Generalizing inflection tables into paradigms with finite state operations

Mans Hulden
University of Helsinki
mans.hulden@helsinki.fi

Abstract

Extracting and performing an alignment
of the longest common subsequence in in-
flection tables has been shown to be a
fruitful approach to supervised learning
of morphological paradigms. However,
finding the longest subsequence common
to multiple strings is well known to be
an intractable problem. Additional con-
straints on the solution sought complicate
the problem further—such as requiring
that the particular subsequence extracted,
if there is ambiguity, be one that is best
alignable in an inflection table. In this pa-
per we present and discuss the design of a
tool that performs the extraction through
some advanced techniques in finite state
calculus and does so efficiently enough for
the practical purposes of inflection table
generalization.

1 Introduction

Supervised learning of morphological paradigms
from inflection tables has recently been ap-
proached from a number of directions. One ap-
proach is given in Hulden et al. (2014), where
morphological paradigm induction is performed
by extracting the longest common subsequence
(LCS) from a set of words representing an in-
flection table. Although that work presents en-
couraging results as regards learning morphologi-
cal paradigms from inflection tables, no details are
given as to how the paradigms themselves are ex-
tracted. The purpose of this paper is to describe
how such a paradigm extraction procedure can be
performed using only finite state operations.
Extracting the longest common subsequence
from a large number of strings is known as the
multiple longest common subsequence problem
(MLCS), and is computationally intractable. In

29

fields like bioinformatics specialized heuristic al-
gorithms have been developed for efficiently ex-
tracting common subsequences from DNA se-
quences. In linguistics applications where the goal
is to extract common patterns in an inflection ta-
ble, however, the problem manifests itself in a
different guise. While most applications in other
fields work with a small number of fairly long se-
quences, inflection tables may contain hundreds of
short sequences. Additionally, it is not enough to
extract the LCS from an inflection table. The LCS
itself is often ambiguous and may be factorized in
several different ways in a table. This means that
we operate under the additional constraint that the
LCS must not only be found, but, in case of ambi-
guity, its most contiguous factorization must also
be indicated, as this often produces linguistically
interesting generalizations.

In this paper we will address the problem of
extracting the minimal MLCS through entirely fi-
nite state means. Finite state methods lend them-
selves to solving this kind of an optimization prob-
lem concisely, and, as it turns out, also efficiently
enough for practical purposes.

This paper is laid out as follows. First, we
outline the MLCS-based approach to supervised
learning of morphological paradigms in section
2. We then describe in broad strokes the algo-
rithm required for generalizing inflection tables
into paradigms in section 3. Next, we give a finite
state implementation of the algorithm in section
4, followed by a brief discussion of a stand-alone
software tool based on this that extracts paradigms
from collections of inflection tables in section 5.

2 Supervised learning of morphological
paradigms

In the following, we operate with the central idea
of a model of word formation that organizes word
forms and their inflection patterns into paradigms
(Hockett, 1954; Robins, 1959; Matthews, 1972;

Proceedings of the 2014 Joint Meeting of SSIGMORPHON and SIGFSM, pages 29-36,
Baltimore, Maryland USA, June 27 2014. (©2014 Association for Computational Linguistics

Stump, 2001). In particular, we model paradigms
in a slightly more abstract manner than is custom-
arily done. For the purposes of this paper, we dif-
ferentiate between a paradigm and an inflection
table in the following way: an inflection table is
simply a list of words that represents a concrete
manifestation, or instantiation, of a paradigm. A
paradigm is also a list of words, but with spe-
cial symbols that represent variables interspersed.
These variables, when instantiated, represent par-
ticular strings shared across an inflection table.

In our representation, this kind of an abstract
paradigm is an ordered collection of strings,
where each string may additionally contain in-
terspersed variables denoted x1, x2,...,x,. The
strings represent fixed, obligatory parts of a
paradigm, while the variables represent mutable
parts. A complete abstract paradigm captures
some generalization where the mutable parts rep-
resented by variables are instantiated the same
way for all forms in one particular inflection table.
For example, the fairly simple paradigm

r1 x1+s x1+ed xz1+ing

could represent a set of English verb forms, where
1 in this case would coincide with the infinitive
form of the verb—walk, climb, look, etc.!

2.1 Learning paradigms from inflection
tables

As is seen from the above example, a general
enough paradigm can encode the inflection pat-
tern of a large number of words. When learning
such paradigms from data—i.e. complete inflec-
tion tables—we intuitively want to find the ‘com-
mon’ elements of a table and generalize those.

The core of the method is to factor the word
forms in an inflection table in such a manner that
the elements common to all entries are declared
variables, while the non-common elements are as-
sumed to be part of the inflection pattern. To illus-
trate the idea with an example, consider a short-
ened inflection table for the regular German verb
holen (to fetch):2

' Our formalization of a paradigm of strings and interven-
ing variables bears many similarities to so-called pattern lan-
guages (Angluin, 1980). In fact, each entry in a paradigm
could be considered a separate pattern language. Addition-
ally, all the individual pattern languages in one paradigm are
constrained to share the same variables and the variables are
constrained to collectively be instantiated the same way.

2We follow the convention that entries in an inflection ta-
ble are separated by #.

30

hole#holst#holt#holen#holt#holen#geholt (1)

Obviously, in this example, the element com-
mon to each entry in the inflection table is hol.
Declaring hol to be a variable, we can rewrite the
inflection table as:

r1+ef#r st +ti#x +en#r +t#r +enfige+r1+t (2)
This extraction of the ‘common elements’ is
formalized in Hulden et al. (2014) to be equivalent
to extraction of the longest common subsequence
of the strings w1, ..., w, in an inflection table.?
The purpose of extracting the common parts and
labeling them variables is to provide a model for
generalization of inflection patterns. Under the as-
sumption that a variable z; in this paradigm rep-
resentation corresponds to a nonempty string, we
can instantiate an inflection table by simply pro-
viding the variable strings zy,...,x,. Thus, we
can talk about a paradigm-generating function

f: (171,...

that maps instantiations of variables to a string rep-
resenting the complete inflection table, in this case
a string where entries are #-separated.

To illustrate this, consider the simple paradigm
in (2). It implicitly defines a function f where, for
example, f(kauf) maps to the string

7xn) — X*

kaufe#fkaufst#kauft#kaufen#tkauft#kaufentigekauft (3)

i.e. produces the inflection table for the regular
verb kaufen (to buy), which behaves like holen.
Likewise, we can also consider the inverse func-
tion. Given an unknown word form, e.g. macht
(to make, 3pSg), we can see that the only way it
fits the paradigm in (2) is if it comes from an in-
flection table:

mache#machst#macht#machen#macht#machen#gemacht
C))
that is, if macht is part of the output for f(mach).

3Not to be confused with the longest common substring,
which is a different problem, solvable in polynomial time
for n strings. Subsequences may be discontinuous while
substrings may not. For example, assume s = abcaa and
t = dbcadaa. The longest common substring shared by the
two is bca obtained from s by abcaa and ¢ by dbcadaa. By
contrast, the longest common subsequence is bcaa, obtained
from s by abcaa and t by dbcadaa or dbcadaa or dbcadaa.

Input: @ Extract @ Fit LCS @ Generalize @ Collapse

inflection LCS to table to paradigms paradigms

tables

ring [r]i[ng] X, +i+x,

rang } rng [rlalng] } X, ta+x,

rung [rlulng] x1+u+x2\ X, +itx,
X +a+x,

swim [sw] i [m] x,+i+x, X +Hu+x,

swam } swm [sw]a[m] } x,ta+x,

swum [swlu[m] X, +tu+x,

Figure 1: Paradigm extraction strategy.

In other words, the extraction of multiple com-
mon longest subsequences (MLCS) from inflec-
tion tables immediately provides a (simple) gener-
alization mechanism of a grammar, and also sug-
gests a supervised learning strategy for morpho-
logical paradigms. In conjunction with statistical
machine learning methods, Hulden et al. (2014)
has shown that the paradigm extraction and gen-
eralization method provides competitive results
in various supervised and semi-supervised NLP
learning tasks. One such task is to provide a hy-
pothetical reconstruction of a complete inflection
table from an unseen base form after first witness-
ing a number of complete inflection tables. An-
other task is the semi-supervised collection of lex-
ical entries and matching them to paradigms by
observing distributions of word forms across all
the possible paradigms they can fit into. In gen-
eral, there is much current interest in similar tasks
in NLP; see e.g. Dreyer and Eisner (2011); Dur-
rett and DeNero (2013); Eskander et al. (2013) for
a variety of current methods.

3 Learning method

The basic procedure as outlined by Hulden et al.
(2014) for learning paradigms from inflection ta-
bles can be represented by the four-step procedure
given in figure 1. Here, multiple inflection tables
are gathered, and the LCS to each table is found
individually. Following that, the LCS is fit into
the table, and contiguous segments that participate
in the LCS are labeled variables. After paradigm
generalization, it may turn out that several identi-
cal paradigms have been learned, which may then
be collapsed.

The first two steps of the method dictate that
one:

1. Extract the longest common subsequence
(LCS) to all the entries in the inflection table.

2. Split the LCS(s)—of which there may be

31

several—into variables in such a way that the
number of variables is minimized. Two seg-
ments xy are always part of the same variable
if they occur together in every form of an in-
flection table. If some substring z intervenes
between x and y in some form, z and y must
be assigned separate variables.

These steps represent steps @ and @ in figure
1. After the variables have been identified, steps
® and @ in the figure are easily accomplished by
non-finite-state means.

In the following, we will focus on the previ-
ously unaddressed problem of finding the LCS of
an inflection table (@), and of distributing possible
variables corresponding to contiguous sequences
of the LCS in a way that gives rise to the mini-
mum number of variables (®).

4 Finite-state implementation

The main challenge in producing a paradigm from
an inflection table is not the extraction of the
longest common subsequences, but rather, doing
so with the added criterion of minimizing the num-
ber of variables used. Extracting the LCS from
multiple strings is known to be NP-hard (Maier,
1978) and naive implementations will fail quickly
for even a moderate number of strings found in in-
flection tables. While there exist specialized algo-
rithms that attempt to efficiently either calculate
(Irving and Fraser, 1992) or approximate (Wang
et al., 2010) the LCS, we find that extraction can
easily be accomplished with a simple transducer
calculation. The task of ascertaining that the LCS
is distributed in such a way as to minimize the
number of variables turns out to be more challeng-
ing; at the same time, however, it is a problem to
which the finite state calculus is particularly well
suited, as will be seen below.

4.1 Notation and tool

The paradigm extraction tool was implemented
with the help of the foma toolkit (Hulden, 2009).
In the actual implementation, instead of directly
compiling regular expressions, we make use of
foma’s programming API, but in the following we
give regular expression equivalents to the method
used. Table 1 contains a summary of the regular
expression notation used.

0 Empty string
? Any symbol in alphabet
CE. End or beginning of string
{xyz} String
AB Concatenation
A%, A+ Kleene star, Kleene plus
AlB Union
A& B Intersection
A - B Difference
“A Complement
A .0. B Composition
% Escape symbol
[and] Grouping brackets
A:B Cross product
T.2 Output projection of T
A -> B Rewrite A as B
_eq(X,L,R) Strings between L,R are equal
def W {word} Define FSM constant
def F(X,Y) X Y Regular expression macro

Table 1: Regular expression notation in foma.

4.2 LCS extraction

As the first step, we assume that we have encoded
each word wyq, ..., w, in an inflection table as an
automaton that accepts that word.*

In general, we can define the set of subse-
quences of any word by a general regular expres-
sion technique:

def SS(X) [X .o. [?]?:0]%].2;

SS (w) then contains all of the subsequences
of some word w. Taking advantage of this, we
may calculate the intersection of each set of sub-
sequences SS (w1) & ...& SS(wy), produc-
ing the language that contains all the common
subsequences to wy, ..., wy,. From this, extract-
ing the longest subsequence or sequences could in
principle be performed by inspecting the resulting
automaton, but the same can also be done alge-
braically for finite sets:

def Max (X) X -

[[X .o. [?:a]=* .O.

[?:0]1+].2 [a:?]*].2;

Here, Max (X) is a regular expression tech-
nique of extracting the set of longest strings from
an automaton. We achieve this in practice by first
changing all symbols in X to an arbitrary sym-
bol (a in this case), removing at least one symbol
from the end, and using this intermediate result to

“We abuse notation slightly by representing by w; both a
word and an automaton that accepts that word.

32

remove from X all strings shorter than the maxi-
mum.’

An automaton that contains all LCSs for a set of
words w1, . .., w, can thus be calculated as:

& &

Max (SS (w1) SS (wn)) 5)

The above two lines together represent a
surprisingly efficient manner of calculating the
MLCS for a large number of relatively similar
short sequences (less than 100 characters) and
is essentially equivalent to performing the same
calculation through dynamic programming algo-
rithms with some additional search heuristics.

4.3 Minimizing variables

We can then assume that we have calculated the
LCS or LCSs for an inflection table and can rep-
resent it as an automaton. The following step is to
assign variables to segments that can correspond
to the LCS in a minimal way. The minimality re-
quirement is crucial for good generalization as is
seen in the illustration here:
(a)

X1

(b)

X1 X2

— — =
comprar comprar
compra compra
compro compro
—— S~——

X1 X1 Xz

The above shows two ways of breaking up the
LCS compr in the hypothetical three-word inflec-
tion table for Spanish. In case (a) the compr
has been located contiguously in inflection entries,
while in (b) there is a gap in the first form, leading
to the inevitable use of two variables to generalize
the table.

In the finite-state string encoding, the overall
intent of our effort to calculate the minimum-
variable MLCS assignment in the table is to
produce an automaton that contains the divi-
sions of variables marked up with brackets.
For example, given a hypothetical two-word ta-
ble holen#geholt, the LCS is obviously hol.
Now, there are several valid divisions of hol
into variables, e.g. [ho][l]en#ge[ho][l]t, which
would represent a two-variable division, while

SThis is a rather inefficient way of extracting the set of
longest strings from an automaton. However, as the runtime
of this part represents only a minute fraction of the complete
procedure, we do so to preserve the benefit of clarity that us-
ing finite-state calculus offers.

[N N O N

pextract example

def SS(X) [X .o. [?]?2:0]*].2;
def Max(X) X - [[X .0. 2:a* 2:04].2 .0. a:?x]1.2;
def RedupN (X,Y) [_eq([LEFT X RIGHT [Y LEFT X RIGHT]=], LEFT, RIGHT) .o. LEFT|RIGHT -> 0].1;
def NOBR ? - %[- %] - %#;
def Order(X) [[X .o. 0:%# 2% 0:%# .o.
?% $# [NOBR | $[:%< | %]:%>]x S# 2« .o.
1% —> 0 .o.
[2% 0:%> 0:%< \[3<|%>[%[I%] 1+ %> 2x]x .o.
S#:0 2% $#:0 .0.
0 -> %[1%] .o. %< —> %[.o0. %> -—> %]] .o. X 1.2;
def MarkRoot (X) [X .o. [?2]0:%[2+ 0:%]1% 1.2;
def RandomBracketing(X) [X .o. [? | 0:%[NOBRx 0:%]]* 1.2;
def AddExtraSegments(X) [X .o. [0:NOBRx | %[\%1x %] | S#]x 1.2;
def Filter(X) X - Order (X);
def Table {hole#holst#holt#holen#holt#holen#geholt};
def MLCS Max (SS({hole}) & SS({holst}) & SS({holt}) & SS({holen}) & SS({holt}) & SS({holen}) & SS({geholt}))
def BracketedMLCS AddExtraSegments (RedupN (MarkRoot (MLCS), %#));
def BracketedTable RandomBracketing (Table);
regex Filter (BracketedMLCS & BracketedTable);
print words

Figure 2: Complete implementation of the extraction of the minimum-variable longest common subse-
quences as a foma-script. Here, a small German verb table is hard-coded for illustration purposes on
lines 16 and 17. The output is [hol]e#[hol]st#[hol]t#[hol]en#[hol]t#[hol]en#ge[hol]t

[hol]en#ge[hol]t would represent a one-variable
division.

Naturally, these brackets will have to be divided
in such a way that there is no better way to achieve
the division—i.e. no markup such that fewer vari-
ables are instantiated.

The crux of the method used here is to first pro-
duce an automaton that accepts the set of all valid
markups of the MLCS in the table string, and then
use that set to in turn define the set of suboptimal
markups. Similar finite-state techniques have been
used by Gerdemann and van Noord (2000); Eisner
(2002); Karttunen (2010); Gerdemann and Hulden
(2012), to, among other things, define suboptimal
candidates in Optimality Theory. The trick is to set
up a transducer 7' that contains the input-output
pair (z,2'), iff 2’ represents a worse division of
variables than x does. In effect, T captures the
transitive closure of an ordering relation > of the
various factorizations of the strings into variables,
and T contains the string pair (z, ') when z =7
2’. In general, supposing that we have an identity
transducer, i.e. automaton A, and a transducer T’
that maps strings in A according to the transitive
closure of an ordering relation >, then we can al-
ways remove the suboptimal strings according to
> from A by calculating A — range(A o T).

Apart from this central idea, some bookkeep-
ing is required because we are working with string
representations of inflection tables. A complete
foma listing that captures the behavior of our im-
plementation is given in figure 2. The main com-

33

plication in the program is to produce the transitive
closure of the ordering by setting up a transducer
Order that, given some bracketed string, breaks
up continuous sequences of brackets into disconti-
nuities, e.g. [xyz] — [x][yz].[xyl[z], [x][yl[z].

The main logic of the program appears on lines
18-21. The BracketedMLCS is the language
where the MLCS has been bracketed in various
ways and extra segments inserted arbitrarily. An
extra complication is that the MLCS must always
be bracketed the same way within a string, e.g.
[xyllz]#...#[xyl[z], or [x][yz]#...#[x][yz] etc. That
is, the variable splits have to be equal across en-
tries.

The BracketedTable language is the lan-
guage that contains a string that represents the in-
flection table at hand, but with arbitrary bracket-
ings. The intersection of the two languages then
contain the valid MLCS bracketings of the inflec-
tion table. After the intersection is calculated, we
apply the ordering transducer and filter out those
strings with suboptimal bracket markup. Figure 3
illustrates the process.

4.4 Optimizations and additions

In addition to the description given above, the
actual implementation contains a number of sec-
ondary optimization strategies. The foremost one
is the simple preprocessing move to locate first
the longest common prefix p in the inflection ta-
ble before any processing is done. This can, of
course, be discovered very efficiently. The prefix

MLCS
hol

BracketedTable
[h]ole#ho [1s] [t]#holt#h[o] len#tho [1t]#[ho] [le] [n]#[gelh[ol] [t]
hlo]lle#h[ol] [st]l#[h]olt#holent [hol] tH#h[o] [1]e[n]#glehlo[1t]
hole#[h]ol [st]#[hol1[t]#[h] [o] [len] #holt#hol [en]#[g] [eh] [0]1[t]

BracketedMLCS & BracketedTable

Bracketed MLCS

X [hol X [1] X#X [ho] X [1] X#X [ho]l X [1] X#X [ho] X [1] X#X [ho] X [1] X#X [ho] X [1] X#X [ho]l X [1]X

X [hol]l X#X [hol] X#X [hol] X#X [hol]l X#X [hol] X#X [hol] X#X [holl X

X [h]X [01]X#X [h]1 X [01] X#X [h] X [01] X#X [h] X [01] X#X [h] X [01] X#X [h] X [01] X#X [h] X [01]X

X [h]1X [0l X [1]X#X [h]1 X [0l X [1] X#X [h]1 X [0] X [1] X#X [h] X [o] X [1] X#X [h] X [o] X [1] X#X [h] X [0] X [1]1X

[ho] [1]e#[ho] [1] st# [ho] [1] t#[ho] [1] en# [ho] [1] t#[ho] [1] en#ige [ho] [1]t

[hol] e# [hol] st# [holl t# [hol] en# [hol] t# [hol] en#ge [hol]t

[h] [o] [1]e#[h] [o] [1]st#[h] [o] [1] t#[h] [o] [1]en#[h] [o] [1]t#[h] [o] [1]entige[h] [o] [1]t
[h] [o1l]e#[h] [ol] st#[h] [ol] t#[h] [ol] ent# [h] [ol] t#[h] [ol] en#tge [h] [01l]t

Filter(Bracketed MLCS & BracketedTable)
[hol]le# [holl st# [hol] t# [hol] en# [hol] t#[hol] entige [hol]lt

Figure 3: Illustrated steps in the process of extracting and identifying the MLCS. The MLCS language
contains only the longest common subsequence(s). From that language, the language BracketedMLCS
is generated, which contains arbitrary strings with the MLCS bracketed in different ways (X here repre-
sents any string from X*). Intersecting that language with the BracketedTable language and filtering
out suboptimal bracketings yields the final generalization.

can be set aside until the main algorithm is com-
pleted, and then attached as a separate variable to
the paradigm that was extracted without p. This
has little noticeable effect in most cases, but does
speed up the variable minimization with large ta-
bles that contains words more than 30 characters
long. Although not included in the implementa-
tion, the same maneuver can subsequently be per-
formed on the longest common suffix of the re-
maining string after the prefix is extracted.

Additionally, there are still residual cases
where the LCS may be located in several ways
with the same number of variables. An ac-
tual example comes from a Swedish paradigm
with two options: [sege]l#[seg]l[e]n#[seg]l[e]t vs.
[segle[l]#[segl]en#[segl]let. The ambiguity here
is due to the two equally long LCSs sege and
segl. These are resolved in our implementation
through non-finite-state means by choosing the di-
vision that results in the smallest number of infix-
segments.

5 Implementation

We have implemented the above paradigm ex-
tractor as a freely available stand-alone tool
pextract.® The utility reads inflection tables,
generalizes them into paradigms and collapses re-
sulting identical paradigms. Steps @ and @ in
figure 1 are trivially performed by non-finite state
means. After paradigm generalization, bracketed
sequences are replaced by variable symbols (step
®). As each paradigm is then represented as a sin-

*http://pextract.googlecode.com

34

gle string, paradigm collapsing can be performed
by simply testing string equivalence.

The tool also implements some further global
restrictions on the nature of the generalizations al-
lowed. These include, for example, a linguistically
motivated attempt to minimize the number of in-
fixes in paradigms. It also stores information (see
figure 4) about the components of generalizations:
the variable instantiations seen, etc., which may be
useful for subsequent tools that take advantage of
its output.’

Figure 4 briefly illustrates through a toy exam-
ple the input and output to the extraction tool:
inputs are simply lists of entries in inflection ta-
bles, with or without morphological information,
and the output is a list of paradigms where num-
bers correspond to variables. In the event that sev-
eral paradigms can be collapsed, the tool collapses
them (as indeed is seen in figure 4). The actual in-
stantiations of the variables seen are also stored,
represented by the digits 1, ... as are the complete
first (often base) forms, represented by 0. In effect,
all the seen inflection tables can in principle be re-
constructed from the resulting abstract paradigms.

Table 2 shows how the pextract tool gener-
alizes with five data sets covering German (DE),
Spanish (ES), and Finnish (FI), provided by Dur-
rett and DeNero (2013), along with running times.
Here, among other things, we see that the tool
has generalized 3,855 Spanish verb inflection ta-

"Statistical information about what the variables looked
like during generalization can be useful information when
performing classifying tasks, such as attempting to fit pre-
viously unseen words to already learned paradigms, etc.

katabtu perf-l-sg l+a+2+a+3+tuffl+a+2+a+3+taffl+u+2+i+3+ufil+u+2+i+3+na
katabta perf-2-m-sg O=katabtu
kutibu pass-perf-3-m-pl 1=k
kutibna pass-perf-3-f-pl pextract 2=t
3=b
darastu perf-1l-sg O=darastu
darasta perf-2-m-sg 1=d
durisu pass-perf-3-m-pl 2=r
durisna pass-perf-3-f-pl 3=s
Figure 4: Paradigm extraction tool. For the two toy Arabic inflection tables on the left, the pextract

tool produces one three-variable paradigm as output, and reports how the three variables have been
instantiated in the example data, and also how the first form (presumably often the base form) appeared

in its entirety.

bles into 97 distinct paradigms, and 6,200 Finnish
nouns and adjectives have been reduced to 258
paradigms. For comparison, the fairly com-
plete Thompson (1998) lists 79 classes of Span-
ish verbs, while the Kotus (2007) grammar de-
scription counts 51 Finnish noun and adjective
paradigms.

Much of the remaining redundancy in resulting
paradigms can be attributed to lack of phonologi-
cal modeling. That is, paradigms could be further
collapsed if phonological alternations were added
subsequently to paradigm extraction. Consider a
selection of four forms from the inflection table
for the Finnish verb aidata (to fence):

aidata#aitaan#aitaat#aitasin

(©)

This is generalized by the tool into

r1+d+zo+taftr +t+ao+anta +t+xo+atir) +t+ao+sin
(M

The generalization is indeed correct, but the
method does not take into account a gen-
eral phonological process of consonant gradation
where t and d alternate depending on the syllable
type. With this additional information, paradigm
tables could in principle be collapsed further and
this particular paradigm merged with a more gen-
eral paradigm learned for Finnish verbs. The
same goes for other phonological processes which
sometimes cause the tool to produce superficially
different paradigms that could be collapsed further
by modeling vowel harmony and other phenom-
ena.

We may note that the word lengths and inflec-
tion table sizes encountered in the wild are far
larger than the examples used in this article. For
the Wiktionary data, for example, many inflection
tables have more than 50 entries and word lengths
of 50 characters.

35

Input: Output: Comp.
Data inflection abstract time(s)

tables paradigms
DE-VERBS 1,827 140 123.6
DE-NOUNS 2,564 70 73.5
ES-VERBS 3,855 97 144.9
FI-VERBS 7,049 282 432.2
FI-NOUNS-ADJS 6,200 258 374.1

Table 2: Paradigm generalization from

Wiktionary-gathered inflection tables.

6 Conclusion

In this work, we have presented a method for
extracting general paradigms from inflection ta-
bles through entirely finite state means. This in-
volves solving a constrained longest common sub-
sequence problem, for which the calculus offered
by modern finite state toolkits is well suited. Al-
though the problem in no way requires a finite
state solution, we find that addressing it with a
general-purpose programming language appears
far more complex a route.

We further note that finite state transducers can
be profitably employed after paradigm generaliza-
tion has occurred—to find all possible paradigms
and slots that an unknown word form might fit
into, to generate paradigms from base forms, and
so forth.

An interesting further potential optimization is
to try to address ambiguous LCS assignments with
the completely different strategy of attempting to
maximize similarity across paradigms, or mini-
mize the number of resulting paradigms, assuming
one is generalizing a batch of inflection tables at
the same time. Additionally, modeling phonolog-
ical phenomena as a separate step after morpho-
logical paradigm generalization provides opportu-
nities for further development of the system.

Acknowledgements

This article was much improved by the insightful
comments provided by the anonymous reviewers.
The research was partially funded by the Academy
of Finland under grant agreement 258373, Ma-
chine learning of rules in natural language mor-
phology and phonology. Additional important
support was provided by the Centre for Language
Technology and Sprakbanken at the University of
Gothenburg, where part of this research was un-
dertaken.

References

Angluin, D. (1980). Finding patterns common to a
set of strings. Journal of Computer and System
Sciences, 21(1):46-62.

Dreyer, M. and Eisner, J. (2011). Discovering
morphological paradigms from plain text using
a Dirichlet process mixture model. In Proceed-
ings of the Conference on Empirical Methods in
Natural Language Processing, pages 616-627.
Association for Computational Linguistics.

Durrett, G. and DeNero, J. (2013). Supervised
learning of complete morphological paradigms.
In Proceedings of NAACL-HLT, pages 1185-
1195.

Eisner, J. (2002). Comprehension and compilation
in optimality theory. In Proceedings of the 40th
Annual Meeting on Association for Computa-
tional Linguistics, pages 56—63. Association for
Computational Linguistics.

Eskander, R., Habash, N., and Rambow, O.
(2013). Automatic extraction of morpholog-
ical lexicons from morphologically annotated
corpora. In Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Lan-
guage Processing, pages 1032-1043. Associa-
tion for Computational Linguistics.

Gerdemann, D. and Hulden, M. (2012). Practi-
cal finite state optimality theory. In /0th Inter-
national Workshop on Finite State Methods and
Natural Language Processing, page 10.

Gerdemann, D. and van Noord, G. (2000). Ap-
proximation and exactness in finite state opti-
mality theory. In Proceedings of the Fifth Work-
shop of the ACL Special Interest Group in Com-
putational Phonology.

Hockett, C. F. (1954). Two models of grammatical

36

description. Morphology: Critical Concepts in
Linguistics, 1:110-138.

Hulden, M. (2009). Foma: a finite-state compiler
and library. In Proceedings of the 12th Confer-
ence of the European Chapter of the European
Chapter of the Association for Computational
Linguistics: Demonstrations Session, pages 29—
32, Athens, Greece. Association for Computa-
tional Linguistics.

Hulden, M., Forsberg, M., and Ahlberg, M.
(2014). Semi-supervised learning of morpho-
logical paradigms and lexicons. In Proceedings
of the 14th Conference of the European Chap-
ter of the Association for Computational Lin-
guistics, pages 569-578, Gothenburg, Sweden.
Association for Computational Linguistics.

Irving, R. W. and Fraser, C. B. (1992). Two algo-
rithms for the longest common subsequence of
three (or more) strings. In Combinatorial Pat-
tern Matching, pages 214-229. Springer.

Karttunen, L. (2010). Update on finite state mor-
phology tools. Ms., Palo Alto Research Center.

Kotus (2007). Nykysuomen sanalista [Lexicon of
modern Finnish]. Kotus.

Maier, D. (1978). The complexity of some
problems on subsequences and supersequences.
Journal of the ACM (JACM), 25(2):322-336.

Matthews, P. H. (1972). Inflectional morphology:
A theoretical study based on aspects of Latin
verb conjugation. Cambridge University Press.

Robins, R. H. (1959). In defence of WP. Trans-
actions of the Philological Society, 58(1):116—
144.

Stump, G. T. (2001). A theory of paradigm struc-
ture. Cambridge University Press.

Thompson, S. J. (1998). 15,000 Spanish verbs:
fully conjugated in all the tenses using pattern
verbs. Center for Innovative Language Learn-
ing.

Wang, Q., Pan, M., Shang, Y., and Korkin, D.
(2010). A fast heuristic search algorithm for
finding the longest common subsequence of
multiple strings. In AAAI Proc.

