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Abstract

We use referential translation machines
(RTM) for quality estimation of translation
outputs. RTMs are a computational model
for identifying the translation acts between
any two data sets with respect to interpre-
tants selected in the same domain, which
are effective when making monolingual
and bilingual similarity judgments. RTMs
achieve top performance in automatic, ac-
curate, and language independent predic-
tion of sentence-level and word-level sta-
tistical machine translation (SMT) qual-
ity. RTMs remove the need to access any
SMT system specific information or prior
knowledge of the training data or models
used when generating the translations and
achieve the top performance in WMT13
quality estimation task (QET13). We im-
prove our RTM models with the Parallel
FDAYS instance selection model, with ad-
ditional features for predicting the trans-
lation performance, and with improved
learning models. We develop RTM mod-
els for each WMT14 QET (QET14) sub-
task, obtain improvements over QET13 re-
sults, and rank 1st in all of the tasks and
subtasks of QET14.

1 Introduction

We use referential translation machines (RTM) for
quality estimation of translation outputs, which is
a computational model for identifying the acts of
translation for translating between any given two
data sets with respect to a reference corpus se-
lected in the same domain. RTMs reduce our de-
pendence on any task dependent resource. Predic-
tion of translation quality is important because the
expected translation performance can help in esti-
mating the effort required for correcting the trans-
lations during post-editing by human translators.
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Bicici et al. (2013) develop the Machine Trans-
lation Performance Predictor (MTPP), a state-of-
the-art, language independent, and SMT system
extrinsic machine translation performance predic-
tor, which can predict translation quality by look-
ing at the test source sentences and becomes the
2nd overall after also looking at the translation
outputs as well in QET12 (Callison-Burch et al.,
2012). RTMs achieve the top performance in
QET13 (Bojar et al., 2013), ranking 1st or 2nd in
all of the subtasks. RTMs rank 1st in all of the
tasks and subtasks of QET14 (Bojar et al., 2014).

Referential translation models (Section 2)
present an accurate and language independent so-
lution for predicting the performance of natural
language tasks such as the quality estimation of
translation. We improve our RTM models (Bigici,
2013) by:

e using a parameterized, fast implementation
of FDA, FDAS, and our Parallel FDAS in-
stance selection model (Bigici et al., 2014),

e better modeling of the language in which
similarity judgments are made with improved
optimization and selection of the LM data,

e increased feature set for also modeling the
structural properties of sentences,

e extended learning models.

2 Referential Translation Machine
(RTM)

Referential translation machines provide a compu-
tational model for quality and semantic similarity
judgments in monolingual and bilingual settings
using retrieval of relevant training data (Bigici,
2011; Bigici and Yuret, 2014) as interpretants for
reaching shared semantics (Bigici, 2008). RTMs
achieve top performance when predicting the qual-
ity of translations in QET14 and QET13 (Bigici,
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2013), top performance when predicting mono-
lingual cross-level semantic similarity (Jurgens
et al., 2014), good performance when evaluat-
ing the semantic relatedness of sentences and
their entailment (Marelli et al., 2014), and a
language independent solution and good perfor-
mance when judging the semantic similarity of
sentences (Agirre et al., 2014; Bicici and Way,
2014).

RTM is a computational model for identifying
the acts of translation for translating between any
given two data sets with respect to a reference
corpus selected in the same domain. An RTM
model is based on the selection of interpretants,
data close to both the training set and the test set,
which allow shared semantics by providing con-
text for similarity judgments. In semiotics, an in-
terpretant [ interprets the signs used to refer to the
real objects (Bicici, 2008). Each RTM model is
a data translation model between the instances in
the training set and the test set. We use the Parallel
FDAS (Feature Decay Algorithms) instance selec-
tion model for selecting the interpretants (Bigici
et al.,, 2014; Bicici and Yuret, 2014) this year,
which allows efficient parameterization, optimiza-
tion, and implementation of FDA, and build an
MTPP model (Section 2.1). We view that acts of
translation are ubiquitously used during commu-
nication:

Every act of communication is an act of
translation (Bliss, 2012).

Given a training set train, a test set test, and
some corpus C, preferably in the same domain as
the training and test sets, the RTM steps are:

FDA5(train,test,C) =7
MTPP(Z,train) — Firain
MTPP(Z,test) — Frest
learn(M, Firain) — M
predict(M, Frest) — ¢

M N

Step 1 selects the interpretants, Z, relevant to both
the training and test data. Steps 2 and 3 use Z
to map train and test to a new space where
similarities between translation acts can be derived
more easily. Step 4 trains a learning model M over
the training features, Fi .15, and Step 5 obtains
the predictions. RTM relies on the representative-
ness of Z as a medium for building data translation
models between train and test.

Our encouraging results in QET provides a
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greater understanding of the acts of translation we
ubiquitously use and how they can be used to pre-
dict the performance of translation and judging the
semantic similarity between text. RTM and MTPP
models are not data or language specific and their
modeling power and good performance are appli-
cable in different domains and tasks.

2.1 The Machine Translation Performance
Predictor (MTPP)

MTPP (Bigici et al., 2013) is a state-of-the-art and
top performing machine translation performance
predictor, which uses machine learning models
over features measuring how well the test set
matches the training set to predict the quality of
a translation without using a reference translation.

2.2 MTPP Features for Translation Acts

MTPP measures the coverage of individual test
sentence features found in the training set and
derives indicators of the closeness of test sen-
tences to the available training data, the difficulty
of translating the sentence, and the presence of
acts of translation for data transformation. Fea-
ture functions use statistics involving the training
set and the test sentences to determine their close-
ness. Since they are language independent, MTPP
allows quality estimation to be performed extrin-
sically. MTPP uses n-gram features defined over
text or common cover link (CCL) (Seginer, 2007)
structures as the basic units of information over
which similarity calculations are made. Unsuper-
vised parsing with CCL extracts links from base
words to head words, representing the grammati-
cal information instantiated in the training and test
data.

We extend the MTPP model we used last
year (Bicici, 2013) in its learning module and the
features included. Categories for the features (S
for source, T for target) used are listed below
where the number of features are given in brackets
for S and T, {#S, #T}, and the detailed descriptions
for some of the features are presented in (Bigici et
al., 2013). The number of features for each task
differs since we perform an initial feature selection
step on the tree structural features (Section 2.3).
The number of features are in the range 337 —437.

e Coverage {56, 54}: Measures the degree to
which the test features are found in the train-

ing set for both S ({56}) and T ({54}).
o Perplexity {45, 45}: Measures the fluency of

the sentences according to language models



(LM). We use both forward ({30}) and back-

ward ({15}) LM features for S and T.
TreeF {0, 10-110}: 10 base features and up

to 100 selected features of T among parse tree

structures (Section 2.3).
Retrieval Closeness {16, 12}: Measures the

degree to which sentences close to the test set
are found in the selected training set, Z, using
FDA (Bigici and Yuret, 2011a) and BLEU,
F1 (Bigici, 2011), dice, and tf-idf cosine sim-
ilarity metrics.

IBM?2 Alignment Features {0, 22}: Calcu-
lates the sum of the entropy of the dis-
tribution of alignment probabilities for S
(> _seg —plogp for p = p(t|s) where s and
t are tokens) and T, their average for S and
T, the number of entries with p > 0.2 and
p > 0.01, the entropy of the word align-
ment between S and T and its average, and
word alignment log probability and its value
in terms of bits per word. We also com-
pute word alignment percentage as in (Ca-
margo de Souza et al., 2013) and potential
BLEU, F;, WER, PER scores for S and T.
IBM1 Translation Probability {4, 12}: Cal-
culates the translation probability of test
sentences using the selected training set,

7 (Brown et al., 1993).
Feature Vector Similarity {8, 8}: Calculates

similarities between vector representations.
Entropy {2, 8}: Calculates the distributional

similarity of test sentences to the training set
over top N retrieved sentences (Bigici et al.,

2013).
Length {6, 3}: Calculates the number of

words and characters for S and T and their

average token lengths and their ratios.
Diversity {3, 3}: Measures the diversity of

co-occurring features in the training set.
Synthetic Translation Performance {3, 3}:

Calculates translation scores achievable ac-

cording to the n-gram coverage.
Character n-grams {5}: Calculates cosine

between character n-grams (for n=2,3,4,5,6)

obtained for S and T (Bir et al., 2012).
Minimum Bayes Retrieval Risk {0, 4}: Cal-

culates the translation probability for the
translation having the minimum Bayes risk

among the retrieved training instances.
Sentence Translation Performance {0, 3}:

Calculates translation scores obtained ac-
cording to (7', R) using BLEU (Papineni
et al., 2002), NIST (Doddington, 2002), or
I (Bigici and Yuret, 2011b) for q.
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e LIX {1, 1}: Calculates the LIX readability
score (Wikipedia, 2013; Bjornsson, 1968) for
SandT. !

For Task 1.1, we have additionally used com-
parative BLEU, NIST, and F} scores as additional
features, which are obtained by comparing the
translations with each other and averaging the re-
sult (Bicici, 2011).

2.3 Bracketing Tree Structural Features

We use the parse tree outputs obtained by CCL
to derive features based on the bracketing struc-
ture. We derive 5 statistics based on the geometric
properties of the parse trees: number of brackets
used (numB), depth (depthB), average depth (avg
depthB), number of brackets on the right branches
over the number of brackets on the left (R/L) 2, av-
erage right to left branching over all internal tree
nodes (avg R/L). The ratio of the number of right
to left branches shows the degree to which the sen-
tence is right branching or not. Additionally, we
capture the different types of branching present
in a given parse tree identified by the number of
nodes in each of its children.

Table 1 depicts the parsing output obtained by
CCL for the following sentence from WSJ23 3:

Many fund managers argue that now ’s the time
to buy .

We use Tregex (Levy and Andrew, 2006) for vi-
sualizing the output parse trees presented on the
left. The bracketing structure statistics and fea-
tures are given on the right hand side. The root
node of each tree structural feature represents the
number of times that feature is present in the pars-
ing output of a document.

3 RTM in the Quality Estimation Task

We participate in all of the four challenges of the
quality estimation task (QET) (Bojar et al., 2014),
which include English to Spanish (en-es), Span-
ish to English (es-en), English to German (en-
de), and German to English (de-en) translation di-
rections. There are two main categories of chal-
lenges: sentence-level prediction (Task 1.*) and

'LIX=4 + C1%°, where A is the number of words, C is
words longer than 6 characters, B is words that start or end
with any of “., “:”, “1”,“?” similar to (Hagstrom, 2012).

For nodes with uneven number of children, the nodes in
the odd child contribute to the right branches.

3Wall Street Journal (WSJ) corpus section 23, distributed
with Penn Treebank version 3 (Marcus et al., 1993).
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numB depthB avg depthB R/L avg R/L
24.0 9.0 0.375 2.1429 3.401

2 1 1 1 1

N I N N I\

1 1 1 13 1 2 1 8 2 10

1 1 1 1

N N N I\

3 1 3 4 5 1 7 15

Table 1: Tree features for a parsing output by CCL (immediate non-terminals replaced with NP).

word-level prediction (Task 2). Task 1.1 is about
predicting post-editing effort (PEE), Task 1.2 is
about predicting HTER (human-targeted transla-
tion edit rate) (Snover et al., 2006) scores of trans-
lations, Task 1.3 is about predicting post-editing
time (PET), and Task 2 is about binary, ternary, or
multi-class classification of word-level quality.

For each task, we develop individual RTM mod-
els using the parallel corpora and the LM corpora
distributed by the translation task (WMT14) (Bo-
jar et al., 2014) and the LM corpora provided by
LDC for English (Parker et al., 2011) and Span-
ish (Angelo Mendonga, 2011) #. The parallel cor-
pora contain 4.5M sentences for de-en with 110M
words for de and 116M words for en and 15.1M
sentences for en-es with 412M words for en and
462M words for es. We do not use any resources
provided by QET including data, software, or
baseline features. Instance selection for the train-
ing set and the language model (LM) corpus is
handled by parallel FDA5 (Bigici et al., 2014),
whose parameters are optimized for each transla-
tion task. LM are trained using SRILM (Stolcke,
2002). We tokenize and true-case all of the cor-
pora. The true-caser is trained on all of the avail-
able training corpus using Moses (Koehn et al.,
2007). Table 2 lists the number of sentences in
the training and test sets for each task.

For each task or subtask, we select 375 thousand
(K) training instances from the available parallel
training corpora as interpretants for the individual
RTM models using parallel FDAS. We add the
selected training set to the 3 million (M) sentences
selected from the available monolingual corpora
for each LM corpus. The statistics of the training
data selected by and used as interpretants in the

*English Gigaword 5th, Spanish Gigaword 3rd edition.
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Task Train Test
Task 1.1 (en-es) | 3816 600
Task 1.1 (es-en) | 1050 450
Task 1.1 (en-de) | 1400 600
Task 1.1 (de-en) | 1050 450
Task 1.2 (en-es) | 896 208
Task 1.3 (en-es) | 650 208
Task 2 (en-es) 1957 382
Task 2 (es-en) 900 150
Task 2 (en-de) 715 150
Task 2 (de-en) 350 100

Table 2: Number of sentences in different tasks.

RTM models is given in Table 3. The details of
instance selection with parallel FDAS are provided
in (Bicici et al., 2014).

Task S T

Task 1.1 (en-es) | 6.2 6.9
Task 1.1 (es-en) | 7.9 7.4
Task 1.1 (en-de) | 6.1 6

Task 1.1 (de-en) | 6.9 6.4
Task 1.2 (en-es) | 6.1 6.7
Task 1.3 (en-es) | 6.2 6.8
Task 2 (en-es) 6.2 6.8
Task 2 (es-en) 75 7

Task 2 (en-de) 59 59
Task 2 (de-en) 6.3 6.8

Table 3: Number of words in Z (in millions) se-
lected for each task (S for source, T for target).

3.1 Learning Models and Optimization:

We use ridge regression (RR), support vector re-
gression (SVR) with RBF (radial basis functions)
kernel (Smola and Scholkopf, 2004), and ex-



Task Translation Model T RMSE MAE RAE
es-en FS-RR 0.3512 0.6394 0.5319 009114
es-en PLS-RR | 0.3579 0.6746 0.5488 0.9405
en-de PLS-TREE | 0.2922 0.7496 0.6223 0.9404
Taskl.1 en-de TREE 0.2845 0.7485 0.6241 0.9431
en-es TREE 0.4485 0.619 045 0.9271

en-es PLS-TREE | 0.4354 0.6213 0.4723 0.973
de-en RR 0.3415 0.7475 0.6245 0.9653
de-en PLS-RR | 0.3561 0.7711 0.6236 0.9639
Task1.2 en-es SVR 04769 0.203 0.1378 0.8443
en-es TREE 0.4708 0.2031 0.1372 0.8407
Task1 3 en-es SVR 0.6974 21543 14866 0.6613
en-es RR 0.6991 21226 15325 0.6817

Table 4: Training performance of the top 2 individual RTM models prepared for different tasks.

tremely randomized trees (TREE) (Geurts et al.,
2006) as the learning models. TREE is an en-
semble learning method over randomized decision
trees. These models learn a regression function
using the features to estimate a numerical target
value. We also use these learning models after
a feature subset selection with recursive feature
elimination (RFE) (Guyon et al., 2002) or a di-
mensionality reduction and mapping step using
partial least squares (PLS) (Specia et al., 2009),
both of which are described in (Bicici et al., 2013).
We optimize the learning parameters, the num-
ber of features to select, the number of dimen-
sions used for PLS, and the parameters for paral-
lel FDAS. More detailed descriptions of the opti-
mization processes are given in (Bigici et al., 2013;
Bicici et al., 2014). We optimize the learning pa-
rameters by selecting ¢ close to the standard de-
viation of the noise in the training set (Bigici,
2013) since the optimal value for € is shown to
have linear dependence to the noise level for dif-
ferent noise models (Smola et al., 1998). We select
the top 2 systems according to their performance
on the training set. For Task 2, we use both Global
Linear Models (GLM) (Collins, 2002) and GLM
with dynamic learning (GLMd) we developed last
year (Bigici, 2013). GLM relies on Viterbi de-
coding, perceptron learning, and flexible feature
definitions. GLMd extends the GLM framework
by parallel perceptron training (McDonald et al.,
2010) and dynamic learning with adaptive weight
updates in the perceptron learning algorithm:

where ® returns a global representation for in-
stance ¢ and the weights are updated by «, which

dynamically decays the amount of the change dur-
ing weight updates at later stages and prevents
large fluctuations with updates.

3.2 Training Results

We use mean absolute error (MAE), relative
absolute error (RAE), root mean squared error
(RMSE), and correlation (r) to evaluate (Bicici,
2013). DeltaAvg (Callison-Burch et al., 2012) cal-
culates the average quality difference between the
top n — 1 quartiles and the overall quality for the
test set. Table 4 provides the training results.

3.3 Test Results

Task 1.1: Predicting the Post-Editing Effort for
Sentence Translations: Task 1.1 is about pre-
dicting post-editing effort (PEE) and their rank-
ing. The results on the test set are given in Ta-
ble 5 where QuEst (Shah et al., 2013) SVR lists
the baseline system results. Rank lists the overall
ranking in the task out of about 10 submissions.
We obtain the rankings by sorting according to the
predicted scores and randomly assigning ranks in
case of ties. RTMs with SVR PLS learning is able
to achieve the top rank in this task.

Task 1.2: Predicting HTER of Sentence Trans-
lations Task 1.2 is about predicting HTER
(human-targeted translation edit rate) (Snover et
al., 2006), where case insensitive translation edit
rate (TER) scores obtained by TERp (Snover et
al., 2009) and their ranking. We derive features
over sentences that are true-cased. The results on
the test set are given in Table 6 where the ranks are
out of about 11 submissions. We are also able to
achieve the top ranking in this task.
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Ranking Translations | DeltaAvg r Rank

en-es TREE 0.26 -0.41 1
PLS-TREE 0.26 -0.38 2
QuEst SVR 0.14 -0.22

es-en PLS-RR 0.20 -0.35 2
FS-RR 0.19 -0.36 3
QuEst SVR 0.12 -0.21

en-de TREE 0.39 -0.54 1
PLS-TREE 0.33 -0.42 2
QuEst SVR 0.23 -0.34

de-en RR 0.38 -0.51 1
PLS-RR 0.35 -0.45 2
QuEst SVR 0.21 -0.25

Scoring Translations MAE RMSE Rank

en-es TREE 0.49 0.61 1
PLS-TREE 0.49 0.61 2
QuEst SVR 0.52 0.66

es-en FS-RR 0.53 0.64 1
PLS-RR 0.55 0.71
QuEst SVR 0.57 0.68

en-de TREE 0.58 0.68 1
PLS-TREE 0.60 0.71 2
QuEst SVR 0.64 0.76

de-en RR 0.55 0.67 1
PLS-RR 0.57 0.74 2
QuEst SVR 0.65 0.78

Table 5: RTM-DCU Task1.1 results on the test set
and baseline results.

Ranking Translations | DeltaAvg r Rank

en-es SVR 9.31 0.53 1
TREE 8.57 0.48 2
QuEst SVR 5.08 0.31

Scoring Translations MAE RMSE Rank

en-es SVR 13.40 16.69 2
TREE 14.03 17.48 4
QuEst SVR 15.23 19.48

Table 6: RTM-DCU Task1.2 results on the test set
and baseline results.

Task 1.3: Predicting Post-Editing Time for Sen-
tence Translations Task 1.3 involves the predic-
tion of the post-editing time (PET) for a translator
to post-edit the MT output. The results on the test
set are given in Table 7 where the ranks are out of
about 10 submissions. RTMs become the top in all
metrics with RR and SVR learning models.

Task 2: Prediction of Word-level Translation
Quality Task 2 is about binary, ternary, or multi-
class classification of word-level quality. We de-
velop individual RTM models for each subtask and
use the GLM and GLMd learning models (Bigici,
2013), for predicting the quality at the word-level.
The features used are similar to last year’s (Bigici,
2013) and broadly categorized as CCL links, word
context based on surrounding words, word align-
ments, word lengths, word locations, word pre-
fixes and suffixes, and word forms (i.e. capital,
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Ranking Translations | DeltaAvg r Rank
en-es RR 17.02 0.68 1
SVR 16.60 0.67 2
QuEst SVR 14.71 0.57
Scoring Translations MAE RMSE Rank
en-es SVR 16.77 26.17 1
" RR 17.50 2597 7
QuEst SVR 21.49 34.28

Table 7: RTM-DCU Task1.3 results on the test set
and baseline results.

contains digit or punctuation).

The results on the test set are given in Table 8
where the ranks are out of about 8 submissions.
RTMs with GLM or GLMd learning becomes the
top this task as well.

Binar Ternar Multi-class

Model wFy Ran wik Razk wrl1 Rank
en-es GLM 0351 6 0299 5 0268 1
GLMd | 0329 7 0266 6 0.032 7
es-en GLM 0269 2 0220 2 0.087 1
GLMd | 0291 1 0239 1 0.082 2
en-de GLM 0453 1 0211 2 0150 1
GLMd | 0369 2 0219 1 0.125 2
en-es GLM 0261 1 0.083 2 0024 2
GLMd | 0230 2 008 1 0.031 1

Table 8: RTM-DCU Task 2 results on the test set.
wF] is the average weighted F} score.

3.4 RTMs Across Tasks and Years

We compare the difficulty of tasks according to the
RAE levels achieved. RAE measures the error rel-
ative to the error when predicting the actual mean.
A high RAE is an indicator that the task is hard. In
Table 9, we list the test results including the RAE
obtained for different tasks and subtasks including
RTM results at QET13 (Bicici, 2013). The best
results are obtained for Task 1.3, which shows that
we can only reduce the error with respect to know-
ing and predicting the mean by about 28%.

4 Conclusion

Referential translation machines achieve top per-
formance in automatic, accurate, and language in-
dependent prediction of sentence-level and word-
level statistical machine translation (SMT) qual-
ity. RTMs remove the need to access any SMT
system specific information or prior knowledge of
the training data or models used when generating
the translations.



Task Translation Model T RMSE MAE RAE
es-en FS-RR | 0.3285 0.6373 0.5308 0.9

es-en PLS-RR | 0.3105 0.7124 0.5549 0.9409

en-de  PLS-TREE | 0.4427 0.7091 0.6028 0.8883

Tkl en-de TREE | 0.5256 0.6788 0.5838 0.8602

en-es TREE | 0.4087 0.6114 04938 1.0983

en-es  PLS-TREE | 0.4163 0.6084 0.4852 1.0794

de-en RR 0.5399 0.6735 0.5513 0.8204

de-en PLS-RR | 0.4878 0.737 0567  0.8437

Tkl 2 en-es SVR | 0.5499 0.1669 0.134  0.8532

en-es TREE | 05175 0.1748 0.1403 0.8931

Tkl 3 en-es SVR | 0.6336 26174 16770 0.7223

en-es RR 0.6359 25966 17496  0.7536

PLS-SVR | 0.5596 0.1683 0.1326 0.8849

QETI3 Taskl.1 — en-es SVR | 05082 0.1728 0.1385 0.924

PLS-SVR | 0.6752 86.62 4962 0.6919

QETI3 Task1.3 — en-es SVR | 0.6682 9036 4921  0.6862

Table 9: Test performance of the top 2 individual RTM models prepared for different tasks and RTM
results from QET13 on similar tasks (Bicici, 2013).
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