

• User features - An observation in (Ling et
al., 2013) is that a user that frequently posts
in parallel is likely to post more parallel mes-
sages. Based on this, we added the aver-
age alignment score from all messages of the
same user and the ratio of messages that are
predicted to be parallel as features.
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Weibo (en-zh) Twitter (en-zh) Twitter (en-ar) Twitter (en-ru) Twitter (en-ko) Twitter (en-ja)
Alignment 0.781 0.599 0.721 0.692 0.635 0.570
+User 0.814 0.598 0.721 0.705 0.650 0.566
+Length 0.839 0.603 0.725 0.706 0.650 0.569
+Repetition 0.849 0.652 0.763 0.729 0.655 0.579
+Language 0.849 0.668 0.782 0.737 0.747 0.584

Table 6: Classification Results using a 10-fold cross validation over different datasets. Each cell contains
the F-measure using a given dataset and an incremental set of features.

• Repetition features - There are many words
that are not translated, such as hashtags, at
mentions, numbers and named entities. So, if
we see these repeated twice in the same post,
it can be used as a strong cue that this was
the result of a translation. Hence, we define
features for each of these cases, that trigger if
either of these occur in multiples of two times
in the same post. Named Entities were iden-
tified using a naive approach by considering
words with capital letters.

• Length feature - It is known that the length
differences between parallel sentences can
be modelled by a normal distribution (Gale
and Church, 1991). Hence, we used parallel
data in the respective language to determine
(µ̃, σ̃2), which lets us calculate the likelihood
of two hypothesized segments being parallel.
Since we did not have annotated parallel data
for this domain, we used the top 2000 scoring
parallel sentences from the respective Twitter
dataset in (Ling et al., 2013).

• Language feature - It is common for non-
English words to be found in English seg-
ments, such as names of foreign celebri-
ties, numbers and hashtags. However, when
this happens to the majority of the words in
a segment that is supposed to be English,
it may indicated that there was an error in
the language detection. The same happens
with non-English segments. We used the
same naive approach to detect languages as
in (Ling et al., 2013), where we calculate the
ratio of number of words in the English seg-
ment and the total number of words from the
segment detected as English and the ratio of
the number of Foreign words and the total
number of words in the Foreign segment ,de-
tected by their unicode ranges. This was also
included in the work in (Ling et al., 2013).

Results using a 10 fold cross-validation are
shown in Table 6. In general, we can see that the
classifier performs worse in Twitter datasets com-
pared to the Weibo dataset. We believe that this is
because parallel sentences extracted from Twitter
are smaller, due to the 140 character limit, which
does not hold in Sina Weibo. Each parallel En-
glish segment from the Sina Weibo parallel data
contains 15.4 words on average. On other hand,
we see in Table 7 that this number is smaller in
the parallel data from Twitter. This means that the
aligner will have a much smaller range of words to
align when detecting parallel data, which makes it
more difficult to find parallel segments.

As for the features, we observe that by defin-
ing these simple features, we can get a signifi-
cant improvement over previous baselines. For
the User feature, we see that the improvements
in the Weibo dataset are much larger than in
the Twitter datasets. This is because the Twitter
dataset was crawled uniformly, whereas the Weibo
dataset was focused on users that post parallel
data frequently. Thus, in the Weibo dataset there
more posts that were posted by the same user,
which does not happen as frequently in the Twitter
dataset. As for the Length feature, we can see that
it yields a small but consistent improvement over
all datasets. Repetition based features also lead to
improvements across all datasets, and produces a
5% improvement in the English-Mandarin Twitter
dataset. Finally, language based features also add
another improvement over previous results.

7 Conclusions

We presented a crowdsourcing approach to extract
parallel data from tweets. As opposed to meth-
ods to crowdsource translations, our tasks do not
require workers to translate sentences, but to find
them in tweets. Our method is divided into two
tasks. First, we identify which tweets contain
translations, and we show that multiple worker’s
jobs can be combined to obtain results compara-

434



ble to those of expert annotators. Secondly, tweets
that are found to contain translations are given
to other workers to locate the parallel segments,
where we can also obtain high quality results.
Then, we use our method to extract high quality
parallel data from Twitter in 5 language pairs. Fi-
nally, we improve the automatic identification of
tweets with translations by using a max entropy
classifier trained on the crowdsourced data.

We are currently extracting more data and the
crowdsourced parallel data from Twitter will made
be available to the public.
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