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Abstract

We present an interactive text to 3D scene
generation system that learns the expected
spatial layout of objects from data. A user
provides input natural language text from
which we extract explicit constraints on
the objects that should appear in the scene.
Given these explicit constraints, the sys-
tem then uses prior observations of spa-
tial arrangements in a database of scenes
to infer the most likely layout of the ob-
jects in the scene. Through further user
interaction, the system gradually adjusts
and improves its estimates of where ob-
jects should be placed. We present exam-
ple generated scenes and user interaction
scenarios.

1 Introduction

People possess the power of visual imagination
that allows them to turn descriptions of scenes into
imagery. The conceptual simplicity of generating
pictures from descriptions has spurred the desire
to make systems capable of this task. However, re-
search into computational systems for creating im-
agery from textual descriptions has seen only lim-
ited success.

Most current 3D scene design systems require
the user to learn complex manipulation interfaces
through which objects are constructed and pre-
cisely positioned within scenes. However, arrang-
ing objects in scenes can much more easily be
achieved using natural language. For instance, it
is much easier to say “Put a cup on the table’,
rather than having to search for a 3D model of a
cup, insert it into the scene, scale it to the correct
size, orient it, and position it on a table ensuring
it maintains contact with the table. By making
3D scene design more accessible to novice users
we empower a broader demographic to create 3D
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scenes for use cases such as interior design, virtual
storyboarding and personalized augmented reality.

Unfortunately, several key technical challenges
restrict our ability to create text to 3D scene sys-
tems. Natural language is difficult to map to for-
mal representations of spatial knowledge and con-
straints. Furthermore, language rarely mentions
common sense facts about the world, that contain
critically important spatial knowledge. For exam-
ple, people do not usually mention the presence of
the ground or that most objects are supported by it.
As a consequence, spatial knowledge is severely
lacking in current computational systems.

Pioneering work in mapping text to 3D scene
representations has taken two approaches to ad-
dress these challenges. First, by restricting the dis-
course domain to a micro-world with simple geo-
metric shapes, the SHRDLU system demonstrated
parsing of natural language input for manipulating
the scene, and learning of procedural knowledge
through interaction (Winograd, 1972). However,
generalization to scenes with more complex ob-
jects and spatial relations is very hard to attain.

More recently, the WordsEye system has fo-
cused on the general text to 3D scene generation
task (Coyne and Sproat, 2001), allowing a user
to generate a 3D scene directly from a textual de-
scription of the objects present, their properties and
their spatial arrangement. The authors of Words-
Eye demonstrated the promise of text to scene gen-
eration systems but also pointed out some funda-
mental issues which restrict the success of their
system: a lot of spatial knowledge is required
which is hard to obtain. As a result, the user has to
use unnatural language (e.g. “the stool is 1 feet to
the south of the table”) to express their intent.

For a text to scene system to understand more
natural text, it must be able to infer implicit in-
formation not explicitly stated in the text. For in-
stance, given the sentence “there is an office with
a red chair”, the system should be able to infer

Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces, pages 14-21,
Baltimore, Maryland, USA, June 27, 2014. (©2014 Association for Computational Linguistics



that the office also has a desk in front of the chair.
This sort of inference requires a source of prior
spatial knowledge. We propose learning this spa-
tial knowledge from existing 3D scene data. How-
ever, since the number of available scenes is small,
it is difficult to have broad coverage. Therefore,
we also rely on user interaction to augment and
grow the spatial knowledge. Luckily, user inter-
action is also natural for scene design since it is an
inherently interactive process where user input is
needed for refinement.

Our contributions address the fundamental chal-
lenges of establishing and interactively expanding
a spatial knowledge base. We build on prior work
in data-driven scene synthesis (Fisher et al., 2012)
to automatically extract general spatial knowledge
from data: knowledge of what objects occur in
scenes, and their expected spatial relations. Our
system then uses this knowledge to generate scenes
from natural text inferring implicit constraints. It
then leverages user interaction to allow refinement
of the scene, and improve the spatial knowledge
base. We demonstrate that user interaction is criti-
cal in expanding and improving spatial knowledge
learned from data.

2 Background

A key insight for enabling text to scene generation
is that linguistic and non-linguistic spatial knowl-
edge is critical for this task and can be learned di-
rectly from data representing the physical world
and from interactions of people with such data.
User feedback allows us to interactively update
spatial knowledge, an idea that we illustrate here
in the domain of spatial relations. Early work on
the PUT system (Clay and Wilhelms, 1996) and the
SHRDLU system (Winograd, 1972) gives a good
formalization of the interactive linguistic manipu-
lation of objects in 3D scenes. Recently, there has
been promising work on generating 2D clipart for
sentences using probabilistic models with place-
ment priors learned from data (Zitnick et al., 2013).

2.1 Text to Scene Systems

Prior work on text to 3D scene generation has re-
sulted in systems such as WordsEye (Coyne and
Sproat, 2001) and other similar approaches (Sev-
ersky and Yin, 2006). These systems are typi-
cally not designed to be fully interactive and do not
leverage user interaction to improve their results.
Furthermore, they mostly rely on manual annota-
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tion of 3D models and on hand crafted rules to map
text to object placement decisions, which makes
them hard to extend and generalize. More re-
cent work has used crowdsourcing platforms, such
as Amazon Mechanical Turk, to collect necessary
annotations (Coyne et al., 2012). However, this
data collection is treated as a separate pre-process
and the user still has no influence on the system’s
knowledge base. We address one part of this is-
sue: learning simple spatial knowledge from data
and interactively updating it through user feed-
back. We also infer unstated implicit constraints
thus allowing for more natural text input.

2.2 Automatic Scene Layout

Prior work on scene layout has focused largely on
room interiors and determining good furniture lay-
outs by optimizing energy functions that capture
the quality of a proposed layout. These energy
functions are encoded from interior design guide-
lines (Merrell et al., 2011) or learned from input
scene data (Fisher et al., 2012). Knowledge of ob-
ject co-occurrences and spatial relations is repre-
sented by simple models such as mixtures of Gaus-
sians on pairwise object positions and orientations.
Methods to learn scene structure have been demon-
strated using various data sources including sim-
ulation of human agents in 3D scenes (Jiang et
al., 2012; Jiang and Saxena, 2013), and analysis
of supporting contact points in scanned environ-
ments (Rosman and Ramamoorthy, 2011).

However, prior work has not explored methods
for enabling users of scene generation algorithms
to interactively refine and improve an underlying
spatial knowledge model — a capability which is
critically important. Our work focuses on demon-
strating an interactive system which allows a user
to manipulate and refine such spatial knowledge.
Such a system is useful regardless of the algorithm
used to get the input spatial knowledge.

2.3 Interactive Learning

In many tasks, user interaction can provide feed-
back to an automated system and guide it towards
a desired goal. There is much prior work in various
domains including interactive systems for refin-
ing image search algorithms (Fogarty et al., 2008)
and for manipulating social network group cre-
ation (Amershi et al., 2012). We focus on the do-
main of text to 3D scene generation where despite
the success of data-driven methods there has been
little work on interactive learning systems.



3 Approach Overview

What should an interactive text to scene system
look like from the perspective of a user? The user
should be able to provide a brief scene description
in natural language as input. The system parses
this text to a set of explicitly provided constraints
on what objects should be present, and how they
are arranged. This set of constraints should be au-
tomatically expanded by using prior knowledge so
that “common sense” facts are reflected in the gen-
eral scene — an example is the static support hier-
archy for objects in the scene (i.e. plate goes on
table, table goes on ground). The system gener-
ates a candidate scene and then the user is free to
interact with it by direct control or through textual
commands. The system can then leverage user in-
teraction to update its spatial knowledge and inte-
grate newly learned constraints or relations. The
final output is a 3D scene that can be viewed from
any position and rendered by a graphics engine. In
this paper we select an initial viewpoint such that
objects are in the frame and view-based spatial re-
lations are satisfied.

How might we create such a system? Spatial
knowledge is critical for this task. We need it to
understand spatial language, to plausibly position
objects within scenes and to allow users to manip-
ulate them. We learn spatial knowledge from ex-
ample scene data to ensure that our approach can
be generalized to different scenarios. We also learn
from user interaction to refine and expand existing
spatial knowledge. In §5 we describe the spatial
knowledge used by our system.

We define our problem as the task of taking text
describing a scene as input, and generating a plau-
sible 3D scene described by that text as output.
More concretely, based on the input text, we se-
lect objects from a dataset of 3D models (§4) and
arrange them to generate output scenes. See Fig-
ure 1 for an illustration of the system architecture.
We break the system down into several subtasks:

Constraint Parsing (§6): Parse the input textual
description of a concrete scene into a set of con-
straints on the objects present and spatial relations
between them. Automatically expand this set of
constraints to account for implicit constraints not
specified in the text.

Scene Generation (§7): Using above constraints
and prior knowledge on the spatial arrangement of
objects, construct a scene template. Next, sample
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Figure 1: Diagram illustrating the architecture of
our system.

ON(FORK, TABLE)
ON(PLATE, TABLE)
ON(CAKE, PLATE)

ON(CAKE, TABLE)

CONSTRAINT
PARSING

the template and select a set of objects to be in-
stantiated. Finally, optimize the placement of the
objects to finalize the arrangement of the scene.

Interaction and Learning (§8): Provide means
for a user to interactively adjust the scene through
direct manipulation and textual commands. Use
any such interaction to update the system’s spatial
knowledge so it better captures the user’s intent.

4 Object Knowledge from 3D Models

To generate scenes we need to have a collection
of 3D models for representing physical objects.
We use a 3D model dataset collected from Google
3D Warehouse by prior work in scene synthe-
sis and containing about 12490 mostly indoor ob-
jects (Fisher et al., 2012). These models have text
associated with them in the form of names and
tags. In addition, we semi-automatically annotated
models with object category labels (roughly 270
classes). We used model tags to set these labels,
and verified and augmented them manually.

In addition, we automatically rescale models so
that they have physically plausible sizes and orient
them so that they have a consistent up and front
direction (Savva et al., 2014). Due to the num-
ber of models in the database, not all models were
rescaled and re-oriented. We then indexed all mod-
els in a database that we query at run-time for re-
trieval based on category and tag labels.

5 Spatial Knowledge

Here we describe how we learn spatial knowledge
from existing scene data. We base our approach
on that of (Fisher et al., 2012) and use their dataset



of 133 small indoor scenes created with 1723 3D
Warehouse models. Relative object-to-object po-
sition and orientation priors can also be learned
from the scene data but we have not yet incorpo-
rated them in the results for this paper.

5.1 Support Hierarchy

We observe the static support relations of objects
in existing scenes to establish a prior over what ob-
jects go on top of what other objects. As an exam-
ple, by observing plates and forks on tables most
of the time, we establish that tables are more likely
to support plates and forks than chairs. We esti-
mate the probability of a parent category C), sup-
porting a given child category C. as a simple con-
ditional probability based on normalized observa-
tion counts.

count(C, on Cy)

Psupport(cp|CC) - CO’LLTLt(Cc)

5.2 Supporting surfaces

To identify which surfaces on parent objects sup-
port child objects, we first segment parent models
into planar surfaces using a simple region-growing
algorithm based on (Kalvin and Taylor, 1996). We
characterize support surfaces by the direction of
their normal vector limited to the six canonical di-
rections: up, down, left, right, front, back. We then
learn a probability of supporting surface normal
direction .S,, given child object category C.. For
example, posters are typically found on walls so
their support normal vectors are in the horizontal
directions. Any unobserved child categories are
assumed to have P, ¢(S, = up|C.) = 1 since
most things rest on a horizontal surface (e.g. floor).

count(C, on surface with S,,)
count(C.)

Psu'rf(Sn‘Cc) =

5.3 Spatial Relations

For spatial relations we use a set of predefined re-
lations: left, right, above, below, front, back, on
top of, next to, near, inside, and outside. These
are measured using axis-aligned bounding boxes
from the viewer’s perspective. More concretely,
the bounding boxes of the two objects involved in
a spatial relation are compared to determine vol-
ume overlap or closest distance (for proximity re-
lations). Table 1 gives a few examples of the defi-
nitions of these spatial relations.

Since these spatial relations are resolved with re-
spect to the current view of the scene, they corre-
spond to view-centric definitions of these spatial
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Relation P(relation)
inside(A,B) %&?)
outside(A,B) 1- %
left(A,B) V“;‘}”li}jg“g”
right(A,B) Vol(An right (5)) “}‘,‘;;5}‘; (5))
near(A,B) 1(dist(A, B) < tnear)

Table 1: Definitions of spatial relation using object
bounding box computations. Note that dist(A, B)
is normalized with respect to the maximum extent
of the bounding box of B.

concepts. An interesting line of future work would
be to explore when ego-centric and object-centric
spatial reference models are more likely in a given
utterance, and resolve the spatial term accordingly.

6 Constraint Parsing

During constraint parsing we take the input text
and identify the objects and the relations between
them. For each object, we also identify proper-
ties associated with it such as category label, ba-
sic attributes such as color and material, and num-
ber of occurrences in the scene. Based on the ob-
ject category and attributes, and other words in
the noun phrase mentioning the object, we iden-
tify a set of associated keywords to be used later
for querying the 3D model database. Spatial re-
lations between objects are extracted as predicates
of the form on(A4,B) or left(4,B) where 4 and B are
recognized objects.

As an example, given the input “There is a
room with a desk and a red chair. The chair is
to the left of the desk.” we extract the following
objects and spatial relations:

Objects:

index ‘ category ‘ attributes ‘ keywords
0 room room
1 desk desk
2 chair color:red | chair, red

Relations: left(chair, desk)

The input text is processed using the Stanford
CoreNLP pipeline!. We use the Stanford corefer-
ence system to determine when the same object is
being referred to. To identify objects, we look for
noun phrases and use the head word as the cate-
gory, filtering with WordNet (Miller, 1995) to de-
termine which objects are visualizable (under the

! http://nlp.stanford.edu/software/corenlp.shtml



Dependency Pattern ‘ Example Text

tag:VBN=verb >nsubjpass =nsubj >prep (=prep >pobj
tag:VB=verb >dobj =dobj >prep (=prep >pobj

=pobj) | The chairfnsup;i is madervern] 0fprep) WOOd [pobi

=pobj) | Putryern] the CUPraobj] ONpprep the tablepons

Table 2: Example dependency patterns for extracting spatial relations.

Figure 2: Generated scene for “There is a room
with a desk and a lamp. There is a chair to the
right of the desk.” The inferred scene hierarchy is
overlayed in the center.

physical object synset, excluding locations). To
identify properties of the objects, we extract other
adjectives and nouns in the noun phrase. We also
match dependency patterns such as “X is made of
Y” to extract more attributes and keywords. Fi-
nally, we use dependency patterns to extract spa-
tial relations between objects (see Table 2 for some
example patterns).

We used a fairly simple deterministic approach
to map text to the scene template and user actions
on the scene. An interesting avenue for future re-
search is to automatically learn how to map text
using more advanced semantic parsing methods.

7 Scene Generation

During scene generation we aim to find the most
likely scene given the input utterance, and prior
knowledge. Once we have determined from the
input text what objects exist and their spatial re-

Figure 3: Generated scene for “There is a room
with a poster bed and a poster.”
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Figure 4: Generated scene for “There is a room
with a table and a sandwich.” Note that the plate is
not explicitly stated, but is inferred by the system.

lations in the scene, we select 3D models match-
ing the objects and their associated properties. We
sample the support hierarchy prior Psypport to ob-
tain the support hierarchy for the scene.

We then initialize the positions of objects within
the scene by traversing the support hierarchy in
depth-first order, positioning the largest available
child node and recursing. Child nodes are posi-
tioned by selecting a supporting surface on a can-
didate parent object through sampling of P, and
ensuring no collisions exist with other objects. If
there are any spatial constraints that are not satis-
fied, we remove and randomly reposition the ob-
jects violating the constraints, and iterate to im-
prove the layout. The resulting scene is rendered
and presented to the user.

Figure 2 shows a rendering of a generated scene
along with the support hierarchy and input text.
Even though the spatial relation between lamp and
desk was not mentioned explicitly, we infer that
the lamp is supported by the top surface of the
desk. In Figure 3 we show another example of
a generated scene for the input “There is a room
with a poster bed and a poster”. Note that the sys-
tem differentiates between a “poster” and a “poster
bed” — it correctly selects and places the bed on the
floor, while the poster is placed on the wall.

Figure 4 shows an example of inferring missing
objects. Even though the plate was not explicitly
mentioned in the input, we infer that the sandwich
is more likely to be supported by a plate rather than
directly placed on the table. Without this infer-



Figure 5: Left: chair is selected using “the chair to
the right of the table” or “the object to the right of
the table”. Chair is not selected for “the cup to the
right of the table”. Right: Different view results
in different chair being selected for the input “the
chair to the right of the table”.

ence, the user would need to be much more verbose
with text such as “There is a room with a table, a
plate and a sandwich. The sandwich is on the plate,
and the plate is on the table.”

8 Interactive System

Once a scene is generated, the user can view the
scene and manipulate it using both simple action
phrases and mouse interaction. The system sup-
ports traditional 3D scene interaction mechanisms
such as navigating the viewpoint with mouse and
keyboard, selection and movement of object mod-
els by clicking. In addition, a user can give simple
textual commands to select and modify objects, or
to refine the scene. For example, a user can re-
quest to “remove the chair” or “put a pot on the
table” which requires the system to resolve refer-
ents to objects in the scene (see §8.1). The system
tracks user interactions throughout this process and
can adjust its spatial knowledge accordingly. In
the following sections, we give some examples of
how the user can interact with the system and how
the system learns from this interaction.

8.1 View centric spatial relations

During interaction, the user can refer to objects
with their categories and with spatial relations be-
tween them. Objects are disambiguated by both
category and view-centric spatial relations. We use
the WordNet hierarchy to resolve hyponym or hy-
pernym referents to objects in the scene. In the left
screenshot in Figure 5, the user can select a chair
to the right of the table using the phrase “chair to
the right of the table” or “object to the right of the
table”. The user can then change their viewpoint
by rotating and moving around. Since spatial rela-
tions are resolved with respect to the current view-
point, we see that a different chair is selected for
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Figure 6: Left: initial scene. Right: after input
“Put a lamp on the table”.

the same phrase from the different viewpoint in the
right screenshot.

8.2 Scene Editing with Text

By using simple textual commands the user can
edit the scene. For example, given the initial scene
on the left in Figure 6, the user can then issue the
command “put a lamp on the table” which results
in the scene on the right. The system currently al-
lows for adding objects to new positions and re-
moving existing objects. Currently, repositioning
of objects is performed only with direct control,
but in the future we also plan to support reposi-
tioning of objects by using textual commands.

8.3 Learning Support Hierarchy

After a user requests that a lamp be placed on a ta-
ble, the system updates its prior on the likelihood
of a lamp being supported by a table. Based on
prior observations the likelihood of lamps being
placed on tables was very low (4%) since very few
lamps were observed on tables in the scene dataset.
However, after the user interaction, we recompute
the prior including the scene that the user has cre-
ated and the probability of lamp on table increases
to 12% (see Figure 7).

8.4 Learning Object Names

Often, objects or parts may not have associated la-
bels that the user would use to refer to the objects.
In those cases, the system can inform the user that
it cannot resolve a given name, and the user can
then select the object or part of the object they were
referring to and annotate it with a label. For in-
stance, in Figure 8, the user annotated the differ-
ent parts of the room as “floor”, “wall”, “window”,
and “door”. Before annotation, the system did not
know any labels for these parts of the room. After
annotation, the user can select these parts using the
associated names. In addition, the system updates
its spatial knowledge base and can now predict that
the probability of a poster being placed on a wall
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Figure 7: Probability of supporting parent categories for lamps before and after the user explicitly requests
a lamp on a table.
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Figure 8: The user clicks and selects parts of the scene, annotating them as “floor”, “wall”, “window”,

“door”. After annotation, the user can also refer to these parts with the associated names. The system
spatial knowledge base is updated accordingly.

is 40%, and that the probability of a table being  not resolve “red bowl” to the correct object, the
placed on the floor is 23%. Note that these prob-  user could intervene by clicking on the correct ref-
abilities are based on multiple observations of the  erent object. Simple interactions such as this are
annotated room. Accumulating annotations such  incredibly powerful for providing additional data
as these and propagating labels to new models is  for learning. Though we did not focus on this as-

an effective way to expand spatial knowledge. pect, a dialogue-based interaction pattern is natural
for our system. The user can converse with the sys-
9 Future Work tem to iteratively refine the scene and the system

_ o . . can ask for clarifications at any point — when and
We described a preliminary interactive text to 3D how the system should inquire for more informa-
scene generation system that can learn from prior  tjon is interesting future research.

data and user interaction. We hope to improve
the system by incorporating more feedback mech- To evaluate whether the generated scenes are
anisms for the user, and the learning algorithm. satisfactory, we can ask people to rate them against
If the user requests a particular object be se-  input text descriptions. We can also study usage
lected but the system gets the referent wrong, the  of the system in concrete tasks to see how often
user could then indicate the error and provideacor-  users need to provide corrections and manually
rection. We can then use this feedback as a source ~ manipulate the scene. A useful baseline to com-
of'training data to improve the interpretation of text ~ pare against would be a traditional scene manipula-
to the desired user action. For example, if the user  tion system. By doing these studies at a large scale,
asks to “select the red bowl” and the system could  for instance by making the interface available on
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the web, we can crowdsource the accumulation of
user interactions and gathering of spatial knowl-
edge. Simultaneously, running formal user stud-
ies to better understand preference for text-based
versus direct interactions during different actions
would be very beneficial for more informed design
of text-to-scene generation systems.

10 Conclusion

We have demonstrated the usefulness of an inter-
active text to 3D scene generation system. Spatial
knowledge is essential for text to 3D scene gener-
ation. While it is possible to learn spatial knowl-
edge purely from data, it is hard to have complete
coverage of all possible scenarios. Interaction and
user feedback is a good way to improve coverage
and to refine spatial knowledge. In addition, in-
teraction is a natural mode of user involvement in
scene generation and creative tasks.

Little prior work has addressed the need for in-
teraction or the need for recovering implicit spatial
constraints. We propose that the resolution of un-
mentioned spatial constraints, and leveraging user
interaction to acquire spatial knowledge are criti-
cal for enabling natural text to scene generation.

User interaction is essential for text to scene
generation since the process is fundamentally
under-constrained. Most natural textual descrip-
tions of scenes will not mention many visual as-
pects of a physical scene. However, it is still pos-
sible to automatically generate a plausible starting
scene for refinement.

Our work focused on showing that user interac-
tion is both natural and useful for a text to scene
generation system. Furthermore, refining spatial
knowledge through interaction is a promising way
of acquiring more implicit knowledge. Finally,
any practically useful text to scene generation will
by necessity involve interaction with users who
have particular goals and tasks in mind.
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